1
|
Christensen RH, Ashina H, Al-Khazali HM, Ocampo-Pineda M, Rahmanzadeh R, Hadjikhani N, Granziera C, Amin FM, Ashina M. Signs of Cortical Inflammation in Migraine Measured with Quantitative Magnetic Resonance Imaging: A Registry for Migraine (REFORM) Study. Ann Neurol 2025. [PMID: 39902552 DOI: 10.1002/ana.27197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 02/05/2025]
Abstract
OBJECTIVE The involvement of cortical inflammation in migraine, particularly migraine with aura, has been a subject of considerable interest, but has proved challenging to demonstrate. We aimed to detect and characterize signs of cortical inflammation in adults with migraine using a novel, multimodal magnetic resonance imaging (MRI) technique. METHODS We used T2 mapping to measure water content/cellularity, T1 mapping to measure tissue microstructure integrity, and apparent diffusion coefficient (ADC) mapping to measure intra- or extracellular edema. We compared these values between participants with migraine (with and without aura) and healthy controls using general linear models adjusted for age and sex. RESULT Two hundred ninety-six adult participants with migraine and 155 age- and sex-matched healthy controls provided eligible imaging data. Among the participants with migraine, 103 had migraine with aura, 180 chronic migraine, and 88 were ictal during the scan. Participants with migraine had higher quantitative T2 (qT2) in the left occipital cortex than healthy controls (p < 0.0001). In migraine with aura, the higher qT2 was more widespread and located bilaterally in the occipital cortices, compared with controls (left, p < 0.0001; right p = 0.004). Post-hoc analysis revealed overlapping ADC elevations in migraine with aura compared with controls (p = 0.0069). INTERPRETATION Quantitative MRI changes compatible with cortical inflammation were detected in participants with migraine, and appeared driven by the subgroup with aura. Higher occipital qT2 in migraine with aura might represent either extracellular edema or accumulation of inflammatory microglia or astrocytes. These results support the importance of cortical inflammation in migraine pathophysiology, particularly in migraine with aura. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Reza Rahmanzadeh
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center on Headache Disorders, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
3
|
Lee DA, Lee HJ, Kim J, Park KM. Association between patients with migraine and sarcopenia: A retrospective study. Medicine (Baltimore) 2024; 103:e38941. [PMID: 38996151 PMCID: PMC11245205 DOI: 10.1097/md.0000000000038941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, interest in sarcopenia has been increasing in patients with various neurological diseases. Thus, we investigated the presence of sarcopenia in patients with episodic migraine (EM) based on temporal muscle thickness (TMT). This was a retrospectively observational study following STROBE guidelines. We enrolled patients with EM and healthy controls. Both groups underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We calculated the TMT using T1-weighted imaging, which is a marker for sarcopenia. We compared TMT between patients with EM and healthy controls, and analyzed it according to presence of migraine aura. We retrospectively enrolled 82 patients with EM and 53 healthy controls. TMT was not different between patients with EM and healthy controls (10.804 ± 2.045 mm in patients with EM vs 10.721 ± 1.547 mm in healthy controls, P = .801). Furthermore, TMT was not different according to presence of migraine aura in patients with EM (10.994 ± 2.016 mm in patients with migraine aura vs 10.716 ± 2.071 mm in those without, P = .569). There were no correlations between TMT and clinical characteristics in patients with EM, including age, age of onset, duration of migraine, headache intensity, and headache frequency. This study found no statistical difference in TMT between patients with EM and healthy controls or between patients with EM with and without aura. These findings suggest that there is no evidence of sarcopenia in patients with EM.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
4
|
Karsan N, Goadsby PJ. Intervening in the Premonitory Phase to Prevent Migraine: Prospects for Pharmacotherapy. CNS Drugs 2024; 38:533-546. [PMID: 38822165 DOI: 10.1007/s40263-024-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/02/2024]
Abstract
Migraine is a common brain condition characterised by disabling attacks of headache with sensory sensitivities. Despite increasing understanding of migraine neurobiology and the impacts of this on therapeutic developments, there remains a need for treatment options for patients underserved by currently available therapies. The first specific drugs developed to treat migraine acutely, the serotonin-5-hydroxytryptamine [5-HT1B/1D] receptor agonists (triptans), seem to require headache onset in order to have an effect, while early treatment during mild pain before headache escalation improves short-term and long-term outcomes. Some patients find treating in the early window once headache has started but not escalated difficult, and migraine can arise from sleep or in the early hours of the morning, making prompt treatment after pain onset challenging. Triptans may be deemed unsuitable for use in patients with vascular disease and in those of older age and may not be effective in a proportion of patients. Headache is also increasingly recognised as being just one of the many facets of the migraine attack, and for some patients it is not the most disabling symptom. In many patients, painless symptoms can start prior to headache onset and can reliably warn of impending headache. There is, therefore, a need to identify therapeutic targets and agents that may be used as early as possible in the course of the attack, to prevent headache onset before it starts, and to reduce both headache and non-headache related attack burden. Early small studies using domperidone, naratriptan and dihydroergotamine have suggested that this approach could be useful; these studies were methodologically less rigorous than modern day treatment studies, of small sample size, and have not since been replicated. The emergence of novel targeted migraine treatments more recently, specifically calcitonin gene-related peptide (CGRP) receptor antagonists (gepants), has reignited interest in this strategy, with encouraging results. This review summarises historical and emerging data in this area, supporting use of the premonitory phase as an opportunity to intervene as early as possible in migraine to prevent attack-related morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, King's College London, Denmark Hill, London, SE5 9PJ, UK.
- NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College Hospital, London, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Karsan N. Pathophysiology of Migraine. Continuum (Minneap Minn) 2024; 30:325-343. [PMID: 38568486 DOI: 10.1212/con.0000000000001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of migraine pathophysiology through insights gained from the extended symptom spectrum of migraine, neuroanatomy, migraine neurochemistry, and therapeutics. LATEST DEVELOPMENTS Recent advances in human migraine research, including human experimental migraine models and functional neuroimaging, have provided novel insights into migraine attack initiation, neurochemistry, neuroanatomy, and therapeutic substrates. It has become clear that migraine is a neural disorder, in which a wide range of brain areas and neurochemical systems are implicated, producing a heterogeneous clinical phenotype. Many of these neural pathways are monoaminergic and peptidergic, such as those involving calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide. We are currently witnessing an exciting era in which specific drugs targeting these pathways have shown promise in treating migraine, including some studies suggesting efficacy before headache has even started. ESSENTIAL POINTS Migraine is a brain disorder involving both headache and altered sensory, limbic, and homeostatic processing. A complex interplay between neurotransmitter systems, physiologic systems, and pain processing likely occurs. Targeting various therapeutic substrates within these networks provides an exciting avenue for future migraine therapeutics.
