1
|
Xu L, Li C, Wan T, Sun X, Lin X, Yan D, Li J, Wei P. Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun Signal 2025; 23:4. [PMID: 39754256 PMCID: PMC11699683 DOI: 10.1186/s12964-024-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals. While there is increasing evidence supporting the neuroprotective properties of UA in Parkinson's disease and Alzheimer's disease, gaps in knowledge still exist regarding the underlying mechanisms and how to effectively translate these benefits into clinical practice. Moreover, the current UA elevation therapy exhibits unstable antioxidant properties, individual variability, and even adverse effects, limiting its potential clinical applications. This review consolidates recent advancements in understanding how UA exerts neuroprotective effects on neurodegenerative diseases and emphasizes the dual roles of UA in managing oxidative stress and neuroinflammation. Additionally, the review elucidates the mechanisms through which UA confers neuroprotection. Based on this, the review underscores the significance of UA as a potential biomarker and aims to provide a comprehensive understanding of its potential as a therapeutic target, while also addressing possible challenges to clinical implementation.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Tiantian Wan
- Department of Anesthesiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinyi Sun
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Dong Yan
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
2
|
He Q, Zhang Z, Fu B, Chen J, Liu J. Changes in serum uric acid, glutathione, and amyloid-β1-42 levels in Parkinson's disease patients and their association with disease progression and cognitive decline. Curr Med Res Opin 2025; 41:105-113. [PMID: 39465510 DOI: 10.1080/03007995.2024.2422002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE This study aims to evaluate the diagnostic significance of serum uric acid (UA), glutathione (GSH), and amyloid-β1-42 (Aβ1-42) levels in relation to disease progression and cognitive impairment in patients with Parkinson's disease (PD). METHODS A total of 209 PD patients with disease duration ranging from 4.0 to 6.8 years were enrolled. Based on the Hoehn-Yahr staging system, patients were classified into Early (n = 67), Medium-term (n = 70), and Advanced (n = 72) stages. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), dividing the cohort into CD (cognitive dysfunction, n = 94) and NO-CD (no cognitive dysfunction, n = 115) groups. Serum UA, GSH, and Aβ1-42 levels were analyzed for correlations with clinical data. Independent risk factors and diagnostic value were determined through multivariable logistic regression models and receiver operating characteristic curve analysis. RESULTS Serum UA and GSH levels progressively declined with advancing disease stage, while Aβ1-42 increased. Compared to the NO-CD group, the CD group showed lower serum UA and GSH levels, and higher Aβ1-42 levels. Serum UA and GSH were inversely correlated with disease duration, levodopa equivalent daily dose, and Unified Parkinson's Disease Rating Scale scores, while Aβ1-42 showed positive correlations. UA (p = 0.006), GSH (p < 0.001), and Aβ1-42 (p = 0.040) were independent predictors of disease stage. Similarly, UA (p = 0.003), GSH (p < 0.001), and Aβ1-42 (p < 0.001) were independent predictors of cognitive dysfunction. The combined assessment of these markers demonstrated a higher area under the curve (AUC) than individual markers for disease and cognitive decline identification. CONCLUSIONS Serum UA, GSH, and Aβ1-42 are independent predictors of disease progression and cognitive decline in PD patients. Their combined use offers enhanced diagnostic accuracy for disease staging and cognitive impairment in PD.
Collapse
Affiliation(s)
- Qianqian He
- Department of Neurology, Lianyungang Second People's Hospital (The Oncology Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Zhaoting Zhang
- Department of Neurology, Lianyungang Second People's Hospital (The Oncology Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Bing Fu
- Department of Neurology, Lianyungang Second People's Hospital (The Oncology Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Jiechun Chen
- Department of Neurology, Lianyungang Second People's Hospital (The Oncology Hospital of Lianyungang), Lianyungang, Jiangsu, China
| | - Jianhua Liu
- Department of Neurology, Lianyungang Second People's Hospital (The Oncology Hospital of Lianyungang), Lianyungang, Jiangsu, China
| |
Collapse
|
3
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
4
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Zhang J, Zeng L, Bu L, Liao H, Wang M, Xiong Y, Cao F. Association between high uric acid and the risk of Parkinson's disease: A meta-analysis. Medicine (Baltimore) 2024; 103:e38947. [PMID: 39058857 PMCID: PMC11272381 DOI: 10.1097/md.0000000000038947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Uric acid, as an important antioxidant substance in human body, has attracted much attention in relation to the risk of Parkinson's disease (PD). However, the causal relationship between them is still controversial. We perform a meta-analysis to summarize the available evidence from cohort studies on the association between high uric acid and the risk of PD. METHODS We searched the Cochrane Library, PubMed, Medline, and Embase to obtain the Odds Ratio (OR) of high uric acid and PD and pooled the data using RevMan software (v5.4; Cochrane library). RESULTS A total of 18 studies involving more than 840,774 participants were included. Overall, we found a significant association (OR = 0.84; 95% CI: 0.77-0.91) between high uric acid and PD. Subgroup analysis was stratified by gender, indicating more statistically significant protective effects of serum urate in men (OR = 0.66; 95% CI: 0.54-0.81) than that of in women (OR = 0.86; 95% CI: 0.76-0.98). People under the age of 60 (OR = 0.53, 95% CI: 0.33-0.86) are more likely to benefit from high uric acid than people over age of 60 (OR = 0.73, 95% CI: 0.63-0.86). The resistance of high uric acid to PD in LRRK2 mutation carriers (OR = 0.22, 95% CI: 0.11-0.45) is stronger than that in non-manifesting LRRK2 mutation carriers (OR = 0.37, 95% CI: 0.16-0.85). In addition, a dose-response trend of serum urate to reduce PD risk was also observed (OR = 0.68; 95% CI: 0.48-0.93). CONCLUSION Our study confirms a significant association between high uric acid and the risk of PD, especially in men under 60 years old, and a dose-response trend of uric acid to reduce PD risk was also observed. Furthermore, LRRK2 mutation carriers are more likely to benefit from high uric acid than non-manifesting LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Jieyu Zhang
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Longhai Zeng
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Lufang Bu
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Hairong Liao
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Meixiang Wang
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Yan Xiong
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| | - Fei Cao
- Fuzhou Medical Department of Nanchang University, Fuzhou, China
| |
Collapse
|
6
|
Zhang YY, Jiang XH, Zhu PP, Zhuo WY, Liu LB. Advancements in understanding substantia nigra hyperechogenicity via transcranial sonography in Parkinson's disease and its clinical implications. Front Neurol 2024; 15:1407860. [PMID: 39091976 PMCID: PMC11291319 DOI: 10.3389/fneur.2024.1407860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Amidst rising Parkinson's disease (PD) incidence in an aging global population, the need for non-invasive and reliable diagnostic methods is increasingly critical. This review evaluates the strategic role of transcranial sonography (TCS) in the early detection and monitoring of PD. TCS's ability to detect substantia nigra hyperechogenicity offers profound insights into its correlation with essential neuropathological alterations-namely, iron accumulation, neuromelanin depletion, and glial proliferation-fundamental to PD's pathophysiology. Our analysis highlights TCS's advantages, including its non-invasiveness, cost-effectiveness, and ease of use, positioning it as an invaluable tool for early diagnosis and continual disease progression monitoring. Moreover, TCS assists in identifying potential risk and protective factors, facilitating tailored therapeutic strategies to enhance clinical outcomes. This review advocates expanding TCS utilization and further research to maximize its diagnostic and prognostic potential in PD management, contributing to a more nuanced understanding of the disease.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Xu-hong Jiang
- Department of Health Management, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Pei-pei Zhu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Wen-yan Zhuo
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Li-bin Liu
- Department of Neurology, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Otani N, Hoshiyama E, Ouchi M, Takekawa H, Suzuki K. Uric acid and neurological disease: a narrative review. Front Neurol 2023; 14:1164756. [PMID: 37333005 PMCID: PMC10268604 DOI: 10.3389/fneur.2023.1164756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Hyperuricemia often accompanies hypertension, diabetes, dyslipidemia, metabolic syndrome, and chronic renal disease; it is also closely related to cardiovascular disease. Moreover, several epidemiological studies have linked hyperuricemia and ischemic stroke. However, uric acid may also have neuroprotective effects because of its antioxidant properties. An association between low uric acid levels and neurodegenerative diseases has been suggested, which may be attributed to diminished neuroprotective effects as a result of reduced uric acid. This review will focus on the relationship between uric acid and various neurological diseases including stroke, neuroimmune diseases, and neurodegenerative diseases. When considering both the risk and pathogenesis of neurological diseases, it is important to consider the conflicting dual nature of uric acid as both a vascular risk factor and a neuroprotective factor. This dual nature of uric acid is important because it may help to elucidate the biological role of uric acid in various neurological diseases and provide new insights into the etiology and treatment of these diseases.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, Mibu, Japan
| | - Eisei Hoshiyama
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Hidehiro Takekawa
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
- Stroke Center, Dokkyo Medical University, Mibu, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
8
|
Li Q, Cen K, Cui Y, Feng X, Hou X. Uric acid levels and their association with vascular dementia and Parkinson's disease dementia: a meta-analysis. Neurol Sci 2023; 44:2017-2024. [PMID: 36690824 DOI: 10.1007/s10072-023-06620-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To explore the association between uric acid (UA) levels and vascular dementia (VaD) and Parkinson's disease dementia (PDD), a meta-analysis was conducted. METHODS The relevant studies were identified by searching PubMed, Embase, Web of Science, and Cochrane Collaboration Database up to May 2022. Pooled analysis, sensitivity analysis, and publication bias examination were all conducted. All analyses were performed by using STATA 16. RESULTS Twelve studies with a total of 2097 subjects were included. The pooled analysis showed that UA levels were not associated with VaD (WMD = - 10.99 μmol/L, 95% CI (- 48.05, 26.07), P = 0.561) but were associated with PDD (WMD = - 25.22 μmol/L, 95% CI (- 43.47, - 6.97), P = 0.007). The statistical stability and reliability were evaluated using sensitivity analysis and publication bias outcomes. CONCLUSION UA levels are associated with PDD but not with VaD. This study will help to strengthen our knowledge of the pathophysiologies of VaD and PDD, and promote the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Qian Li
- School of Public Health, Shenyang Medical College, 146 Huanghe North Street, Shenyang, 110034, China
| | - Kaiwen Cen
- School of Public Health, Shenyang Medical College, 146 Huanghe North Street, Shenyang, 110034, China
| | - Ying Cui
- School of Public Health, Shenyang Medical College, 146 Huanghe North Street, Shenyang, 110034, China
| | - Xu Feng
- School of Public Health, Shenyang Medical College, 146 Huanghe North Street, Shenyang, 110034, China
| | - Xiaowen Hou
- School of Public Health, Shenyang Medical College, 146 Huanghe North Street, Shenyang, 110034, China.
