1
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
2
|
Fan J, Zhu Z, Chen Y, Yang C, Li X, Chen K, Chen X, Zhang Z. SORL1 rs1699102 Moderates the Effect of Sex on Language Network. J Alzheimers Dis 2023:JAD221133. [PMID: 37212098 DOI: 10.3233/jad-221133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Language ability differs between the sexes. However, it is unclear how this sex difference is moderated by genetic factors and how the brain interacts with genetics to support this specific language capacity. Previous studies have demonstrated that the sorting protein-related receptor (SORL1) polymorphism influences cognitive function and brain structure differently in males and females and is associated with Alzheimer's disease risk. OBJECTIVE The aim of this study was to investigate the effects of sex and the SORL1 rs1699102 (CC versus T carriers) genotype on language. METHODS 103 non-demented Chinese older adults from Beijing Aging Brain Rejuvenation Initiative (BABRI) database were included in this study. Participants completed language tests, T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional MRI. Language test performance, gray matter volume, and network connections were compared between genotype and sex groups. RESULTS The rs1699102 polymorphism moderated the effects of sex on language performance, with the female having reversed language advantages in T carriers. The T allele carriers had lower gray matter volume in the left precentral gyrus. The effect of sex on language network connections was moderated by rs1699102; male CC homozygotes and female T carriers had higher internetwork connections, which were negatively correlated with language performance. CONCLUSION These results suggest that SORL1 moderates the effects of sex on language, with T being a risk allele, especially in females. Our findings underscore the importance of considering the influence of genetic factors when examining sex effects.
Collapse
Affiliation(s)
- Jialing Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing, China
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Lee Y, Park JY, Lee JJ, Gim J, Do AR, Jo J, Park J, Kim K, Park K, Jin H, Choi KY, Kang S, Kim H, Kim S, Moon SH, Farrer LA, Lee KH, Won S. Heritability of cognitive abilities and regional brain structures in middle-aged to elderly East Asians. Cereb Cortex 2023; 33:6051-6062. [PMID: 36642501 PMCID: PMC10183741 DOI: 10.1093/cercor/bhac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/17/2023] Open
Abstract
This study examined the single-nucleotide polymorphism heritability and genetic correlations of cognitive abilities and brain structural measures (regional subcortical volume and cortical thickness) in middle-aged and elderly East Asians (Korean) from the Gwangju Alzheimer's and Related Dementias cohort study. Significant heritability was found in memory function, caudate volume, thickness of the entorhinal cortices, pars opercularis, superior frontal gyri, and transverse temporal gyri. There were 3 significant genetic correlations between (i) the caudate volume and the thickness of the entorhinal cortices, (ii) the thickness of the superior frontal gyri and pars opercularis, and (iii) the thickness of the superior frontal and transverse temporal gyri. This is the first study to describe the heritability and genetic correlations of cognitive and neuroanatomical traits in middle-aged to elderly East Asians. Our results support the previous findings showing that genetic factors play a substantial role in the cognitive and neuroanatomical traits in middle to advanced age. Moreover, by demonstrating shared genetic effects on different brain regions, it gives us a genetic insight into understanding cognitive and brain changes with age, such as aging-related cognitive decline, cortical atrophy, and neural compensation.