Collapse
|
6
|
Wu CH, Chang FC, Wang YF, Lirng JF, Wu HM, Pan LLH, Wang SJ, Chen SP. Impaired Glymphatic and Meningeal Lymphatic Functions in Patients with Chronic Migraine. Ann Neurol 2024; 95:583-595. [PMID: 38055324 DOI: 10.1002/ana.26842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE This study was undertaken to investigate migraine glymphatic and meningeal lymphatic vessel (mLV) functions. METHODS Migraine patients and healthy controls (HCs) were prospectively recruited between 2020 and 2023. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index for glymphatics and dynamic contrast-enhanced magnetic resonance imaging parameters (time to peak [TTP]/enhancement integral [EI]/mean time to enhance [MTE]) for para-superior sagittal (paraSSS)-mLV or paratransverse sinus (paraTS)-mLV in episodic migraine (EM), chronic migraine (CM), and CM with and without medication-overuse headache (MOH) were analyzed. DTI-ALPS correlations with clinical parameters (migraine severity [numeric rating scale]/disability [Migraine Disability Assessment (MIDAS)]/bodily pain [Widespread Pain Index]/sleep quality [Pittsburgh Sleep Quality Index (PSQI)]) were examined. RESULTS In total, 175 subjects (112 migraine + 63 HCs) were investigated. DTI-ALPS values were lower in CM (median [interquartile range] = 0.64 [0.12]) than in EM (0.71 [0.13], p = 0.005) and HCs (0.71 [0.09], p = 0.004). CM with MOH (0.63 [0.07]) had lower DTI-ALPS values than CM without MOH (0.73 [0.12], p < 0.001). Furthermore, CM had longer TTP (paraSSS-mLV: 55.8 [12.9] vs 40.0 [7.6], p < 0.001; paraTS-mLV: 51.2 [8.1] vs 44.0 [3.3], p = 0.002), EI (paraSSS-mLV: 45.5 [42.0] vs 16.1 [9.2], p < 0.001), and MTE (paraSSS-mLV: 253.7 [6.7] vs 248.4 [13.8], p < 0.001; paraTS-mLV: 252.0 [6.2] vs 249.7 [1.2], p < 0.001) than EM patients. The MIDAS (p = 0.002) and PSQI (p = 0.002) were negatively correlated with DTI-ALPS index after Bonferroni corrections (p < q = 0.01). INTERPRETATION CM patients, particularly those with MOH, have glymphatic and meningeal lymphatic dysfunctions, which are highly clinically relevant and may implicate pathogenesis for migraine chronification. ANN NEUROL 2024;95:583-595.
Collapse
Grants
- MOHW 108-TDU-B-211-133001 Ministry of Health and Welfare, Taiwan
- MOHW107-TDU-B-211-123001 Ministry of Health and Welfare, Taiwan
- MOHW112-TDU-B-211-144001 Ministry of Health and Welfare, Taiwan
- N/A Professor Tsuen CHANG's Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
- V109B-009 Taipei Veterans General Hospital
- V110C-102 Taipei Veterans General Hospital
- V111B-032 Taipei Veterans General Hospital
- V112B-007 Taipei Veterans General Hospital
- V112C-053 Taipei Veterans General Hospital
- V112C-059 Taipei Veterans General Hospital
- V112C-113 Taipei Veterans General Hospital
- V112D67-001-MY3-1 Taipei Veterans General Hospital
- V112D67-002-MY3-1 Taipei Veterans General Hospital
- V112E-004-1 Taipei Veterans General Hospital
- VGH-111-C-158 Taipei Veterans General Hospital
- The Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- 110-2314-B-075-005 The National Science and Technology Council, Taiwan
- 110-2314-B-075-032 The National Science and Technology Council, Taiwan
- 110-2321-B-010-005- The National Science and Technology Council, Taiwan
- 110-2326-B-A49A-501-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075 -086-MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-075-025 -MY3 The National Science and Technology Council, Taiwan
- 111-2314-B-A49-069-MY3 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-004 The National Science and Technology Council, Taiwan
- 111-2321-B-A49-011 The National Science and Technology Council, Taiwan
- 112-2314-B-075-066- The National Science and Technology Council, Taiwan
- 112-2314-B-A49-037 -MY3 The National Science and Technology Council, Taiwan
- 112-2321-B-075-007 The National Science and Technology Council, Taiwan
- NSTC 108-2314-B-010-022 -MY3 The National Science and Technology Council, Taiwan
- 109V1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- 110-G1-5-2 Veterans General Hospitals and University System of Taiwan Joint Research Program
- VGHUST-112-G1-2-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
- Vivian W. Yen Neurological Foundation
- CI-109-3 Yen Tjing Ling Medical Foundation
- CI-111-2 Yen Tjing Ling Medical Foundation
- CI-112-2 Yen Tjing Ling Medical Foundation
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
8
|
Cresta E, Bellotti A, Rinaldi G, Corbelli I, Sarchielli P. Effect of anti-CGRP-targeted therapy on migraine aura: Results of an observational case series study. CNS Neurosci Ther 2024; 30:e14595. [PMID: 38332541 PMCID: PMC10853579 DOI: 10.1111/cns.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Limited clinical evidence is available regarding the potential effectiveness of anti-CGRP monoclonal antibodies for the preventive treatment of migraine with aura. AIM OF THE STUDY This observational study involved a series of migraine patients affected by either migraine with or without aura, who were investigated for any changes in their frequencies and their migraine aura attack characteristics observed during treatment with anti-CGRP Mabs over a 1-year period. PATIENTS AND METHODS Twelve migraine patients were included, seven of whom were treated with erenumab, 2 with fremanezumab, and 3 with galcanezumab. Clinical data were collected at baseline, which were defined as 3 months prior to the initiation of treatment, and thereafter at each trimester, over the 1-year treatment period. The parameters included the number of headache and migraine days/month, the frequency of aura episodes, the number of days with acute drug intakes/month, and the scores from the migraine disability status scale (MIDAS), and the Headache Impact Test 6 (HIT-6). RESULTS Anti-CGRP Mbs antibodies induced significant decreases in mean headache and migraine without aura days per month, the number of days with medication intake, as well as MIDAS and HIT-6 scores (p < 0.0001). In contrast, the anti-CGRP Mab treatment did not appear to impact the frequency of migraine with aura attacks but seemed to reduce both the intensity and the duration of headache phases of migraine aura. Furthermore, some migraine patients referred to having aura attacks without headache over the course of the treatment period. CONCLUSIONS Based on the above findings, we hypothesize that anti-CGRP Mabs did not influence neuronal and vascular events related to cortical spreading depression (CSD) which is considered the pathophysiological substrate of aura. Conversely, these antibodies are able to counteract, via their peripheral mechanisms of action, the sensitization of the trigemino-vascular pathway which is triggered by CSD. This aforementioned might explain why in our patients, migraine aura attacks remained unchanged in their frequencies, but the headache phases were either reduced or absent.