| |
Collapse
|
9
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Constantin IM, Voruz P, Péron JA. Moderating effects of uric acid and sex on cognition and psychiatric symptoms in asymmetric Parkinson's disease. Biol Sex Differ 2023; 14:26. [PMID: 37143121 PMCID: PMC10157998 DOI: 10.1186/s13293-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Non-motor symptoms are an important early feature of Parkinson's disease (PD), encompassing a variety of cognitive and psychiatric symptoms that seem to manifest differently depending on motor symptom asymmetry. Different factors, such as uric acid (UA) and sex, seem to influence cognitive and psychiatric expression in PD, however their interplay remains to be better understood. METHODS Participants taking part in the Parkinson's Progression Marker Initiative were studied based on the side of motor symptom asymmetry and sex. Three-way interaction modeling was used to examine the moderating effects of sex and UA on cognitive functions and psychiatric symptoms. RESULTS Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymmetry, UA and sex for immediate and long-term memory in female patients exhibiting predominantly left-sided motor symptoms, and for processing speed and sleepiness in female patients exhibiting predominantly right-sided motor symptoms. No significant interactions were observed for male patients. Moreover, female patients exhibiting predominantly right-sided motor symptoms demonstrated lower serum UA concentrations and had overall better outcomes, while male patients with predominantly right-sided motor symptoms demonstrated particularly poor outcomes. CONCLUSIONS These findings suggest that in the earliest stages of the disease, UA and sex moderate cognitive functions and psychiatric symptoms differently depending on motor asymmetry, holding important clinical implications for symptom management in patients.
Collapse
Affiliation(s)
- Ioana Medeleine Constantin
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland.
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland.
| |
Collapse
|
11
|
van Wamelen DJ, Rukavina K, Podlewska AM, Chaudhuri KR. Advances in the Pharmacological and Non-pharmacological Management of Non-motor Symptoms in Parkinson's Disease: An Update Since 2017. Curr Neuropharmacol 2023; 21:1786-1805. [PMID: 35293295 PMCID: PMC10514535 DOI: 10.2174/1570159x20666220315163856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-motor symptoms (NMS) are an important and ubiquitous determinant of quality of life in Parkinson's disease (PD). However, robust evidence for their treatment is still a major unmet need. OBJECTIVE This study aimed to provide an updated review on advances in pharmacological, nonpharmacological, and exercise-based interventions for NMS in PD, covering the period since the publication of the MDS Task Force Recommendations. METHODS We performed a literature search to identify pharmacological, non-pharmacological, and exercise-based interventions for NMS in PD. As there are recent reviews on the subject, we have only included studies from the 1st of January 2017 to the 1st of December 2021 and limited our search to randomised and non-randomised (including open-label) clinical trials. RESULTS We discuss new strategies to manage NMS based on data that have become available since 2017, for instance, on the treatment of orthostatic hypotension with droxidopa, several dopaminergic treatment options for insomnia, and a range of non-pharmacological and exercise-based interventions for cognitive and neuropsychiatric symptoms, pain, and insomnia and excessive sleepiness. CONCLUSION Recent evidence suggests that targeted non-pharmacological treatments, as well as some other NMS management options, may have a significant beneficial effect on the quality of life and need to be considered in the pathways of treatment of PD.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - Katarina Rukavina
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Aleksandra M. Podlewska
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Odeniyi O, Ojo O, Odeniyi I, Okubadejo N. Association of serum uric acid and non-motor symptoms in Parkinson's disease: A cross-sectional study from a movement disorders clinic in Lagos, Nigeria. JOURNAL OF CLINICAL SCIENCES 2022. [DOI: 10.4103/jcls.jcls_29_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Abstract
PURPOSE OF REVIEW This review aims to summarize recent evidence regarding the complex relationship between uric acid (UA), gout, and brain diseases. RECENT FINDINGS Observational studies have suggested that patients with hyperuricemia or gout might have a decreased risk of neurodegenerative diseases. Conversely, they may be at increased risk of cerebrovascular disease. Mendelian randomization (MR) studies use a genetic score as an instrumental variable to address the causality of the association between a risk factor (here, UA or gout) and an outcome. So far, MR analyses do not support a causal relationship of UA or gout with Alzheimer's disease and dementia, and of UA with Parkinson's disease or stroke. Observation studies indicate a U-shaped association between UA and brain diseases, but MR studies do not support that this association is causal. Further studies should address the causal role of gout as well as the impact of urate-lowering therapy on these outcomes.
Collapse
|
14
|
Grażyńska A, Adamczewska K, Antoniuk S, Bień M, Toś M, Kufel J, Urbaś W, Siuda J. The Influence of Serum Uric Acid Level on Non-Motor Symptoms Occurrence and Severity in Patients with Idiopathic Parkinson's Disease and Atypical Parkinsonisms-A Systematic Review. MEDICINA-LITHUANIA 2021; 57:medicina57090972. [PMID: 34577895 PMCID: PMC8468188 DOI: 10.3390/medicina57090972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022]
Abstract
Background and Objectives: A growing number of studies correlated higher levels of serum uric acid (UA) with both: lower risk of Parkinson’s Disease (PD) occurrence and slower progression of the disease. Similar conclusions were made where studies correlated UA with atypical Parkinsonisms (AP) progression. A few researchers have studied the issue of the influence of serum UA on the occurrence of non-motor symptoms (NMS) in PD and AP. Our systematic review is the first review completely dedicated to this matter. Materials and Methods: A comprehensive evaluation of the literature was performed to review the relationship between UA and NMS in PD and AP. The systematic review was conducted according to PRISMA Statement guidelines. The following databases were searched starting in April 2021: MEDLINE via PubMed, Embase, and Scopus. During the research, the following filters were used: >2010, articles in English, concerning humans. The study was not registered and received no external funding. Results: Seven articles meeting all inclusion criteria were included in this study. Collectively, data on 1104 patients were analyzed. A correlation between serum UA concentration and a few NMS types has been provided by the analyzed studies. In four papers, sleep disorders and fatigue were related to UA for both advanced and early PD. Other commonly appearing NMS domains were Attention/memory (4 studies), Depression/anxiety (3 studies), Cardiovascular (3 studies), Gastrointestinal (1 study), Perceptual (1 study), and Miscellaneous (1 study). For AP, no significant correlation between UA and worsening of NMS has been found. Conclusions: Based on the analyzed studies, a correlation between serum UA level and the occurrence and worsening of NMS in PD and APs cannot be definitively determined. Large-scale studies with a more diverse patient population and with more accurate methods of NMS assessment in Parkinsonism are needed.