Collapse
Affiliation(s)
- Younghwa Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jun Young Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Ah Ra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jinyeon Jo
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Juhong Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kangjin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Sarang Kang
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Lindsay A Farrer
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- RexSoft Inc., Seoul, Korea
| |
Collapse
|
4
|
Chen CY, Lin YS, Lee WJ, Liao YC, Kuo YS, Yang AC, Fuh JL. Endophenotypic effects of the SORL1 variant rs2298813 on regional brain volume in patients with late-onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:885090. [PMID: 35992588 PMCID: PMC9389408 DOI: 10.3389/fnagi.2022.885090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Two common variants of sortilin-related receptor 1 gene (SORL1), rs2298813 and rs1784933, have been associated with late-onset Alzheimer’s disease (AD) in the Han Chinese population in Taiwan. However, neuroimaging correlates of these two SORL1 variants remain unknown. We aimed to determine whether the two SORL1 polymorphisms were associated with any volumetric differences in brain regions in late-onset AD patients. Methods: We recruited 200 patients with late-onset AD from Taipei Veterans General Hospital. All patients received a structural magnetic resonance (MR) imaging brain scan and completed a battery of neurocognitive tests at enrollment. We followed up to assess changes in Mini-Mental State Examination (MMSE) scores in 155 patients (77.5%) at an interval of 2 years. Volumetric measures and cortical thickness of various brain regions were performed using FreeSurfer. Regression analysis controlled for apolipoprotein E status. Multiple comparisons were corrected for using the false discovery rate. Results: The homozygous major allele of rs2298813 was associated with larger volumes in the right putamen (p = 0.0442) and right pallidum (p = 0.0346). There was no link between the rs1784933 genotypes with any regional volume or thickness of the brain. In the rs2298813 homozygous major allele carriers, the right putaminal volume was associated with verbal fluency (p = 0.008), and both the right putaminal and pallidal volumes were predictive of clinical progression at follow-up (p = 0.020). In the minor allele carriers, neither of the nuclei was related to cognitive test performance or clinical progression. Conclusion: The major and minor alleles of rs2298813 had differential effects on the right lentiform nucleus volume and distinctively modulated the association between the regional volume and cognitive function in patients with AD.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Shuan Lin
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center and Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Peripheral Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shan Kuo
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Albert C. Yang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Jong-Ling Fuh
| |
Collapse
|
5
|
Latimer CS, Lucot KL, Keene CD, Cholerton B, Montine TJ. Genetic Insights into Alzheimer's Disease. ANNUAL REVIEW OF PATHOLOGY 2021; 16:351-376. [PMID: 33497263 PMCID: PMC8664069 DOI: 10.1146/annurev-pathmechdis-012419-032551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a pervasive, relentlessly progressive neurodegenerative disorder that includes both hereditary and sporadic forms linked by common underlying neuropathologic changes and neuropsychological manifestations. While a clinical diagnosis is often made on the basis of initial memory dysfunction that progresses to involve multiple cognitive domains, definitive diagnosis requires autopsy examination of the brain to identify amyloid plaques and neurofibrillary degeneration. Over the past 100 years, there has been remarkable progress in our understanding of the underlying pathophysiologic processes, pathologic changes, and clinical phenotypes of AD, largely because genetic pathways that include but expand beyond amyloid processing have been uncovered. This review discusses the current state of understanding of the genetics of AD with a focus on how these advances are both shaping our understanding of the disease and informing novel avenues and approaches for development of potential therapeutic targets.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Katherine L Lucot
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Brenna Cholerton
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| |
Collapse
|
6
|
Andrews SJ, McFall GP, Booth A, Dixon RA, Anstey KJ. Association of Alzheimer's Disease Genetic Risk Loci with Cognitive Performance and Decline: A Systematic Review. J Alzheimers Dis 2020; 69:1109-1136. [PMID: 31156182 DOI: 10.3233/jad-190342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The association of Apolipoprotein E (APOE) with late-onset Alzheimer's disease (LOAD) and cognitive endophenotypes of aging has been widely investigated. There is increasing interest in evaluating the association of other LOAD risk loci with cognitive performance and decline. The results of these studies have been inconsistent and inconclusive. We conducted a systematic review of studies investigating the association of non-APOE LOAD risk loci with cognitive performance in older adults. Studies published from January 2009 to April 2018 were identified through a PubMed database search using keywords and by scanning reference lists. Studies were included if they were either cross-sectional or longitudinal in design, included at least one genome-wide significant LOAD risk loci or a genetic risk score, and had one objective measure of cognition. Quality assessment of the studies was conducted using the quality of genetic studies (Q-Genie) tool. Of 2,466 studies reviewed, 49 met inclusion criteria. Fifteen percent of the associations between non-APOE LOAD risk loci and cognition were significant. However, these associations were not replicated across studies, and the majority were rendered non-significant when adjusting for multiple testing. One-third of the studies included genetic risk scores, and these were typically significant only when APOE was included. The findings of this systematic review do not support a consistent association between individual non-APOE LOAD risk and cognitive performance or decline. However, evidence suggests that aggregate LOAD genetic risk exerts deleterious effects on decline in episodic memory and global cognition.