Collapse
Affiliation(s)
- Elena Cresta
- Neurologic ClinicUniversity of PerugiaPerugiaItaly
| | | | | | | | | |
Collapse
|
9
|
Zhou Y, Pang M, Ma Y, Lu L, Zhang J, Wang P, Li Q, Yang F. Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Mol Neurobiol 2024; 61:1202-1220. [PMID: 37695471 DOI: 10.1007/s12035-023-03623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Migraine is a complex and multi-system dysfunction. The realization of its pathophysiology and diagnosis is developing rapidly. Migraine has been linked to gastrointestinal disorders such as irritable bowel syndrome and celiac disease. There is also direct and indirect evidence for a relationship between migraine and the gut-brain axis, but the exact mechanism is not yet explained. Studies have shown that this interaction appears to be influenced by a variety of factors, such as inflammatory mediators, gut microbiota, neuropeptides, and serotonin pathways. Recent studies suggest that immune cells can be the potential tertiary structure between migraine and gut-brain axis. As the hot interdisciplinary subject, the relationship between immunology and gastrointestinal tract is now gradually clear. Inflammatory signals are involved in cellular and molecular responses that link central and peripheral systems. The gastrointestinal symptoms associated with migraine and experiments associated with antibiotics have shown that the intestinal microbiota is abnormal during the attacks. In this review, we focus on the mechanism of migraine and gut-brain axis, and summarize the tertiary structure between immune cells, neural network, and gastrointestinal tract.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaoyi Pang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Abstract
Targeting CGRP-pathways has substantially expanded our options for treating individuals with migraine. Although the efficacy of these drugs on migraine aura is yet to be fully revealed, it seems from existing studies that CGRP antagonism reduces the number of migraine auras. The present perspective summarizes the evidence linking CGRP to the migraine aura and proposes a model by which targeting the CGRP-pathways and, thus, inhibition the interaction between C- and Aδ-trigeminal fibers might reverse a possible high cortical glutamate level leading to a reduced number of migraine auras.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
11
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
12
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Alpay B, Cimen B, Akaydin E, Bolay H, Sara Y. Levcromakalim provokes an acute rapid-onset migraine-like phenotype without inducing cortical spreading depolarization. J Headache Pain 2023; 24:93. [PMID: 37488480 PMCID: PMC10367339 DOI: 10.1186/s10194-023-01627-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Migraine headache attacks and accompanying sensory augmentation can be induced by several agents including levcromakalim (LVC), that is also capable of provoking aura-like symptoms in migraineurs. We investigated whether single LVC injection causes acute migraine-like phenotype in rats and induces/modulates cortical spreading depolarization (CSD), a rodent model of migraine aura. METHODS Wistar rats were administered LVC (1 mg/kg, i.p.) and compared to control (CTRL, vehicle, i.p.) and nitroglycerin (NTG, 10 mg/kg, i.p.) groups. Von Frey filaments were used to examine the periorbital and hind paw mechanical allodynia. Dark-light box (DLB), elevated plus maze (EPM), and open field arena (OFA) were used to evaluate light sensitivity and anxiety-related behaviors. The effects of LVC on CSD parameters, somatosensory evoked potentials, and baseline dural EEG (electroencephalography) were investigated. Possible CSD-induced c-fos expression was studied with Western Blot. Blood-brain barrier integrity in cortex was examined with Evans blue assay. RESULTS LVC and NTG administration robustly reduced periorbital mechanical thresholds in rats and induced anxiety-like behaviors and photophobia within 30 and 120 min, respectively. LVC induced migraine-like phenotype recovered in 2 h while NTG group did not fully recover before 4 h. Both LVC and NTG did not provoke DC (direct current) shift, EEG alterations or cortical c-fos expression characteristic to CSD. LVC did not induce de novo CSD and affect KCl (potassium chloride)-induced CSD parameters except for an increase in propagation failure. However, NTG significantly increased both CSD susceptibility and propagation failure. Somatosensory evoked potential (SSEP) configurations were not altered in both LVC and NTG groups, but SSEP latencies were prolonged after CSD. Acute LVC or NTG injection did not increase cortical BBB permeability. CONCLUSIONS Single LVC administration induced the fastest manifestation and recovery of acute migraine-like phenotype which was not mediated by CSD waves in the cerebral cortex. We suppose LVC triggered rapid-onset migraine-like symptoms are probably related to functional alterations in the trigeminal nociceptive system and K+ channel opening properties of LVC. Understanding the neurobiological mechanisms of this nociceptive window, may provide a novel target in migraine treatment.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| |
Collapse
|
14
|
Yamanaka G, Hayashi K, Morishita N, Takeshita M, Ishii C, Suzuki S, Ishimine R, Kasuga A, Nakazawa H, Takamatsu T, Watanabe Y, Morichi S, Ishida Y, Yamazaki T, Go S. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:ijms24098343. [PMID: 37176049 PMCID: PMC10178908 DOI: 10.3390/ijms24098343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The role of neuroinflammation in the pathophysiology of migraines is increasingly being recognized, and cytokines, which are important endogenous substances involved in immune and inflammatory responses, have also received attention. This review examines the current literature on neuroinflammation in the pathogenesis of migraine. Elevated TNF-α, IL-1β, and IL-6 levels have been identified in non-invasive mouse models with cortical spreading depolarization (CSD). Various mouse models to induce migraine attack-like symptoms also demonstrated elevated inflammatory cytokines and findings suggesting differences between episodic and chronic migraines and between males and females. While studies on human blood during migraine attacks have reported no change in TNF-α levels and often inconsistent results for IL-1β and IL-6 levels, serial analysis of cytokines in jugular venous blood during migraine attacks revealed consistently increased IL-1β, IL-6, and TNF-α. In a study on the interictal period, researchers reported higher levels of TNF-α and IL-6 compared to controls and no change regarding IL-1β levels. Saliva-based tests suggest that IL-1β might be useful in discriminating against migraine. Patients with migraine may benefit from a cytokine perspective on the pathogenesis of migraine, as there have been several encouraging reports suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chiako Ishii
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Rie Ishimine
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Haruka Nakazawa
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
15
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Do TP, Hougaard A, Dussor G, Brennan KC, Amin FM. Migraine attacks are of peripheral origin: the debate goes on. J Headache Pain 2023; 24:3. [PMID: 36627561 PMCID: PMC9830833 DOI: 10.1186/s10194-022-01538-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite the pervasiveness of migraine, the underlying pathophysiological mechanisms initiating migraine attacks are far from well understood and are matter of scientific debate. OBJECTIVE In this narrative review, we discuss key evidence for that suggest a peripheral origin or central origin and provide directions for future studies that may provide further clarification. DISCUSSION Migraine pathogenesis is considered to involve the trigeminovascular system, a term that encompasses the trigeminal nerve and its axonal projections to the intracranial blood vessels. Beyond any doubt both peripheral and central mechanisms are involved in migraine pathogenesis, but an unresolved question is the how the initial activation occurs in a migraine attack. Evidence favoring a peripheral origin of migraine attacks, i.e., initial events occur outside of the blood-brain barrier, include the importance of sensitization of perivascular sensory afferents early on in a migraine attack. Evidence favoring a central origin include the occurrence of prodromal symptoms, migraine aura, and activation of structures within the central nervous system early in and during a migraine attack. CONCLUSIONS Both peripheral and central mechanisms are likely involved in a migraine attack, e.g., peripheral nociceptive input is necessary for pain transmission and cortical activity is necessary for pain perception. Yet, the debate of whether migraine attacks are initiated a peripheral or central site remains unresolved. The increased focus on prodromal symptoms and on the development of a human model of migraine aura will possibly provide key arguments needed to answer this question in the near future. Until then, we cannot draw firm conclusions and the debate goes on. VIDEO LINK Video recording of the debate held at the 1st International Conference on Advances in Migraine Sciences (ICAMS 2022, Copenhagen, Denmark) is available at: https://www.youtube.com/watch?v=NC0nlcKohz0 .