Collapse
Affiliation(s)
- Anna Grażyńska
- Students’ Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.G.); (K.A.); (S.A.); (M.B.)
| | - Klaudia Adamczewska
- Students’ Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.G.); (K.A.); (S.A.); (M.B.)
| | - Sofija Antoniuk
- Students’ Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.G.); (K.A.); (S.A.); (M.B.)
| | - Martyna Bień
- Students’ Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.G.); (K.A.); (S.A.); (M.B.)
| | - Mateusz Toś
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Jakub Kufel
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Zabrze, 41-800 Zabrze, Poland;
| | - Weronika Urbaś
- Department of Neurology, St. Barbara Provincial Specialist Hospital No. 5, 41-200 Sosnowiec, Poland;
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-789-46-01 or +48-501-252-691; Fax: +48-32-789-45-55
| |
Collapse
|
15
|
Schwarzschild MA, Ascherio A, Casaceli C, Curhan GC, Fitzgerald R, Kamp C, Lungu C, Macklin EA, Marek K, Mozaffarian D, Oakes D, Rudolph A, Shoulson I, Videnovic A, Scott B, Gauger L, Aldred J, Bixby M, Ciccarello J, Gunzler SA, Henchcliffe C, Brodsky M, Keith K, Hauser RA, Goetz C, LeDoux MS, Hinson V, Kumar R, Espay AJ, Jimenez-Shahed J, Hunter C, Christine C, Daley A, Leehey M, de Marcaida JA, Friedman JH, Hung A, Bwala G, Litvan I, Simon DK, Simuni T, Poon C, Schiess MC, Chou K, Park A, Bhatti D, Peterson C, Criswell SR, Rosenthal L, Durphy J, Shill HA, Mehta SH, Ahmed A, Deik AF, Fang JY, Stover N, Zhang L, Dewey RB, Gerald A, Boyd JT, Houston E, Suski V, Mosovsky S, Cloud L, Shah BB, Saint-Hilaire M, James R, Zauber SE, Reich S, Shprecher D, Pahwa R, Langhammer A, LaFaver K, LeWitt PA, Kaminski P, Goudreau J, Russell D, Houghton DJ, Laroche A, Thomas K, McGraw M, Mari Z, Serrano C, Blindauer K, Rabin M, Kurlan R, Morgan JC, Soileau M, Ainslie M, Bodis-Wollner I, Schneider RB, Waters C, Ratel AS, Beck CA, Bolger P, Callahan KF, Crotty GF, Klements D, Kostrzebski M, McMahon GM, et alSchwarzschild MA, Ascherio A, Casaceli C, Curhan GC, Fitzgerald R, Kamp C, Lungu C, Macklin EA, Marek K, Mozaffarian D, Oakes D, Rudolph A, Shoulson I, Videnovic A, Scott B, Gauger L, Aldred J, Bixby M, Ciccarello J, Gunzler SA, Henchcliffe C, Brodsky M, Keith K, Hauser RA, Goetz C, LeDoux MS, Hinson V, Kumar R, Espay AJ, Jimenez-Shahed J, Hunter C, Christine C, Daley A, Leehey M, de Marcaida JA, Friedman JH, Hung A, Bwala G, Litvan I, Simon DK, Simuni T, Poon C, Schiess MC, Chou K, Park A, Bhatti D, Peterson C, Criswell SR, Rosenthal L, Durphy J, Shill HA, Mehta SH, Ahmed A, Deik AF, Fang JY, Stover N, Zhang L, Dewey RB, Gerald A, Boyd JT, Houston E, Suski V, Mosovsky S, Cloud L, Shah BB, Saint-Hilaire M, James R, Zauber SE, Reich S, Shprecher D, Pahwa R, Langhammer A, LaFaver K, LeWitt PA, Kaminski P, Goudreau J, Russell D, Houghton DJ, Laroche A, Thomas K, McGraw M, Mari Z, Serrano C, Blindauer K, Rabin M, Kurlan R, Morgan JC, Soileau M, Ainslie M, Bodis-Wollner I, Schneider RB, Waters C, Ratel AS, Beck CA, Bolger P, Callahan KF, Crotty GF, Klements D, Kostrzebski M, McMahon GM, Pothier L, Waikar SS, Lang A, Mestre T. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. JAMA 2021; 326:926-939. [PMID: 34519802 PMCID: PMC8441591 DOI: 10.1001/jama.2021.10207] [Show More Authors] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/05/2021] [Indexed: 01/13/2023]
Abstract
Importance Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data. Objective To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression. Design, Participants, and Setting Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (<5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019. Interventions Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. Main Outcomes and Measures The primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. Results Based on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine (MDS-UPDRS score, 11.1 [95% CI, 9.7-12.6] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, -0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P<.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years). Conclusions and Relevance Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD. Trial Registration ClinicalTrials.gov Identifier: NCT02642393.
Collapse
Affiliation(s)
- Michael A Schwarzschild
- Mass General Institute for Neurodegenerative Disease, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | | | | | | | - Rebecca Fitzgerald
- Parkinson's Foundation Research Advocates, Parkinson's Foundation, New York, New York
| | | | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Eric A Macklin
- Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut
| | - Dariush Mozaffarian
- Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
- Friedman School of Nutrition Science and Policy, Boston, Massachusetts
| | - David Oakes
- University of Rochester, Rochester, New York
| | | | - Ira Shoulson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | | | | | | | - Jason Aldred
- Inland Northwest Research, Spokane, Washington
- Selkirk Neurology, Spokane, Washington
| | | | | | | | - Claire Henchcliffe
- University of California, Irvine
- Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | - Rajeev Kumar
- Rocky Mountain Movement Disorders Center, Englewood, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | - David K Simon
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia Poon
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mya C Schiess
- The University of Texas Health Science Center, Houston McGovern Medical School, Houston
| | | | - Ariane Park
- The Ohio State University Wexner Medical Center, Columbus
| | | | | | - Susan R Criswell
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | | | | | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona
- University of Arizona School of Medicine-Phoenix
| | | | | | | | - John Y Fang
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Ashley Gerald
- University of Texas Southwestern Medical Center, Dallas
| | | | | | | | | | - Leslie Cloud
- VCU Parkinson's & Movement Disorders Center, Richmond, Virginia
| | | | | | | | | | - Stephen Reich
- University of Maryland School of Medicine, Baltimore
| | - David Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona
- University of Arizona School of Medicine-Phoenix
| | - Rajesh Pahwa
- University of Kansas Medical Center, Kansas City
| | | | - Kathrin LaFaver
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Peter A LeWitt
- Henry Ford Hospital-West Bloomfield, West Bloomfield Township, Michigan
| | - Patricia Kaminski
- Henry Ford Hospital-West Bloomfield, West Bloomfield Township, Michigan
| | | | | | | | | | - Karen Thomas
- Sentara Neurology Specialists, Norfolk, Virginia
| | - Martha McGraw
- Center for Movement Disorders and Neurodegenerative Disease, Northwestern Medicine/Central DuPage Hospital, Winfield, Illinois
| | - Zoltan Mari
- Cleveland Clinic-Las Vegas, Las Vegas, Nevada
| | | | | | - Marcie Rabin
- Atlantic Neuroscience Institute, Summit, New Jersey
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Summit, New Jersey
| | | | - Michael Soileau
- Texas Movement Disorder Specialists, Georgetown
- Scott & White Healthcare/Texas A&M University, Temple
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sushrut S Waikar
- Boston University School of Medicine, Boston, Massachusetts
- Boston Medical Center, Boston, Massachusetts
| | - Anthony Lang
- University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Low serum uric acid levels are associated with the nonmotor symptoms and brain gray matter volume in Parkinson's disease. Neurol Sci 2021; 43:1747-1754. [PMID: 34405296 PMCID: PMC8860949 DOI: 10.1007/s10072-021-05558-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
Background Uric acid (UA) plays a protective role in Parkinson’s disease (PD). To date, studies on the relationship between serum UA levels and nonmotor symptoms and brain gray matter volume in PD patients have been rare. Methods Automated enzymatic analysis was used to determine serum UA levels in 68 healthy controls and 88 PD patients, including those at the early (n = 56) and middle-late (n = 32) stages of the disease. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Image acquisition was performed using a Siemens MAGNETOM Prisma 3 T MRI scanner. Results Serum UA levels in early stage PD patients were lower than those in healthy controls, and serum UA levels in the middle-late stage PD patients were lower than those in the early stage PD patients. Serum UA levels were significantly negatively correlated with the disease course, dysphagia, anxiety, depression, apathy, and cognitive dysfunction. ROC assessment confirmed that serum UA levels had good predictive accuracy for PD with dysphagia, anxiety, depression, apathy, and cognitive dysfunction. Furthermore, UA levels were significantly positively correlated with gray matter volume in whole brain. Conclusions This study shows that serum UA levels were correlated with the nonmotor symptoms of dysphagia, anxiety, depression, apathy, and cognitive dysfunction and the whole-brain gray matter volume. That is the first report examining the relationships between serum UA and clinical manifestations and imaging features in PD patients.
Collapse
|
17
|
Milán-Tomás Á, Fernández-Matarrubia M, Rodríguez-Oroz MC. Lewy Body Dementias: A Coin with Two Sides? Behav Sci (Basel) 2021; 11:94. [PMID: 34206456 PMCID: PMC8301188 DOI: 10.3390/bs11070094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lewy body dementias (LBDs) consist of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which are clinically similar syndromes that share neuropathological findings with widespread cortical Lewy body deposition, often with a variable degree of concomitant Alzheimer pathology. The objective of this article is to provide an overview of the neuropathological and clinical features, current diagnostic criteria, biomarkers, and management of LBD. Literature research was performed using the PubMed database, and the most pertinent articles were read and are discussed in this paper. The diagnostic criteria for DLB have recently been updated, with the addition of indicative and supportive biomarker information. The time interval of dementia onset relative to parkinsonism remains the major distinction between DLB and PDD, underpinning controversy about whether they are the same illness in a different spectrum of the disease or two separate neurodegenerative disorders. The treatment for LBD is only symptomatic, but the expected progression and prognosis differ between the two entities. Diagnosis in prodromal stages should be of the utmost importance, because implementing early treatment might change the course of the illness if disease-modifying therapies are developed in the future. Thus, the identification of novel biomarkers constitutes an area of active research, with a special focus on α-synuclein markers.