Collapse
Affiliation(s)
- Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kaarin J Anstey
- UNSW Ageing Futures Institute, University of New South Wales, Australia.,School of Psychology, University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| |
Collapse
|
7
|
Li X, Xiong Z, Liu Y, Yuan Y, Deng J, Xiang W, Li Z. Case report of first-episode psychotic symptoms in a patient with early-onset Alzheimer's disease. BMC Psychiatry 2020; 20:128. [PMID: 32183776 PMCID: PMC7079379 DOI: 10.1186/s12888-020-02537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder featuring the behavioral and psychological symptoms of dementia. Patients with early-onset AD that exhibits first as psychotic symptoms usually lack obvious cognitive impairment, so they may be misdiagnosed with late-onset schizophrenia. CASE PRESENTATION We report a patient who had prominent psychotic symptoms at the age of 60 and was initially diagnosed with very-late-onset-schizophrenia-like psychosis. Psychotic symptoms disappeared rapidly after treatment with olanzapine, and the patient later showed extrapyramidal symptoms and decline in cognitive function. Brain magnetic resonance imaging (MRI) showed frontotemporal atrophy, and positron emission tomography (PET) showed extensive areas of hypometabolism in the frontal cortex and head of the caudate nucleus. The patient's SORL1 gene was found to carry a heterozygrous mutation (c.296A > G). The patient was eventually diagnosed with early-onset AD. CONCLUSIONS Our case suggests that clinicians should consider the possibility of early-onset AD in middle-aged or elderly patients whose first symptoms are the behavioral and psychological symptoms of dementia. To distinguish early-onset AD from late-onset schizophrenia, clinicians should evaluate cognitive function, perform MRI and PET, and search for SORL1 mutations.
Collapse
Affiliation(s)
- Xiao Li
- grid.13291.380000 0001 0807 1581Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 28 Dian Xin Nan Road, Chengdu, 610041 Sichuan China
| | - Zhenzhen Xiong
- grid.413856.d0000 0004 1799 3643School of Nursing, Chengdu Medical College, Chengdu, 610083 Sichuan China
| | - Yaya Liu
- grid.13291.380000 0001 0807 1581Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 28 Dian Xin Nan Road, Chengdu, 610041 Sichuan China ,Zun Yi Psychiatric Hospital, Zunyi, 563000 Guizhou China
| | - Yiwen Yuan
- grid.13291.380000 0001 0807 1581Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 28 Dian Xin Nan Road, Chengdu, 610041 Sichuan China
| | - Junfeng Deng
- grid.13291.380000 0001 0807 1581Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 28 Dian Xin Nan Road, Chengdu, 610041 Sichuan China
| | - Weiyi Xiang
- grid.13291.380000 0001 0807 1581The West China College of Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhe Li
- Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 28 Dian Xin Nan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
9
|
Alghamdi BS. The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 2018; 96:1136-1149. [PMID: 29498103 PMCID: PMC6001545 DOI: 10.1002/jnr.24220] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
Collapse
Affiliation(s)
- B. S. Alghamdi
- Department of Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
- Neuroscience Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
| |
Collapse
|
10
|
林 芳, 刘 鑫, 谢 婧, 罗 静, 奉 夏, 侯 德. [Verification of a sporadic Alzheimer disease model in SORL1 gene knockout mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:289-295. [PMID: 29643034 PMCID: PMC6744166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To compare the behavioral and pathological features of SORL1 gene knockout mice with those of normal mice and APP/PSE1 mice to verify the feasibility of using SORL1 knockout mice as a model of sporadic Alzheimer disease. METHODS SORL1 gene of fertilized mouse eggs were edited using Crispr/Case9 technique. SORL1-/- mice were screened and identified by detecting the DNA sequence, and Western blotting was used to detect the expression of SORL1. SORL1-/- mice, control mice and APP/PSE1 mice all underwent Morris water maze test to assess their learning and memory abilities with positioning navigation and space exploration experiments. The expression of APP and Aβ in the brain of the mice was detected using immunohistochemistry and Western blotting, respectively. RESULTS DNA sequencing showed CAAT deletion in SORL1 gene in two chromosomes of SORL1-/- mice, and the control mice had intact SORL1 gene without the deletion; Western blotting did not detect the expression of the SORL1 in the brain of SORL1-/- mice. Morris water maze test showed that in positioning navigation experiment, the average avoidance latency was similar between SORL1-/- mice and APP/PSE1 mice (P>0.05) but increased significantly in both mice as compared with the control group (P<0.05); similar results were obtained in the space exploration experiment. Immunohistochemistry and Western blotting revealed significantly increased APP and Aβ expression in the brain tissue of both SORL1-/- mice and APP/PSE1 mice compared with the control mice without significant differences between the two transgenic mice. CONCLUSION SORL1-/- mice exhibit similar behavioral and pathological changes with APP/PSE1 mice and can be used as a model of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- 芳波 林
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 鑫 刘
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 婧雯 谢
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 静 罗
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 夏露 奉
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - 德仁 侯
- />中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
11
|
Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain 2017; 10:35. [PMID: 28764741 PMCID: PMC5539639 DOI: 10.1186/s13041-017-0315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations, aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier (BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”. Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism, and BBB permeability.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson street, Bristol, BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|