Collapse
Affiliation(s)
- Thien Phu Do
- grid.5254.60000 0001 0674 042XDanish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- grid.5254.60000 0001 0674 042XDanish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Greg Dussor
- grid.267323.10000 0001 2151 7939School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080 USA
| | - K. C. Brennan
- grid.251993.50000000121791997Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Faisal Mohammad Amin
- grid.5254.60000 0001 0674 042XDanish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Zhang W, Cheng Z, Fu F, Zhan Z. Prevalence and clinical characteristics of white matter hyperintensities in Migraine: A meta-analysis. Neuroimage Clin 2023; 37:103312. [PMID: 36610309 PMCID: PMC9827384 DOI: 10.1016/j.nicl.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Current evidences show an increased risk of white matter hyperintensities (WMHs) in migraineurs compared to age-matched controls. However, WMHs prevalence and the associations between WMHs and clinical characteristics in migraineurs have not been systematically evaluated using a meta-analytical approach. This study explored the pooled prevalence of WMHs and the associations of WMHs with the clinical characteristics in patients with migraine. METHODS A systematic review and meta-analysis of observational studies reporting the occurrence and clinical characteristics of patients with WMHs attributed to migraine was performed. We searched the PubMed, Web of Science, and Embase databases. Random-effects models were used to calculate the pooled prevalence rate, odds ratio (OR), or mean difference (MD) with corresponding 95% confidence intervals (CIs). RESULTS Thirty eligible studies were identified including 3,502 migraineurs aged 37.2 (mean) years. The pooled WMHs prevalence was 44 %, 45 %, and 38 % in migraine, migraine with aura, and migraine without aura groups, respectively. In migraineurs with WMHs, the frontal lobe and subcortical white matter were the most susceptible area. Compared with non-migraine controls, patients with migraine had increased odds for WMHs (OR 4.32, 95 % CI = 2.56-7.28, I2 = 67 %). According to reported univariable results from included studies, pooled analysis showed that clinical characteristics including age, presence of aura, disease duration, hypertension, diabetes mellitus and right-to-left shunt were associated with the presence of WMHs. Migraine pain and aura characteristics were not related to WMHs. CONCLUSIONS These data suggest that WMHs are common in migraine, especially in those who are older or have aura, hypertension, diabetes mellitus, or right-to-left shunt. A better understanding of the WMHs attributed to migraine is needed in future studies.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Neurology, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.
| | - Zicheng Cheng
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Fangwang Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxiang Zhan
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
18
|
Messina R, Filippi M. What imaging has revealed about migraine and chronic migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:105-116. [PMID: 38043956 DOI: 10.1016/b978-0-12-823356-6.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although migraine pathophysiology is not yet entirely understood, it is now established that migraine should be viewed as a complex neurological disease, which involves the interplay of different brain networks and the release of signaling molecules, instead of a pure vascular disorder. The field of migraine research has also progressed significantly due to the advancement of brain imaging techniques. Numerous studies have investigated the relation between migraine pathophysiology and cerebral hemodynamic changes, showing that vascular changes are neither necessary nor sufficient to cause the migraine pain. Abnormal function and structure of key cortical, subcortical, and brainstem regions involved in multisensory, including pain, processing have been shown to occur in migraine patients during both an acute attack and the interictal phase. Whether brain imaging alterations represent a predisposing trait or are the consequence of the recurrence of headache attacks is still a matter of debate. It is highly likely that brain functional and structural alterations observed in migraine patients derive from the interaction between predisposing brain traits and experience-dependent responses. Neuroimaging studies have also enriched our knowledge of the mechanisms responsible for migraine chronification and have shed light on the mechanisms of actions of acute and preventive migraine treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
19
|
Karsan N, Silva E, Goadsby PJ. Evaluating migraine with typical aura with neuroimaging. Front Hum Neurosci 2023; 17:1112790. [PMID: 37025972 PMCID: PMC10070832 DOI: 10.3389/fnhum.2023.1112790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To provide an up-to-date narrative literature review of imaging in migraine with typical aura, as a means to understand better migraine subtypes and aura biology. Background Characterizing subtypes of migraine with typical aura and appreciating possible biological differences between migraine with and without aura, are important to understanding the neurobiology of aura and trying to advance personalized therapeutics in this area through imaging biomarkers. One means of doing this over recent years has been the use of increasingly advanced neuroimaging techniques. Methods We conducted a literature review of neuroimaging studies in migraine with aura, using a PubMed search for terms 'imaging migraine', 'aura imaging', 'migraine with aura imaging', 'migraine functional imaging' and 'migraine structural imaging'. We collated the findings of the main studies, excluding small case reports and series with n < 6, and have summarized these and their implications for better understanding of aura mechanisms. Results Aura is likely mediated by widespread brain dysfunction in areas involving, but not limited to, visual cortex, somatosensory and insular cortex, and thalamus. Higher brain excitability in response to sensory stimulation and altered resting-state functional connectivity in migraine sufferers with aura could have a genetic component. Pure visual aura compared to visual aura with other sensory or speech symptoms as well, may involve different functional reorganization of brain networks and additional mitochondrial dysfunction mediating more aura symptoms. Conclusion There is a suggestion of at least some distinct neurobiological differences between migraine with and without aura, despite the shared phenotypic similarity in headache and other migraine-associated symptoms. It is clear from the vast majority of aura phenotypes being visual that there is a particular predisposition of the occipital cortex to aura mechanisms. Why this is the case, along with the relationships between cortical spreading depression and headache, and the reasons why aura does not consistently present in affected individuals, are all important research questions for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- *Correspondence: Nazia Karsan,
| | - Elisa Silva
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Fu T, Liu L, Huang X, Zhang D, Gao Y, Yin X, Lin H, Dai Y, Wu X. Cerebral blood flow alterations in migraine patients with and without aura: An arterial spin labeling study. J Headache Pain 2022; 23:131. [PMID: 36195842 PMCID: PMC9531478 DOI: 10.1186/s10194-022-01501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background
Migraine aura is a transient, fully reversible visual, sensory, or other central nervous system symptom that classically precedes migraine headache. This study aimed to investigate cerebral blood flow (CBF) alterations of migraine with aura patients (MwA) and without aura patients (MwoA) during inter-ictal periods, using arterial spin labeling (ASL). Methods We evaluated 88 migraine patients (32 MwA) and 44 healthy control subjects (HC) who underwent a three-dimensional pseudo-continuous ASL MRI scanning. Voxel-based comparison of normalized CBF was conducted between MwA and MwoA. The relationship between CBF variation and clinical scale assessment was further analyzed. The mean CBF values in brain regions showed significant differences were calculated and considered as imaging features. Based on these features, different machine learning–based models were established to differentiate MwA and MwoA under five-fold cross validation. The predictive ability of the optimal model was further tested in an independent sample of 30 migraine patients (10 MwA). Results
In comparison to MwoA and HC, MwA exhibited higher CBF levels in the bilateral superior frontal gyrus, bilateral postcentral gyrus and cerebellum, and lower CBF levels in the bilateral middle frontal gyrus, thalamus and medioventral occipital cortex (all p values < 0.05). These variations were also significantly correlated with multiple clinical rating scales about headache severity, quality of life and emotion. On basis of these CBF features, the accuracies and areas under curve of the final model in the training and testing samples were 84.3% and 0.872, 83.3% and 0.860 in discriminating patients with and without aura, respectively. Conclusion In this study, CBF abnormalities of MwA were identified in multiple brain regions, which might help better understand migraine-stroke connection mechanisms and may guide patient-specific decision-making.