Collapse
Affiliation(s)
- Ángela Milán-Tomás
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Marta Fernández-Matarrubia
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, 31008 Pamplona, Spain
| |
Collapse
|
18
|
Digital Technology in Clinical Trials for Multiple Sclerosis: Systematic Review. J Clin Med 2021; 10:jcm10112328. [PMID: 34073464 PMCID: PMC8199078 DOI: 10.3390/jcm10112328] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical trials in multiple sclerosis (MS) have been including digital technology tools to overcome limitations in treatment delivery and disease monitoring. In March 2020, we conducted a systematic search on pubmed.gov and clinicaltrials.gov databases (with no restrictions) to identify all relevant published and unpublished clinical trials, in English language, including MS patients, in which digital technology was applied. We used “multiple sclerosis” and “clinical trial” as the main search words, and “app”, “digital”, “electronic”, “internet” and “mobile” as additional search words, separately. Digital technology is part of clinical trial interventions to deliver psychotherapy and motor rehabilitation, with exergames, e-training, and robot-assisted exercises. Digital technology has been used to standardise previously existing outcome measures, with automatic acquisitions, reduced inconsistencies, and improved detection of symptoms (e.g., electronic recording of motor performance). Other clinical trials have been using digital technology for monitoring symptoms that would be otherwise difficult to detect (e.g., fatigue, balance), for measuring treatment adherence and side effects, and for self-assessment purposes. Collection of outcome measures is progressively shifting from paper-based on site, to internet-based on site, and, in the future, to internet-based at home, with the detection of clinical and treatment features that would have remained otherwise invisible. Similarly, remote interventions provide new possibilities of motor and cognitive rehabilitation.
Collapse
|
19
|
Gonzalez-Latapi P, Bayram E, Litvan I, Marras C. Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors. Behav Sci (Basel) 2021; 11:bs11050074. [PMID: 34068064 PMCID: PMC8152515 DOI: 10.3390/bs11050074] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom in Parkinson's Disease (PD) and an important source of patient disability and caregiver burden. The timing, profile and rate of cognitive decline varies widely among individuals with PD and can range from normal cognition to mild cognitive impairment (PD-MCI) and dementia (PDD). Beta-amyloid and tau brain accumulation, oxidative stress and neuroinflammation are reported risk factors for cognitive impairment. Traumatic brain injury and pesticide and tobacco exposure have also been described. Genetic risk factors including genes such as COMT, APOE, MAPT and BDNF may also play a role. Less is known about protective factors, although the Mediterranean diet and exercise may fall in this category. Nonetheless, there is conflicting evidence for most of the factors that have been studied. The use of inconsistent criteria and lack of comprehensive assessment in many studies are important methodological issues. Timing of exposure also plays a crucial role, although identification of the correct time window has been historically difficult in PD. Our understanding of the mechanism behind these factors, as well as the interactions between gene and environment as determinants of disease phenotype and the identification of modifiable risk factors will be paramount, as this will allow for potential interventions even in established PD.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
- Correspondence:
| |
Collapse
|
20
|
Zhou Z, Zhong S, Liang Y, Zhang X, Zhang R, Kang K, Qu H, Xu Y, Zhao C, Zhao M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:625690. [PMID: 33716713 PMCID: PMC7947796 DOI: 10.3389/fnagi.2021.625690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This meta-analysis aimed to evaluate the relationship between serum uric acid (UA) and the risk of dementia and its subtypes. Methods: Embase, PubMed, and Web of Science were searched from inception to July 2020. Random-effect models were employed to analyze the standard mean difference (SMD) with the corresponding 95% confidence intervals (CI). Results: Twenty-three eligible studies involving 5,575 participants were identified. The overall results showed lower levels of UA in dementia relative to non-dementia controls [SMD = −0.32 (−0.64; −0.01) p = 0.04]. The subgroup analysis of the type of dementia demonstrated a significant association of UA with Alzheimer's disease (AD) [SMD = −0.58 (−1.02; −0.15) p = 0.009] and Parkinson's disease with dementia (PDD) [SMD = −0.33 (−0.52; −0.14) p = 0.001] but not with vascular dementia (VaD). The stratification analysis of the concentrations of UA revealed that the UA quartile 1–2 was negatively correlated with dementia and neurodegenerative subtypes (p < 0.05), whereas a positive correlation of UA quartile 4 with dementia was noted (p = 0.028). Additionally, the meta-regression analysis on confounders showed that not age, body mass index, diabetes mellitus, hypertension, or smoking but education (p = 0.003) exerted an influence of the UA in the risk estimate of dementia. Conclusions: Low concentrations of UA (< 292 μmol/L or 4.91 mg/dL) is a potential risk factor for AD and PDD but not for VaD. The mechanism of different concentrations of the UA in dementia needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Liang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huiling Qu
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, China
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Huang H, Huang G, Gu J, Chen K, Huang Y, Xu H. Relationship of Serum Uric Acid to Hematoma Volume and Prognosis in Patients with Acute Supratentorial Intracerebral Hemorrhage. World Neurosurg 2020; 143:e604-e612. [PMID: 32781152 DOI: 10.1016/j.wneu.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative stress and inflammation play important roles in the neuronal injury caused by intracerebral hemorrhage (ICH). Uric acid (UA), an important natural antioxidant, might reduce the neuronal injury caused by ICH. Delineating the relationship between UA and ICH will enhance our understanding of antioxidative mechanisms in recovery from ICH. METHODS We conducted a retrospective study of 325 patients with acute supratentorial ICH to investigate the relationship between serum UA levels and hematoma volumes and prognosis. A hematoma volume of ≥30 mL was defined as a large hematoma. An unfavorable outcome was defined as a modified Rankin scale score of 4-6 on day 30. RESULTS The serum UA level was significantly lower in the patients with a large hematoma volume (median, 306 μmol/L; 25th to 75th percentile, 243-411 μmol/L) than in those with a small hematoma volume (median, 357 μmol/L; 25th to 75th percentile, 271-442 μmol/L; P = 0.012). Similarly, the unfavorable outcome group had had lower serum UA levels (median, 309 vs. 363 μmol/L; P = 0.009) compared with the favorable outcome group. The results of the multivariate logistic analysis indicated that a lower serum UA level was associated with a larger hematoma volume (odds ratio, 0.996; P = 0.006) and an unfavorable outcome (odds ratio, 0.997; P = 0.030). CONCLUSIONS The results from the present study have indicated that in patients with acute supratentorial ICH, a low serum UA level might indicate that the patient has a large hematoma volume and might be a risk factor for a poor day 30 functional prognosis.
Collapse
Affiliation(s)
- Haoping Huang
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Guanhua Huang
- Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China
| | - Jiajie Gu
- Department of Neurosurgery, Yinzhou people's Hospital, Ningbo, Zhejiang, China
| | - Kehua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Shantou University Medical College, Shantou, China
| | - Yuejun Huang
- Department of Pediatrics, Second Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
22
|
van Wamelen DJ, Taddei RN, Calvano A, Titova N, Leta V, Shtuchniy I, Jenner P, Martinez-Martin P, Katunina E, Chaudhuri KR. Serum Uric Acid Levels and Non-Motor Symptoms in Parkinson’s Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1003-1010. [DOI: 10.3233/jpd-201988] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel J. van Wamelen
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, United Kingdom
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, the Netherlands
| | - Raquel N. Taddei
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Alexander Calvano
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Nataliya Titova
- Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Federal Medical Biological Agency, Department of Neurology, Neurosurgery and Medical Genetics, Moscow, Russia
- Federal State Budgetary Institution «Federal center of brain and neurotechnologies» of the Ministry of Health of the Russian Federation, Department of Neurodegenerative Diseases, Moscow, Russia
| | - Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Igor Shtuchniy
- Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Federal Medical Biological Agency, Department of Neurology, Neurosurgery and Medical Genetics, Moscow, Russia
| | - Peter Jenner
- King’s College London, Institute of Pharmaceutical Science, Hodgkin Building, Guy’s Campus, London, United Kingdom
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - Elena Katunina
- Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Federal Medical Biological Agency, Department of Neurology, Neurosurgery and Medical Genetics, Moscow, Russia
- Federal State Budgetary Institution «Federal center of brain and neurotechnologies» of the Ministry of Health of the Russian Federation, Department of Neurodegenerative Diseases, Moscow, Russia
| | - K. Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, United Kingdom
| |
Collapse
|
23
|
Von Seggern M, Szarowicz C, Swanson M, Cavotta S, Pike ST, Lamberts JT. Purine molecules in Parkinson's disease: Analytical techniques and clinical implications. Neurochem Int 2020; 139:104793. [PMID: 32650026 DOI: 10.1016/j.neuint.2020.104793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that primarily affects patients over the age of 65. PD is characterized by loss of neurons in the substantia nigra and dopamine deficiency in the striatum. Once PD is clinically diagnosed by the observation of motor dysfunction, the disease is already in its advance stages. Consequently, there is a major push to identify clinical biomarkers that are useful for the earlier detection of PD. Using untargeted metabolomics, several research groups have identified purine molecules, and specifically urate, as important biomarkers related to PD. This review will summarize recent findings in the field of purine metabolomics and biomarker identification for PD, including in the areas of PD pathophysiology, diagnosis, prognosis and treatment. In addition, this article will summarize and examine the primary research techniques that are employed to quantify purine molecules in both experimental systems and human subjects.