Collapse
Affiliation(s)
- Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Lindong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Yujia Gao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Edvinsson L. Calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks-Successful translation of basic science to clinical practice. J Intern Med 2022; 292:575-586. [PMID: 35532284 PMCID: PMC9546117 DOI: 10.1111/joim.13506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migraine is a highly prevalent neurovascular disorder afflicting more than 15% of the global population. Nearly three times more females are afflicted by migraine in the 18-50 years age group, compared to males. Migraine attacks are most often sporadic, but a subgroup of individuals experience a gradual increase in frequency over time; among these, up to 1%-2% of the global population develop chronic migraine. Although migraine symptoms have been known for centuries, the underlying mechanisms remain largely unknown. Two theories have dominated the current thinking-a neurovascular theory and a central neuronal theory with the origin of the attacks in the hypothalamus. During the last decades, the understanding of migraine has markedly advanced. This is supported by the early seminal demonstration of the trigeminovascular reflex 35 years ago and the insight that calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks. The more recent findings that gepants, small molecule CGRP receptor blockers, and monoclonal antibodies generated against CGRP, or its canonical receptor are useful for the treatment of migraine, are other important issues. CGRP has been established as a key molecule in the neurobiology of migraine. Moreover, monoclonal antibodies to CGRP or the CGRP receptor represent a breakthrough in the understanding of migraine pathophysiology and have emerged as an efficacious prophylactic treatment for patients with severe migraine with excellent tolerability. This review describes the progression of research to reach the clinical usefulness of a large group of molecules that have in common the interaction with CGRP mechanisms in the trigeminal system to alleviate the burden for individuals afflicted by migraine.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital Lund, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
22
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Calcitonin Gene-Related Peptide (CGRP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Migraine Pathogenesis. Pharmaceuticals (Basel) 2022; 15:ph15101189. [PMID: 36297301 PMCID: PMC9612382 DOI: 10.3390/ph15101189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a prevalent and debilitating neurologic disorder. Advancements in understanding the underlying pathophysiological mechanisms are spearheading the effort to introduce disease-specific treatment options. In recent years this effort has largely focused on alteration of endogenous neuropeptide signaling, namely the peptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Human studies into the pathophysiological underpinnings of CGRP and PACAP in migraine are manifold and here we review the works investigating these neuropeptides in patients suffering from migraine in order to elucidate the background for developing new treatment options for this vastly disabling disorder.
Collapse
|
24
|
Christensen RH, Gollion C, Amin FM, Moskowitz MA, Hadjikhani N, Ashina M. Imaging the inflammatory phenotype in migraine. J Headache Pain 2022; 23:60. [PMID: 35650524 PMCID: PMC9158262 DOI: 10.1186/s10194-022-01430-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Several preclinical and clinical lines of evidence suggest a role of neuroinflammation in migraine. Neuroimaging offers the possibility to investigate and localize neuroinflammation in vivo in patients with migraine, and to characterize specific inflammatory constituents, such as vascular permeability, and macrophage or microglia activity. Despite all imaging data accumulated on neuroinflammation across the past three decades, an overview of the imaging evidence of neuroinflammation in migraine is still missing.We conducted a systematic review in the Pubmed and Embase databases to evaluate existing imaging data on inflammation in migraine, and to identify gaps in the literature. We included 20 studies investigating migraine without aura (N = 4), migraine with aura (N = 8), both migraine with and without aura (N = 3), or hemiplegic migraine (N = 5).In migraine without aura, macrophage activation was not evident. In migraine with aura, imaging evidence suggested microglial and parameningeal inflammatory activity. Increased vascular permeability was mostly found in hemiplegic migraine, and was atypical in migraine with and without aura. Based on the weight of existing and emerging data, we show that most studies have concentrated on demonstrating increased vascular permeability as a marker of neuroinflammation, with tools that may not have been optimal. In the future, novel, more sensitive techniques, as well as imaging tracers delineating specific inflammatory pathways may further bridge the gap between preclinical and clinical findings.
Collapse
Affiliation(s)
- Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cédric Gollion
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Moskowitz
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nouchine Hadjikhani
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
25
|
Wiggers A, Ashina H, Hadjikhani N, Sagare A, Zlokovic BV, Lauritzen M, Ashina M. Brain barriers and their potential role in migraine pathophysiology. J Headache Pain 2022; 23:16. [PMID: 35081902 PMCID: PMC8903554 DOI: 10.1186/s10194-021-01365-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Migraine is a ubiquitous neurologic disease that afflicts people of all ages. Its molecular pathogenesis involves peptides that promote intracranial vasodilation and modulate nociceptive transmission upon release from sensory afferents of cells in the trigeminal ganglion and parasympathetic efferents of cells in the sphenopalatine ganglion. Experimental data have confirmed that intravenous infusion of these vasoactive peptides induce migraine attacks in people with migraine, but it remains a point of scientific contention whether their site of action lies outside or within the central nervous system. In this context, it has been hypothesized that transient dysfunction of brain barriers before or during migraine attacks might facilitate the passage of migraine-inducing peptides into the central nervous system. Here, we review evidence suggestive of brain barrier dysfunction in migraine pathogenesis and conclude with lessons learned in order to provide directions for future research efforts.
Collapse
|
26
|
Charles A, Nwaobi SE, Goadsby P. Inflammation in migraine…or not…: A critical evaluation of the evidence. Headache 2021; 61:1575-1578. [PMID: 34806166 DOI: 10.1111/head.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Andrew Charles
- UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sinifunanya E Nwaobi
- UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peter Goadsby
- UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
González-Hernández A, Marichal-Cancino BA, García-Boll E, Villalón CM. The locus of Action of CGRPergic Monoclonal Antibodies Against Migraine: Peripheral Over Central Mechanisms. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:344-359. [PMID: 32552657 DOI: 10.2174/1871527319666200618144637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Migraine is a complex neurovascular disorder characterized by attacks of moderate to severe unilateral headache, accompanied by photophobia among other neurological signs. Although an arsenal of antimigraine agents is currently available in the market, not all patients respond to them. As Calcitonin Gene-Related Peptide (CGRP) plays a key role in the pathophysiology of migraine, CGRP receptor antagonists (gepants) have been developed. Unfortunately, further pharmaceutical development (for olcegepant and telcagepant) was interrupted due to pharmacokinetic issues observed during the Randomized Clinical Trials (RCT). On this basis, the use of monoclonal antibodies (mAbs; immunoglobulins) against CGRP or its receptor has recently emerged as a novel pharmacotherapy to treat migraines. RCT showed that these mAbs are effective against migraines producing fewer adverse events. Presently, the U.S. Food and Drug Administration approved four mAbs, namely: (i) erenumab; (ii) fremanezumab; (iii) galcanezumab; and (iv) eptinezumab. In general, specific antimigraine compounds exert their action in the trigeminovascular system, but the locus of action (peripheral vs. central) of the mAbs remains elusive. Since these mAbs have a molecular weight of ∼150 kDa, some studies rule out the relevance of their central actions as they seem unlikely to cross the Blood-Brain Barrier (BBB). Considering the therapeutic relevance of this new class of antimigraine compounds, the present review has attempted to summarize and discuss the current evidence on the probable sites of action of these mAbs.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230 Queretaro, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Mexico
| | - Enrique García-Boll
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230 Queretaro, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg, Tlalpan, 14330 Ciudad de Mexico, Mexico
| |
Collapse
|
28
|
Amin FM, De Icco R, Al-Karagholi MAM, Raghava JM, Wolfram F, Larsson HBW, Ashina M. Investigation of cortical thickness and volume during spontaneous attacks of migraine without aura: a 3-Tesla MRI study. J Headache Pain 2021; 22:98. [PMID: 34418951 PMCID: PMC8380396 DOI: 10.1186/s10194-021-01312-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Structural imaging has revealed changes in cortical thickness in migraine patients compared to healthy controls is reported, but presence of dynamic cortical and subcortical changes during migraine attack versus inter-ictal phase is unknown. The aim of the present study was to investigate possible changes in cortical thickness during spontaneous migraine attacks. We hypothesized that pain-related cortical area would be affected during the attack compared to an inter-ictal phase. METHODS Twenty-five patients with migraine without aura underwent three-dimensional T1-weighted imaging on a 3-Tesla MRI scanner during spontaneous and untreated migraine attacks. Subsequently, 20 patients were scanned in the inter-ictal phase, while 5 patients did not show up for the inter-ictal scan. Four patients were excluded from the analysis because of bilateral migraine pain and another one patient was excluded due to technical error in the imaging. Longitudinal image processing was done using FreeSurfer. Repeated measures ANOVA was used for statistical analysis and to control for multiple comparison the level of significance was set at p = 0.025. RESULTS In a total of 15 patients, we found reduced cortical thickness of the precentral (p = 0.023), pericalcarine (p = 0.024), and temporal pole (p = 0.017) cortices during the attack compared to the inter-ictal phase. Cortical volume was reduced in prefrontal (p = 0.018) and pericalcarine (p = 0.017) cortices. Hippocampus volume was increased during attack (p = 0.007). We found no correlations between the pain side or any other clinical parameters and the reduced cortical size. CONCLUSION Spontaneous migraine attacks are accompanied by transient reduced cortical thickness and volume in pain-related areas. The findings constitute a fingerprint of acute pain in migraine patients, which can be used as a possible biomarker to predict antimigraine treatment effect in future studies. TRIAL REGISTRATION The study was registered at ClinicalTrials.gov ( NCT02202486 ).