Collapse
Affiliation(s)
| | - Carlye Szarowicz
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | - Matthew Swanson
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | - Samantha Cavotta
- College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Schuyler T Pike
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | | |
Collapse
|
24
|
Schwarzschild MA, Macklin EA, Bakshi R, Battacharyya S, Logan R, Espay AJ, Hung AY, Bwala G, Goetz CG, Russell DS, Goudreau JL, Parashos SA, Saint-Hilaire MH, Rudolph A, Hare JM, Curhan GC, Ascherio A. Sex differences by design and outcome in the Safety of Urate Elevation in PD (SURE-PD) trial. Neurology 2019; 93:e1328-e1338. [PMID: 31484712 DOI: 10.1212/wnl.0000000000008194] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate whether women and men with Parkinson disease (PD) differ in their biochemical and clinical responses to long-term treatment with inosine. METHODS The Safety of Urate Elevation in Parkinson's Disease (SURE-PD) trial enrolled 75 people with early PD and baseline serum urate below 6 mg/dL and randomized them to 3 double-blinded treatment arms: oral placebo or inosine titrated to produce mild (6.1-7.0 mg/dL) or moderate (7.1-8.0 mg/dL) serum urate elevation for up to 2 years. Parkinsonism, serum urate, and plasma antioxidant capacity were measured at baseline and repeatedly on treatment; CSF urate was assessed once, at 3 months. Here in secondary analyses results are stratified by sex. RESULTS Inosine produced an absolute increase in average serum urate from baseline that was 50% greater in women (3.0 mg/dL) than in men (2.0 mg/dL), consistent with expected lower baseline levels in women. Similarly, only among women was CSF urate significantly greater on mild or moderate inosine (+87% [p < 0.001] and +98% [p < 0.001], respectively) than on placebo (in contrast to men: +10% [p = 0.6] and +14% [p = 0.4], respectively). Women in the higher inosine dosing group showed a 7.0 Unified Parkinson's Disease Rating Scale (UPDRS) points/year lower rate of decline vs placebo (p = 0.01). In women, slower rates of UPDRS change were associated with greater increases in serum urate (r = -0.52; p = 0.001), and with greater increases in plasma antioxidant capacity (r = -0.44; p = 0.006). No significant associations were observed in men. CONCLUSIONS Inosine produced greater increases in serum and CSF urate in women compared to men in the SURE-PD trial, consistent with the study's design and with preliminary evidence for slower clinical decline in early PD among women treated with urate-elevating doses of inosine. CLINICALTRIALSGOV IDENTIFIER NCT00833690. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that inosine produced greater urate elevation in women than men and may slow PD progression in women.
Collapse
Affiliation(s)
- Michael A Schwarzschild
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA.
| | - Eric A Macklin
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Rachit Bakshi
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Shamik Battacharyya
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Robert Logan
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Alberto J Espay
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Albert Y Hung
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Grace Bwala
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Christopher G Goetz
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - David S Russell
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - John L Goudreau
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Sotirios A Parashos
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Marie H Saint-Hilaire
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Alice Rudolph
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Joshua M Hare
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Gary C Curhan
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | - Alberto Ascherio
- From the Departments of Neurology (M.A.S., R.B., S.B., R.L., A.Y.H., G.B.) and Medicine (E.A.M.), Massachusetts General Hospital, Boston; University of Cincinnati (A.J.E.), OH; Rush University (C.G.G.), Chicago, IL; Michigan State University (J.L.G.), East Lansing; Struthers Parkinson's Center (S.A.P.), Minneapolis, MN; Boston University (M.H.S.-H.), MA; University of Rochester (A.R.), NY; University of Miami (J.M.H.), FL; Brigham and Women's Hospital (G.C.C.), Boston, MA; Yale University School of Medicine (D.S.R.), New Haven, CT; and Department of Nutrition (A.A.), Harvard School of Public Health, Boston, MA
| | | |
Collapse
|
25
|
Erro R, Picillo M, Amboni M, Savastano R, Scannapieco S, Cuoco S, Santangelo G, Vitale C, Pellecchia MT, Barone P. Comparing postural instability and gait disorder and akinetic‐rigid subtyping of Parkinson disease and their stability over time. Eur J Neurol 2019; 26:1212-1218. [DOI: 10.1111/ene.13968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/04/2019] [Indexed: 01/19/2023]
Affiliation(s)
- R. Erro
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| | - M. Picillo
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| | - M. Amboni
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
- Institute of Diagnosis and Health IDC‐Hermitage Capodimonte Naples Italy
| | - R. Savastano
- Azienda Ospedaliera Universitaria 'San Giovanni di Dio e Ruggi d'Aragona' SalernoItaly
| | - S. Scannapieco
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| | - S. Cuoco
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| | - G. Santangelo
- Department of Psychology University of Campania Luigi Vanvitelli CasertaItaly
| | - C. Vitale
- Institute of Diagnosis and Health IDC‐Hermitage Capodimonte Naples Italy
- Department of Motor Sciences and Wellness University ‘Parthenope’ Naples Italy
| | - M. T. Pellecchia
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| | - P. Barone
- Center for Neurodegenerative Disease – CEMAND Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’ University of Salerno Baronissi (SA) Italy
| |
Collapse
|
26
|
Prell T, Witte OW, Grosskreutz J. Biomarkers for Dementia, Fatigue, and Depression in Parkinson's Disease. Front Neurol 2019; 10:195. [PMID: 30906277 PMCID: PMC6418014 DOI: 10.3389/fneur.2019.00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is a common multisystem neurodegenerative disorder characterized by typical motor and non-motor symptoms. There is an urgent need for biomarkers for assessment of disease severity, complications and prognosis. In addition, biomarkers reporting the underlying pathophysiology assist in understanding the disease and developing neuroprotective therapies. Ultimately, biomarkers could be used to develop a more efficient personalized approach for clinical trials and treatment strategies. With the goal to improve quality of life in Parkinson's disease it is essential to understand and objectively monitor non-motor symptoms. This narrative review provides an overview of recent developments of biomarkers (biofluid samples and imaging) for three common neuropsychological syndromes in Parkinson's disease: dementia, fatigue, and depression.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Moccia M, Capacchione A, Lanzillo R, Carbone F, Micillo T, Perna F, De Rosa A, Carotenuto A, Albero R, Matarese G, Palladino R, Brescia Morra V. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286418819074. [PMID: 30815035 PMCID: PMC6381428 DOI: 10.1177/1756286418819074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/21/2018] [Indexed: 02/02/2023] Open
Abstract
Background: Oxidative stress is a driver of multiple sclerosis (MS) pathology. We evaluated the effect of coenzyme Q10 (CoQ10) on laboratory markers of oxidative stress and inflammation, and on MS clinical severity. Methods: We included 60 relapsing–remitting patients with MS treated with interferon beta1a 44μg (IFN-β1a) with CoQ10 for 3 months, and with IFN-β1a 44μg alone for 3 more months (in an open-label crossover design). At baseline and at the 3 and 6-month visits, we measured markers of scavenging activity, oxidative damage and inflammation in the peripheral blood, and collected data on disease severity. Results: After 3 months, CoQ10 supplementation was associated with improved scavenging activity (as mediated by uric acid), reduced intracellular reactive oxygen species production, reduced oxidative DNA damage, and a shift towards a more anti-inflammatory milieu in the peripheral blood [with higher interleukin (IL)-4 and IL-13, and lower eotaxin, granulocyte-macrophage colony-stimulating factor (GM-CSF), hepatocyte growth factor (HGF), interferon (IFN)-γ, IL-1α, IL-2R, IL-9, IL-17F, macrophage inflammatory proteins (MIP)-1α, regulated on activation-normal T cell expressed and secreted (RANTES), tumor necrosis factor (TNF)-α, and vascular endothelial growth factor (VEGF). Also, CoQ10 supplementation was associated with lower Expanded Disability Status Scale, fatigue severity scale, Beck’s depression inventory, and the visual analogue scale for pain. Conclusions: CoQ10 supplementation improved scavenging activity, reduced oxidative damage, and induced a shift towards a more anti-inflammatory milieu, in the peripheral blood of relapsing–remitting MS patients treated with 44μg IFN-β1a 44μg. A possible clinical effect was noted but deserves to be confirmed over longer follow ups.