Collapse
Affiliation(s)
- Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark.
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Jayachandra M Raghava
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET,Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Glostrup, Denmark.,Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, 2600, Glostrup, Denmark
| | - Frauke Wolfram
- Department of Radiology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET,Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| |
Collapse
|
29
|
Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T, Suzuki S, Morichi S, Watanabe Y, Ishida Y, Go S, Oana S, Kashiwagi Y, Kawashima H. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int J Mol Sci 2021; 22:ijms22168929. [PMID: 34445635 PMCID: PMC8396312 DOI: 10.3390/ijms22168929] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1β, and experimental findings involving IL-1β and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1β/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.
Collapse
|
30
|
Gollion C. Cortical excitability in migraine: Contributions of magnetic resonance imaging. Rev Neurol (Paris) 2021; 177:809-815. [PMID: 34332777 DOI: 10.1016/j.neurol.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Migraine is characterized by symptoms related to cortical hyperexcitability such as photophobia, phonophobia, osmophobia and allodynia. One-third of migraineurs experience aura, whose neurophysiological substrate is thought to be cortical spreading depression (CSD). Functional magnetic resonance imaging (MRI) has shown the migraine aura to be characterized by cerebral hyperactivity/hyperperfusion followed by hypometabolism/hypoperfusion spreading along the occipital cortex with the same spatiotemporal organization as the experimentally triggered CSD. The link between migraine aura and headache remains undetermined. Neuroimaging studies have failed to show a leakage of the blood-brain barrier, which was suspected to occur during CSD and to cause the stimulation of trigeminal nociceptive receptors. However, recent studies have highlighted the involvement of neuroglial inflammation and other studies have suggested that a common central network plays a role in the link between CSD and migraine pain. Finally, MRI has made it possible to study the contribution of metabolites such as glutamic acid, γ-amino-butyric acid and sodium in the pathophysiology of hyperexcitability in migraine.
Collapse
Affiliation(s)
- C Gollion
- Department of Neurology, University of Toulouse, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, INSERM, Toulouse, France.
| |
Collapse
|
31
|
Cowan RP, Gross NB, Sweeney MD, Sagare AP, Montagne A, Arakaki X, Fonteh AN, Zlokovic BV, Pogoda JM, Harrington MG. Evidence that blood-CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen. Headache 2021; 61:536-545. [PMID: 33724462 PMCID: PMC8023403 DOI: 10.1111/head.14088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/29/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Objective Our objective is to explore whether blood–cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. Background Reports of blood–brain barrier and blood–cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. Methods We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross‐sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2–14 per month, and CM. Blood and CSF biomarkers were determined using antibody‐based methods. Results Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF–blood quotients of albumin (Qalb: mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule‐1 (sVCAM‐1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2–14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase‐9, soluble platelet‐derived growth factor receptor β, tumor necrosis factor‐alpha, interferon‐gamma, interleukin (IL)‐6, IL‐8, IL‐10, or C‐reactive protein. Conclusions The higher Qalb and Qfib ratios may indicate that the transport of these blood‐derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis‐generating study of migraine pathophysiology is that sVCAM‐1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.
Collapse
Affiliation(s)
- Robert P Cowan
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Noah B Gross
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Alfred N Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael G Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.,Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Wienholtz NKF, Christensen CE, Zhang DG, Coskun H, Ghanizada H, Al-Karagholi MAM, Hannibal J, Egeberg A, Thyssen JP, Ashina M. Early treatment with sumatriptan prevents PACAP38-induced migraine: A randomised clinical trial. Cephalalgia 2021; 41:731-748. [PMID: 33567890 DOI: 10.1177/0333102420975395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether early treatment with sumatriptan can prevent PACAP38-induced migraine attacks. METHODS A total of 37 patients with migraine without aura were enrolled between July 2018 to December 2019. All patients received an intravenous infusion of 10 picomole/kg/min of PACAP38 over 20 min followed by an intravenous infusion of 4 mg sumatriptan or placebo over 10 min on two study days in a randomised, double-blind, placebo-controlled, crossover study. RESULTS Of 37 patients enrolled, 26 (70.3%) completed the study and were included in analyses. Of the 26 patients, four (15%) developed a PACAP38-induced migraine attack on sumatriptan and 11 patients (42%) on placebo (p = 0.016). There were no differences in area under the curve for headache intensity between sumatriptan (mean AUC 532) and placebo (mean AUC 779) (p = 0.35). Sumatriptan significantly constricted the PACAP38-dilated superficial temporal artery immediately after infusion (T30) compared with infusion of placebo (p < 0.001).Conclusions and relevance: Early treatment with intravenously administered sumatriptan prevented PACAP38-induced migraine. Prevention of migraine attacks was associated with vasoconstriction by sumatriptan in the earliest phases of PACAP provocation. These results suggest that sumatriptan prevents PACAP38-induced migraine by modulation of nociceptive transmission within the trigeminovascular system.Trial Registration: ClinicalTrials.gov (NCT03881644).