Collapse
Affiliation(s)
- Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Via Sergio Pansini, 5 - Building 17, Ground floor, Naples, Italy
| | | | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | | | - Teresa Micillo
- Department of Biology, Federico II University, Naples, Italy
| | - Francesco Perna
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Anna De Rosa
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Antonio Carotenuto
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Roberto Albero
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Giuseppe Matarese
- Laboratory of Immunology, Institute of Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), Naples, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Vincenzo Brescia Morra
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| |
Collapse
|
28
|
Association between Pretreatment Serum Uric Acid Levels and Progression of Newly Diagnosed Primary Angle-Closure Glaucoma: A Prospective Cohort Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7919836. [PMID: 30881597 PMCID: PMC6383391 DOI: 10.1155/2019/7919836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 12/17/2022]
Abstract
Purpose Increased evidence reveals that uric acid (UA) may have an important neuroprotective effect through its antioxidant properties. The aim of the present study was to investigate the relationship between pretreatment serum UA levels and the progression of newly diagnosed primary angle-closure glaucoma (PACG). Methods This prospective observational cohort study included 64 patients with newly diagnosed PACG who were followed up for a mean period of 12.77 months (range: 3–28 months). All subjects underwent a complete ophthalmological examination during the baseline and final follow-up visits, together with the acquisition of blood samples for UA measurements. During the follow-up period, the progression of PACG was defined as a clinical diagnosis of medically uncontrolled intraocular pressure and a loss of visual field with a mean deviation of >1 dB/year. Univariable and multivariable Cox regression models were used to investigate the association between baseline serum UA levels and the progression of PACG. The cumulative probability of progression of glaucoma was analyzed using the Kaplan-Meier method. Results During follow-up, 32 subjects were defined as progressive PACG, among whom baseline UA values were significantly higher in nonprogressing subjects than in progressing subjects (0.314 ± 0.069 mmol/l versus [vs.] 0.258 ± 0.069 mmol/l, respectively; P = 0.002). Similar results were also observed in male and female subgroups (P < 0.05). In a multivariable model, a decreased baseline serum UA level was associated with an increased risk for progressing PACG: both in male (hazard ratio [HR] 6.088 [95% confidence interval (CI) 1.163–31.8638]; P = 0.032) and female subjects (HR 3.565 [95% CI 1.131–11.236]; P = 0.030). Subjects with high UA levels demonstrated higher cumulative probabilities of nonprogressing PACG than those with low UA levels (male [16.67% vs. 80.00%; P = 0.0084] and female [29.41% vs. 68.00%; P = 0.0182]). Conclusion An association between high baseline serum UA levels and a decreased risk for progressing PACG was found. This primary finding suggests that high serum UA levels may have a protective role against PACG and could slow disease progression.
Collapse
|
29
|
Dissociation between urate and blood pressure in mice and in people with early Parkinson's disease. EBioMedicine 2018; 37:259-268. [PMID: 30415890 PMCID: PMC6284456 DOI: 10.1016/j.ebiom.2018.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
Abstract
Background Epidemiological, laboratory and clinical studies have established an association between elevated urate and high blood pressure (BP). However, the inference of causality remains controversial. A naturally occurring antioxidant, urate may also be neuroprotective, and urate-elevating treatment with its precursor inosine is currently under clinical development as a potential disease-modifying strategy for Parkinson's disease (PD). Methods Our study takes advantage of a recently completed phase II trial evaluating oral inosine in de novo non-disabling early PD with no major cardiovascular and nephrological conditions, and of three lines of genetically engineered mice: urate oxidase (UOx) global knockout (gKO), conditional KO (cKO), and transgenic (Tg) mice with markedly elevated, mildly elevated, and substantially reduced serum urate, respectively, to systematically investigate effects of urate-modifying manipulation on BP. Findings Among clinical trial participants, change in serum urate but not changes in systolic, diastolic and orthostatic BP differed by treatment group. There was no positive correlation between urate elevations and changes in systolic, diastolic and orthostatic BP ((p = .05 (in inverse direction), 0.30 and 0.63, respectively)). Between UOx gKO, cKO, or Tg mice and their respective wildtype littermates there were no significant differences in systolic or diastolic BP or in their responses to BP-regulating interventions. Interpretation Our complementary preclinical and human studies of urate modulation in animal models and in generally healthy early PD do not support a hypertensive effect of urate elevation or an association between urate and BP. Fund U.S. Department of Defense, RJG Foundation, Michael J. Fox Foundation LEAPS program, National Institutes of Health, American Federation for Aging Research, Parkinson's Disease Foundation Advancing Parkinson's Therapies initiative.
Collapse
|
30
|
Li X, Jia S, Zhou Z, Jin Y, Zhang X, Hou C, Zheng W, Rong P, Jiao J. Effect of serum uric acid on cognition in patients with idiopathic REM sleep behavior disorder. J Neural Transm (Vienna) 2018; 125:1805-1812. [DOI: 10.1007/s00702-018-1935-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/26/2018] [Indexed: 01/29/2023]
|
31
|
Kobylecki CJ, Nordestgaard BG, Afzal S. Plasma urate and risk of Parkinson's disease: A mendelian randomization study. Ann Neurol 2018; 84:178-190. [PMID: 30014508 DOI: 10.1002/ana.25292] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Urate is a potent antioxidant, and high plasma urate has been associated with lower incidence of Parkinson's disease (PD) in epidemiological studies. We tested the hypothesis that high concentrations of plasma urate are associated with low incidence of PD. METHODS We performed observational and genetic analyses using plasma urate and the urate SLC2A9 rs7442295 and ABCG2 rs2231142 genotype in >102,000 individuals from the CGPS (Copenhagen General Population Study). Information on PD and mortality was from national patient and death registries. Incidences of PD were calculated using Cox regression, Fine and Gray competing-risks regression, and instrumental variable analyses. RESULTS In total, 398 individuals were diagnosed with PD, of which 285 were incident cases. The multivariable adjusted hazard ratio for PD was 0.56 (95% confidence interval [CI], 0.41-0.77) for the highest versus the lowest tertile of plasma urate (p for trend across 3 groups, 8 × 10-5 ). Each one-allele increase in the combined allele score was associated with 19μmol/l (95% CI, 18.5-19.9) higher plasma urate. In observational analyses, a 50μmol/l higher plasma urate was associated with a hazard ratio of 0.85 (0.77-0.92) for PD; in instrumental variable analyses, 50μmol/l higher plasma urate was associated with an odds ratio of 1.20 (0.85-1.71) for PD. INTERPRETATION High plasma urate was associated with lower risk of PD in observational analyses; however, in instrumental variable analysis, high plasma urate was not associated with low risk of PD. Thus, our data do not support a causal relationship between high plasma urate and low risk of PD. Ann Neurol 2018;84:178-190.
Collapse
Affiliation(s)
- Camilla J Kobylecki
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
32
|
Yu Z, Zhang S, Wang D, Fan M, Gao F, Sun W, Li Z, Li S. The significance of uric acid in the diagnosis and treatment of Parkinson disease: An updated systemic review. Medicine (Baltimore) 2017; 96:e8502. [PMID: 29137045 PMCID: PMC5690738 DOI: 10.1097/md.0000000000008502] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disease characterized by chronic and progressive loss of dopaminergic neurons in substansia nigra pars compacta. Oxidative stress is proposed to play a critical role in the pathogenesis of PD. Uric acid (UA), as an important physiological antioxidant, is identified a molecular predictor associated with a decreased risk and a slower disease progression for PD and potential neuroprotectant of PD by increasing epidemiological and clinical evidences. Within this review, we will present a comprehensive overview of the data linking UA to PD in recent years. METHODS We searched PubMed, EMBASE, Web of Science databases for relevant studies. Any observational or experimental studies that evaluated UA and PD were our goal of searching the electric databases. RESULTS Twelve studies that evaluated UA and PD were identified in this review. We reviewed the roles of UA in the pathogenesis of PD, the association of UA with morbidity, severity/progression, nonmotor symptoms, motor complications of PD, with an attempt to provide new ideas for diagnosis and treatment in PD. CONCLUSION Our findings supported that lots of clinical and epidemiological data observed lower UA levels in PD patients. Manipulation of UA or its precursors' concentration could be effective to treat or prevent PD. However, it is still suspectable that higher UA levels are better enough to PD patients. Furthermore, for the complex nature of PD and its heterogeneous genetic and environmental influences, it is inadequate for just manipulating UA in treating the disease.
Collapse
Affiliation(s)
- Zhange Yu
- Department of Acupuncture, China-Japan Friendship Hospital, Beijing
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province
| | - Dongdong Wang
- Department of Orthopedics, Tumd Right Banner Hospital, Baotou City
| | - Meng Fan
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Zirong Li
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Shiliang Li
- Department of Acupuncture, China-Japan Friendship Hospital, Beijing
| |
Collapse
|
33
|
Hemmati-Dinarvand M, Taher-Aghdam AA, Mota A, Zununi Vahed S, Samadi N. Dysregulation of serum NADPH oxidase1 and ferritin levels provides insights into diagnosis of Parkinson's disease. Clin Biochem 2017; 50:1087-1092. [PMID: 28941592 DOI: 10.1016/j.clinbiochem.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a common neurodegenerative disease. Oxidative stress is considered as a key modulator in the development of PD. This study aimed to investigate associations between serum NOX1 (NADPH oxidase1), ferritin, selenium (Se), and uric acid (UA) levels and clinical parameters in patients with PD. DESIGN AND METHODS Serum levels of NOX1, ferritin, Se, and UA were measured in 40 PD patients and 40 healthy individuals. Receiver operating characteristic (ROC) analysis was performed to investigate incremental diagnostic value of each factor in the study groups. RESULTS Mean serum NOX1 levels were markedly higher in patient group (22.36±5.80ng/mL) versus healthy individuals (8.89±2.37ng/mL) (p<0.001). Significant differences were also observed in the serum concentrations of ferritin (p=0.005) and Se (p=0.001) between patients with PD and healthy individuals. However, the serum concentrations of UA were not statistically significant between the study groups (p=0.560). ROC analysis revealed a diagnostic ability of serum NOX1 and ferritin levels for PD with an area under ROC curve of ≥0.7 (p<0.05) and relatively high sensitivity and specificity. Combination of serum NOX1 and Se along with ferritin and UA levels increased the sensitivity up to 85%, specificity up to 97% and area under the ROC curve up to 0.94 (95% confidence interval (95% CI): 0.89 to 0.99, p<0.001). CONCLUSION Our findings indicated that serum concentrations of NOX1, ferritin, and Se are significantly higher in the patients with PD. Therefore, these factors can be considered as potential diagnostic biomarkers for diagnosis and monitoring of PD patients. Further studies are required with larger sample size to provide more detailed information about the cognitive profile of participants and the outcome measures.
Collapse
Affiliation(s)
- Mohsen Hemmati-Dinarvand
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Akbar Taher-Aghdam
- Department of Neurology, Faculty of Medicine, TabrizUniversity of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Abstract
Oxidative stress has been implicated as a core contributor to the initiation and progression of multiple neurological diseases. Genetic and environmental factors can produce oxidative stress through mitochondrial dysfunction leading to the degeneration of dopaminergic and other neurons underlying Parkinson disease (PD). Although clinical trials of antioxidants have thus far failed to demonstrate slowed progression of PD, oxidative stress remains a compelling target. Rather than prompting abandonment of antioxidant strategies, these failures have raised the bar for justifying drug and dosing selections and for improving study designs to test for disease modification by antioxidants. Urate, the main antioxidant found in plasma as well as the end product of purine metabolism in humans, has emerged as a promising potential neuroprotectant with advantages that distinguish it from previously tested antioxidant agents. Uniquely, higher urate levels in plasma or cerebrospinal fluid (CSF) have been linked to both a lower risk of developing PD and to a slower rate of its subsequent progression in numerous large prospective epidemiological and clinical cohorts. Laboratory evidence that urate confers neuroprotection in cellular and animal models of PD, possibly via the Nrf2 antioxidant response pathway, further strengthened its candidacy for rapid clinical translation. An early phase trial of the urate precursor inosine demonstrated its capacity to safely produce well tolerated, long-term elevation of plasma and CSF urate in early PD, supporting a phase 3 trial now underway to determine whether oral inosine dosed to elevate urate to concentrations predictive of favorable prognosis in PD slows clinical decline in people with recently diagnosed, dopamine transporter-deficient PD.
Collapse
Affiliation(s)
- Grace F Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
35
|
Schrag A, Taddei RN. Depression and Anxiety in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:623-655. [DOI: 10.1016/bs.irn.2017.05.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Biomarkers of Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:259-289. [DOI: 10.1016/bs.irn.2017.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Affiliation(s)
- A H V Schapira
- Clinical Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
38
|
Abstract
BACKGROUND Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical, genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we discuss objectively defined putative biomarkers for PD and prodromal PD. METHODS We searched Pubmed and Embase for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected based on relevance and methodology. KEY FINDINGS Objective biomarkers of demonstrated utility in prodromal PD include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying prodromal PD. CONCLUSIONS Several objective biomarkers for prodromal PD show promise but require further study, including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956-967).
Collapse
|
39
|
Moccia M, Mollenhauer B, Erro R, Picillo M, Palladino R, Barone P. Non-Motor Correlates of Smoking Habits in de Novo Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2016; 5:913-24. [PMID: 26485426 DOI: 10.3233/jpd-150639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) subjects are less likely to ever smoke and are more prone to quit smoking, as compared to controls. Therefore, smoking habits can be considered part of the non-motor phenotype, preceding the onset of motor PD by several years. OBJECTIVE To explore non-motor symptom (NMS) correlates of smoking habits in de novo PD. METHODS This cross-sectional study included 281 newly diagnosed, drug-naïve PD subjects, recruited in Naples (Italy) and in Kassel (Germany). All subjects completed the NMS Questionnaire (NMSQ), and were investigated for smoking status (never, current and former smokers) and intensity (pack-years). RESULTS 140 PD subjects never smoked, 20 currently smoked, and 121 had quit smoking before PD diagnosis. NMSQ total score did not associate with smoking status, but with smoking intensity (p = 0.028; coefficient = 0.088). A multinomial logistic regression stepwise model presenting never smoking as reference, selected as NMSQ correlates of current smoking: sex difficulties (p = 0.002; OR = 5.254), daytime sleepiness (p = 0.046; OR = 0.085), insomnia (p = 0.025; OR = 0.135), and vivid dreams (p = 0.040; OR = 3.110); and of former smoking: swallowing (p = 0.013; OR = 0.311), nausea (p = 0.027; OR = 7.157), unexplained pains (p = 0.002; OR = 3.409), forgetfulness (p = 0.005; OR = 2.592), sex interest (p = 0.007; OR = 0.221), sex difficulties (p = 0.038; OR = 4.215), and daytime sleepiness (p = 0.05; OR = 0.372). An ordinal logistic regression stepwise model selected as NMSQ correlates of smoking intensity: nocturnal restlessness (p = 0.027; coefficient = 0.974), and leg swelling (p = 0.004; coefficient = 1.305). CONCLUSIONS Certain NMSs are associated with different smoking status and intensity, suggesting a variety of adaptive mechanisms to cigarette smoking.
Collapse
Affiliation(s)
- Marcello Moccia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, Kassel, Germany.,Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK.,Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, Department of Medicine, University of Salerno, Salerno, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College, South Kensington Campus, London, UK.,Department of Public Health, Federico II University, Naples, Italy
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Neuroscience Section, Department of Medicine, University of Salerno, Salerno, Italy
| |
Collapse
|
40
|
Pellecchia MT, Savastano R, Moccia M, Picillo M, Siano P, Erro R, Vallelunga A, Amboni M, Vitale C, Santangelo G, Barone P. Lower serum uric acid is associated with mild cognitive impairment in early Parkinson's disease: a 4-year follow-up study. J Neural Transm (Vienna) 2016; 123:1399-1402. [PMID: 27682634 DOI: 10.1007/s00702-016-1622-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/06/2016] [Indexed: 01/29/2023]
Abstract
Cognitive deficits are common in Parkinson's disease (PD) and many patients eventually develop dementia; however, its occurrence is unpredictable. Serum uric acid (UA) has been proposed as a biomarker of PD, both in the preclinical and clinical phase of the disease. The aim of this pilot study was to evaluate relationships between baseline serum UA levels and occurrence of mild cognitive impairment (MCI) at 4-year follow-up in a cohort of early PD patients. Early PD patients, not presenting concomitant diseases, cognitive impairment or treatment possibly interfering with UA levels, underwent neuropsychological testing at baseline and 4-year follow-up. UA levels were determined in serum at baseline. MCI was found in 23 out of 42 PD patients completing 4-year follow-up. Patients presenting MCI had significantly higher age at onset and lower Frontal Assessment Battery scores at baseline as compared with patients cognitively intact. Logistic regression analysis showed that both serum UA levels (OR = 0.54, p = 0.044) and age (OR = 1.16, p = 0.009) contribute to the occurrence of MCI at 4-year follow-up. Our pilot study suggests that lower levels of serum UA in the early disease stages are associated to the later occurrence of MCI. These results need to be confirmed by further studies on larger samples.