Collapse
Affiliation(s)
- Nita Katarina Frifelt Wienholtz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Casper Emil Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Ditte Georgina Zhang
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Alexander Egeberg
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
33
|
Ashina H, Iljazi A, Al-Khazali HM, Christensen CE, Amin FM, Ashina M, Schytz HW. Hypersensitivity to Calcitonin Gene-Related Peptide in Post-Traumatic Headache. Ann Neurol 2020; 88:1220-1228. [PMID: 32959458 DOI: 10.1002/ana.25915] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To demonstrate that calcitonin gene-related peptide (CGRP) induces headache exacerbation with migraine-like features in patients with persistent post-traumatic headache (PTH) attributed to mild traumatic brain injury (TBI). METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was conducted. Analyses were intention-to-treat. Eligible patients were aged 18 to 65 years and had a history of persistent PTH after mild TBI for at least 12 months. Patients were randomized to receive an intravenous infusion of 1.5μg/min of CGRP or placebo (isotonic saline) over 20 minutes on two separate experimental days. A 12-hour observational period was used to evaluate the following outcomes: (1) difference in incidence of headache exacerbation with migraine-like features and (2) difference in area under the curve for headache intensity scores. RESULTS Thirty patients (mean age = 37 years, 25 women [83%]) were randomized and completed the study. During the 12-hour observational period, 21 of 30 patients (70%) developed headache exacerbation with migraine-like features after CGRP, compared with 6 patients (20%) after placebo (p < 0.001). The baseline-corrected area under the curve for headache intensity scores was significantly larger after CGRP, compared with placebo (p < 0.001). INTERPRETATION Patients with persistent PTH are hypersensitive to CGRP, which underscores its pathophysiological importance. Furthermore, CGRP-targeted therapies might provide a novel mechanism-based treatment option for patients with persistent PTH. ANN NEUROL 2020;88:1220-1228.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal M Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik W Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Maier JA, Pickering G, Giacomoni E, Cazzaniga A, Pellegrino P. Headaches and Magnesium: Mechanisms, Bioavailability, Therapeutic Efficacy and Potential Advantage of Magnesium Pidolate. Nutrients 2020; 12:nu12092660. [PMID: 32878232 PMCID: PMC7551876 DOI: 10.3390/nu12092660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium deficiency may occur for several reasons, such as inadequate intake or increased gastrointestinal or renal loss. A large body of literature suggests a relationship between magnesium deficiency and mild and moderate tension-type headaches and migraines. A number of double-blind randomized placebo-controlled trials have shown that magnesium is efficacious in relieving headaches and have led to the recommendation of oral magnesium for headache relief in several national and international guidelines. Among several magnesium salts available to treat magnesium deficiency, magnesium pidolate may have high bioavailability and good penetration at the intracellular level. Here, we discuss the cellular and molecular effects of magnesium deficiency in the brain and the clinical evidence supporting the use of magnesium for the treatment of headaches and migraines.
Collapse
Affiliation(s)
- Jeanette A. Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, 20157 Milano, Italy;
- Correspondence:
| | - Gisele Pickering
- Department of Clinical Pharmacology, University Hospital and Inserm 1107 Fundamental and Clinical Pharmacology of Pain, Medical Faculty, F-63000 Clermont-Ferrand, France;
| | - Elena Giacomoni
- Sanofi Consumer Health Care, 20158 Milan, Italy; (E.G.); (P.P.)
| | - Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, 20157 Milano, Italy;
| | | |
Collapse
|
35
|
Riesco N, Cernuda‐Morollón E, Martínez‐Camblor P, Pérez‐Pereda S, Pascual J. Peripheral, Interictal Serum S100B Levels are Not Increased in Chronic Migraine Patients. Headache 2020; 60:1705-1711. [DOI: 10.1111/head.13919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Nuria Riesco
- Service of Neurology University Hospital Central de Asturias Oviedo Spain
| | | | - Pablo Martínez‐Camblor
- Biomedical Data Sciences Department Geisel School of Medicine at Dartmouth Hanover NH USA
| | - Sara Pérez‐Pereda
- Service of Neurology University Hospital Marqués de ValdecillaIDIVAL and University of Cantabria Santander Spain
| | - Julio Pascual
- Service of Neurology University Hospital Marqués de ValdecillaIDIVAL and University of Cantabria Santander Spain
| |
Collapse
|
36
|
Abstract
Migraine is the leading cause of years lost due to disability in individuals aged 15 to 49 years. Much has changed over the last three decades about our understanding of this complex neurological disorder. Various phases of migraine have been characterized and are the focus of this review. The premonitory phase involves bothersome symptoms experienced hours to days before migraine pain. Behavioral changes and functional neuroimaging studies point toward hypothalamic involvement during the premonitory and other migraine phases. Migraine aura is a disruptive, reversible neurological phenomenon that affects up to one-third of all migraineurs, and can overlap with the headache phase. The mechanism responsible for this phase is thought to be cortical spreading depolarization through the cortex. This process leads to temporary disruptions in ion homeostasis and the ensuing neuronal dysfunction. The headache phase involves activation of the trigeminocervical complex. Neuropeptides are implicated in trigeminal activation, and calcitonin gene-related peptide in particular has become a promising target of therapeutic intervention for migraine. The final phase of migraine is the postdrome, the period of time from the resolution of headache symptoms until return to baseline following a migraine. People often report neuropsychiatric, sensory, gastrointestinal, and general symptoms during this time, which can limit activity. Elucidating the neuroanatomical, chemical, and neuroimaging correlates of these migraine phases allows for an improved comprehension of the underlying changes associated with migraine symptomatology and can assist with evaluation of arising therapeutics for migraine management.
Collapse
Affiliation(s)
- William Qubty
- Pediatric Headache Center, Department of Neurology, Dell Medical School at the University of Texas at Austin, Austin, Texas.
| | - Irene Patniyot
- Department of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
Hvedstrup J, Amin FM, Hougaard A, Ashina H, Christensen CE, Larsson HBW, Ashina M, Schytz HW. Volume of the rectus capitis posterior minor muscle in migraine patients: a cross-sectional structural MRI study. J Headache Pain 2020; 21:57. [PMID: 32460751 PMCID: PMC7254728 DOI: 10.1186/s10194-020-01129-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
Background Neck pain in migraine patients is very prevalent between and during migraine attacks, but the underlying mechanism behind neck pain in migraine is unknown. The neck muscle rectus capitis posterior minor muscle (RCPmi) may be important since it is connected to the occipital dura mater. In this study, we examined the RCPmi volume in migraine patients and compared with controls. Methods We conducted a cross-sectional MRI study examining muscle volume in 40 episodic migraine patients and 40 controls in preexisting images from prior studies. Three-dimensional T1 weighted sequences were collected with a 3.0 T MRI Scanner. The volume of RCPmi was examined by manually tracing the muscle circumference with Horos medical image viewer. The observer was blinded to participant information. No information regarding neck pain status during or between migraine attacks were available. Results The mean RCPmi volume was 1.22cm3 in migraine patients and 1.17cm3 in controls (p = 0.549). We found no differences in RCPmi volume on the pain side vs. the non-pain side (p = 0.237) in patients with unilateral migraine. There were no association between the muscle volume and years with migraine, headache or migraine frequency, age or BMI. Conclusions We found no difference in RCPmi volume between migraine patients and controls, suggesting no structural RCPmi pathology in migraine.
Collapse
Affiliation(s)
- Jeppe Hvedstrup
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper Emil Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Torres-Ferrús M, Ursitti F, Alpuente-Ruiz A, Brunello F, Chiappino D, de Vries T, Di Marco S, Ferlisi S, Guerritore L, Gonzalez-Garcia N, Gonzalez-Martinez A, Khutorov D, Kritsilis M, Kyrou A, Makeeva T, Minguez-Olaondo A, Pilati L, Serrien A, Tsurkalenko O, Van den Abbeele D, van Hoogstraten WS, Lampl C. From transformation to chronification of migraine: pathophysiological and clinical aspects. J Headache Pain 2020; 21:42. [PMID: 32349653 PMCID: PMC7189559 DOI: 10.1186/s10194-020-01111-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic migraine is a neurological disorder characterized by 15 or more headache days per month of which at least 8 days show typical migraine features. The process that describes the development from episodic migraine into chronic migraine is commonly referred to as migraine transformation or chronification. Ample studies have attempted to identify factors associated with migraine transformation from different perspectives. Understanding CM as a pathological brain state with trigeminovascular participation where biological changes occur, we have completed a comprehensive review on the clinical, epidemiological, genetic, molecular, structural, functional, physiological and preclinical evidence available.