Collapse
Affiliation(s)
- Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy.
| | | | - Marcello Moccia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Marina Picillo
- Neuroscience Section, Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Pietro Siano
- AOU San Giovanni di Dio e Ruggi d'Aragona, Salerno, Italy
| | - Roberto Erro
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Annamaria Vallelunga
- Neuroscience Section, Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | | | - Carmine Vitale
- IDC Hermitage-Capodimonte, Naples, Italy.,University of Naples Parthenope, Naples, Italy
| | - Gabriella Santangelo
- IDC Hermitage-Capodimonte, Naples, Italy.,Neuropsychology Laboratory, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| |
Collapse
|
41
|
Moccia M, Pellecchia MT, Spina E, Barone P, Vitale C. Bilirubin and Uric Acid: Two Different Anti-oxidants in Parkinson's Disease. Cell Biochem Biophys 2016; 74:91-2. [PMID: 27286855 DOI: 10.1007/s12013-015-0717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcello Moccia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Neuroscience Section, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Emanuele Spina
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Paolo Barone
- Department of Medicine, Neuroscience Section, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Carmine Vitale
- IDC Hermitage-Capodimonte, Naples, Italy. .,Department of Motor Sciences, University Parthenope, Naples, Italy.
| |
Collapse
|
42
|
Jackson EK, Boison D, Schwarzschild MA, Kochanek PM. Purines: forgotten mediators in traumatic brain injury. J Neurochem 2016; 137:142-53. [PMID: 26809224 DOI: 10.1111/jnc.13551] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022]
Abstract
Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Michael A Schwarzschild
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Vieru E, Köksal A, Mutluay B, Dirican AC, Altunkaynak Y, Baybas S. The relation of serum uric acid levels with l-Dopa treatment and progression in patients with Parkinson’s disease. Neurol Sci 2016; 37:743-7. [DOI: 10.1007/s10072-015-2471-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
|
44
|
Picillo M, Santangelo G, Moccia M, Erro R, Amboni M, Prestipino E, Longo K, Vitale C, Spina E, Orefice G, Barone P, Pellecchia MT. Serum uric acid is associated with apathy in early, drug-naïve Parkinson’s disease. J Neural Transm (Vienna) 2016; 123:371-7. [DOI: 10.1007/s00702-015-1502-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/27/2015] [Indexed: 11/25/2022]
|
45
|
Oropesa-Ruiz JM, Huertas-Fernández I, Jesús S, Cáceres-Redondo MT, Vargas-Gonzalez L, Carrillo F, Carballo M, Gómez-Garre P, Mir P. Low serum uric acid levels in progressive supranuclear palsy. Mov Disord 2015; 31:402-5. [PMID: 26686202 DOI: 10.1002/mds.26466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Uric acid is a natural antioxidant, and it has been shown that low levels of uric acid could be a risk factor for the development of PD. Our aim was to investigate whether uric acid plays a role in PSP. METHODS We carried out a cross-sectional study to compare serum uric acid levels between PSP patients, PD patients, and healthy controls. We also analyzed longitudinal uric acid levels in the PSP group. RESULTS PSP patients showed reduced levels of serum uric acid as compared to healthy controls. This reduction was similar to that found in patients with PD. Uric acid levels of PSP patients did not change with time. CONCLUSION Serum uric acid levels are reduced in PSP as well as in PD compared to healthy controls. Our data suggest that high levels of uric acid could be a natural protective factor against PSP.
Collapse
Affiliation(s)
- Juan Manuel Oropesa-Ruiz
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Ismael Huertas-Fernández
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María Teresa Cáceres-Redondo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Laura Vargas-Gonzalez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Manuel Carballo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
46
|
Progression of non-motor symptoms in Parkinson's disease among different age populations: A two-year follow-up study. J Neurol Sci 2015; 360:72-7. [PMID: 26723977 DOI: 10.1016/j.jns.2015.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/08/2015] [Accepted: 11/26/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-motor symptoms (NMS) are gaining increasing relevance in the management of Parkinson's disease (PD), but little is known about their progression, especially among patients with different ages. METHODS A total of 117 PD patients who were divided into four age groups (<50, 50-60, 60-70, and >70years old) were included to assess NMS at baseline and follow-up visit (21.6±5.6months). The frequency and severity of NMS were assessed using the Non-Motor Symptom Scale (NMSS). RESULTS After adjusting for confounding factors, patients at the last visit had significantly higher frequency of "Difficulty falling asleep" item (p=0.034) and "Urinary" domain (p=0.017), and higher total NMSS score (p=0.011) as well as scores for "Sleep/fatigue" (p=0.013) and "Sexual dysfunction" (p=0.014) domains and scores for "Fatigue" (p=0.004), "Lack of motivation" (p=0.033), "Interest in sex" (p=0.014) and "Problems having sex" (p=0.031) items than patients at baseline. The frequency changes of each NMS among four age groups exhibited an anfractuous result, while the annual severity changes of each NMS were not significant different among four age groups. Multinomial logistic regression model indicated that age had no correlation with the changes of NMS frequency and severity. CONCLUSIONS The severity of NMS in PD tends to become progressively worse with the course of the disease. Age is not related to the progression of NMS in PD.
Collapse
|
47
|
Gu Y, Han B, Wang L, Chang Y, Zhu L, Ren W, Yan M, Zhang X, He J. Low Serum Levels of Uric Acid are Associated With Development of Poststroke Depression. Medicine (Baltimore) 2015; 94:e1897. [PMID: 26559256 PMCID: PMC4912250 DOI: 10.1097/md.0000000000001897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Poststroke depression (PSD) is a frequent complication of stroke that has been associated with poorer outcome of stroke patients. This study sought to examine the possible association between serum uric acid levels and the development of PSD.We recruited 196 patients with acute ischemic stroke and 100 healthy volunteers. Serum uric acid levels were tested by uricase-PAP method within 24 hr after admission. Neuropsychological evaluations were conducted at 3-month poststroke. The 17-item Hamilton Depression Scale was used to assess depressive symptoms. Diagnosis of PSD was made in accordance with DSM-IV criteria for depression. Multivariate analyses were conducted using logistic regression models.Fifty-six patients (28.6%) were diagnosed as having PSD at 3 months. PSD patients showed significantly lower levels of uric acid at baseline as compared to non-PSD patients (237.02 ± 43.43 vs 309.10 ± 67.44 μmol/L, t = -8.86, P < 0.001). In multivariate analyses, uric acid levels (≤239.0 and ≥328.1 μmol/L) were independently associated with the development of PSD (OR, 7.76; 95% confidence interval [CI], 2.56-23.47, P < 0.001 and OR, 0.05; 95% CI, 0.01-0.43, P = 0.01, respectively) after adjustment for possible variables.Serum uric acid levels at admission are found to be correlated with PSD and may predict its development at 3 months after stroke.
Collapse
Affiliation(s)
- Yingying Gu
- From the Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (YG, BH, LW, YC, LZ, WR, MY, JH), Beijing HuiLongGuan Hospital, Peking University, Beijing, P.R. China (XZ); and Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX (XZ)
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moccia M, Picillo M, Erro R, Longo K, Amboni M, Santangelo G, Palladino R, Allocca R, Caporale O, Triassi M, Pellecchia MT, Barone P, Vitale C. Increased bilirubin levels in de novo Parkinson's disease. Eur J Neurol 2015; 22:954-9. [PMID: 25740378 DOI: 10.1111/ene.12688] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Oxidative stress is a central pathogenic mechanism of Parkinson's disease (PD), and the heme oxygenase (HO) bilirubin pathway is one of the main mammalian antioxidative defences. Indeed, there is growing evidence of HO-bilirubin upregulation from early phases of PD. Our aim was to investigate bilirubin as a possible biomarker of PD diagnosis and progression. METHODS A cross-sectional case-control study was performed to evaluate differences in bilirubin levels between newly diagnosed, drug-naïve PD subjects and controls. Afterwards, PD subjects were included in a 2-year longitudinal study to evaluate disease progression in relation to baseline bilirubin levels. RESULTS Seventy-five de novo PD subjects were selected and matched with 75 controls by propensity score. Analysis of variance showed higher bilirubin levels in PD patients compared with controls (P < 0.001). Linear regression analysis failed to show a relationship between bilirubin and Unified Parkinson's Disease Rating Scale (UPDRS) part III (P = 0.283) at baseline evaluation. At 2-year follow-up, indirect relationships between bilirubin levels and UPDRS part III (P = 0.028) and between bilirubin levels and levodopa-equivalent daily dosage (P = 0.012) were found. CONCLUSIONS Parkinson's disease subjects showed higher levels of bilirubin compared with controls. Bilirubin increase might be due to HO overexpression as a compensatory response to oxidative stress occurring from early stages of PD.
Collapse
Affiliation(s)
- M Moccia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Uric acid in relapsing-remitting multiple sclerosis: a 2-year longitudinal study. J Neurol 2015; 262:961-7. [PMID: 25673130 DOI: 10.1007/s00415-015-7666-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Uric acid (UA) is reduced in multiple sclerosis (MS), and possibly relates to MS outcomes, with lower UA levels in subjects experiencing a relapse or presenting higher disability scores. The present retrospective longitudinal study evaluated UA variations in MS, in relation to clinical relapses, disability progression, and cognitive functions. We included 141 subjects with relapsing-remitting MS (RRMS) and performed expanded disability status scale (EDSS), symbol digit modalities test (SDMT) and UA evaluation at baseline visit and after 2-year follow-up. Paired t test showed significantly lower UA levels after 2-year follow-up than at baseline (3.987 ± 1.135 and 4.167 ± 1.207 mg/dL, respectively) (p = 0.001). The difference in UA levels between 2-year follow-up and baseline related to EDSS sustained progression (p < 0.001; OR = 0.099), and presented a trend for clinical relapses at logistic regression (p = 0.211; OR = 0.711) and for the time to relapse at Cox regression (p = 0.236; HR = 0.792). Analysis of variance showed reduced baseline UA levels in subjects with impaired SDMT at baseline (p = 0.045; adjusted R(2) = 0.473) and after 2-year follow-up (p = 0.034; adjusted R(2) = 0.470). This is the first study showing a progressive reduction of UA levels during the course of RRMS, suggesting a progressive decrease of antioxidant reserves, in relation to relapse risk, disability progression and cognitive function.
Collapse
|