Collapse
Affiliation(s)
- M. Torres-Ferrús
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F. Ursitti
- Headache Center, Child Neurology Unit, Bambino Gesu’ Children’s Hospital, Rome, Italy
| | - A. Alpuente-Ruiz
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F. Brunello
- Juvenile Headache Centre, Department of Woman’s and Child’s Health, University Hospital of Padua, Padua, Italy
| | - D. Chiappino
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
| | - T. de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S. Di Marco
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - S. Ferlisi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - L. Guerritore
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
| | - N. Gonzalez-Garcia
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - A. Gonzalez-Martinez
- Neurology Department, Hospital Universitario de La Princesa & Instituto de Investigación Sanitaria de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - D. Khutorov
- Department of Clinical Neurology and Sleep Medicine, The Nikiforov Russian Center of Emergency and Radiation Medicine of EMERCOM of Russia, Saint-Petersburg, Russia
| | | | - A. Kyrou
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland University Hospital of Psychiatry, Bern, Switzerland
| | - T. Makeeva
- Headache Unit, Department of Neurology, Medical center “New Medical Technologies”, Voronezh, Russia
| | - A. Minguez-Olaondo
- Department of Neurology, Universitary Hospital of Donostia, San Sebastian, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Hospital Quironsalud Donostia, San Sebastian, Spain
| | - L. Pilati
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - A. Serrien
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - O. Tsurkalenko
- Department of Neurology and Neurosurgery, State Institution “Dnipropetrovsk medical akademy MOH Ukraine”, Dnipro, Ukraine
| | | | - W. S. van Hoogstraten
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - C. Lampl
- Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - On behalf of School of Advanced Studies of European Headache Federation (EHF-SAS)
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Headache Center, Child Neurology Unit, Bambino Gesu’ Children’s Hospital, Rome, Italy
- Juvenile Headache Centre, Department of Woman’s and Child’s Health, University Hospital of Padua, Padua, Italy
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Neurology Department, Hospital Universitario de La Princesa & Instituto de Investigación Sanitaria de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Clinical Neurology and Sleep Medicine, The Nikiforov Russian Center of Emergency and Radiation Medicine of EMERCOM of Russia, Saint-Petersburg, Russia
- Grevena General Hospital, Grevena, Greece
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland University Hospital of Psychiatry, Bern, Switzerland
- Headache Unit, Department of Neurology, Medical center “New Medical Technologies”, Voronezh, Russia
- Department of Neurology, Universitary Hospital of Donostia, San Sebastian, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Hospital Quironsalud Donostia, San Sebastian, Spain
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurology and Neurosurgery, State Institution “Dnipropetrovsk medical akademy MOH Ukraine”, Dnipro, Ukraine
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| |
Collapse
|
39
|
Zhang DG, Amin FM, Guo S, Vestergaard MB, Hougaard A, Ashina M. Plasma Glucose Levels Increase During Spontaneous Attacks of Migraine With and Without Aura. Headache 2020; 60:655-664. [PMID: 32031249 DOI: 10.1111/head.13760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate plasma glucose changes during the ictal state of migraine compared to the interictal state. BACKGROUND Previous studies suggest abnormal glucose metabolism in migraine patients during and outside of attacks. It is not known if plasma glucose levels change during spontaneous migraine attacks. METHODS Plasma glucose levels were measured during and outside of spontaneous migraine attacks with and without aura. Plasma glucose values were corrected for diurnal variation of plasma glucose by subtracting the difference between the moving average (intervals of 2 hours) and overall mean from the plasma glucose values. RESULTS This was a sub-study of a larger study conducted at Rigshospitalet Glostrup in the Capital Region of Denmark. Thirty-one patients (24 F, 7 M, 13 with aura, 18 without aura) were included in the study. Mean time from attack onset to blood sampling was 7.6 hours. Mean pain at the time of investigation was 6 on a 0-10 verbal rating scale. Plasma glucose was higher ictally compared to the interictal phase (interictal mean: 88.63 mg/dL, SD 11.70 mg/dL; ictal mean: 98.83 mg/dL, SD 13.16 mg/dL, difference 10.20 mg/dL, 95% CI = [4.30; 16.10]), P = .0014). The ictal increase was highest in patients investigated early during attacks and decreased linearly with time from onset of migraine (-1.57 mg/dL/hour from onset of attack, P = .020). The attack-related increase in blood glucose was not affected by pain intensity or presence of aura symptoms. CONCLUSIONS We demonstrated higher plasma glucose values during spontaneous migraine attacks, independent of the presence of aura symptoms and not related to pain intensity, peaking in the early phase of attacks. Additional studies are necessary to confirm our findings and explore the possible underlying mechanisms.
Collapse
Affiliation(s)
- Ditte Georgina Zhang
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Song Guo
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Anders Hougaard
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
40
|
Edvinsson L, Haanes KA. Views on migraine pathophysiology: Where does it start? ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Sciences Division of Experimental Vascular Research Lund University Lund Sweden
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research Glostrup Research Institute Rigshospitalet Glostrup Denmark
| |
Collapse
|
41
|
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20:105. [PMID: 31718551 PMCID: PMC6852900 DOI: 10.1186/s10194-019-1055-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). Methods With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. Results Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. Conclusion We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark. .,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
42
|
Abstract
Migraine is among the most common and most disabling disorders worldwide, yet its underlying pathophysiology is among the most poorly understood. New information continues to emerge on mechanisms within the central and peripheral nervous systems that may contribute to migraine attacks. Additionally, new therapeutics have recently become available and along with much needed relief for many patients, these drugs provide insight into the disorder based on their mechanism of action. This review will cover new findings within the last several years that add to the understanding of migraine pathophysiology, including those related to the vasculature, calcitonin gene-related peptide (CGRP), and mechanisms within the cortex and meninges that may contribute to attacks. Discussion will also cover recent findings on novel therapeutic targets, several of which continue to show promise in new preclinical studies, including acid-sensing ion channels (ASICs) and the delta-opioid receptor (DOR).
Collapse
Affiliation(s)
- Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
43
|
Hansen JM, Charles A. Differences in treatment response between migraine with aura and migraine without aura: lessons from clinical practice and RCTs. J Headache Pain 2019; 20:96. [PMID: 31492106 PMCID: PMC6734209 DOI: 10.1186/s10194-019-1046-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023] Open
Abstract
Migraine is a major public health problem afflicting approximately 10% of the general population and is a leading cause of disability worldwide, yet our understanding of the basis mechanisms of migraine remains incomplete. About a third of migraine patients have attacks with aura, consisting of transient neurological symptoms that precede or accompany headache, or occur without headache. For patients, aura symptoms are alarming and may be transiently disabling. For clinicians and scientists, aura represents an intriguing neurophysiological event that may provide important insight into basic mechanisms of migraine. Several observations point toward important differences between migraine with and without aura. Compared with migraine without aura, migraine with aura has different heritability, greater association with different conditions including stroke, different alterations of brain structure and function as revealed by imaging studies. A number of studies also indicate that migraine with aura may respond differently to acute and preventive therapies as compared to migraine without aura. The purpose of this review is to provide an overview of these differences in treatment responses, and to discuss the possibility of different therapeutic strategies for migraine with vs. without aura.
Collapse
Affiliation(s)
- Jakob Møller Hansen
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansen Vej 5, DK-2600 Glostrup, Denmark
| | - Andrew Charles
- UCLA Goldberg Migraine Program, Department of Neurology, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|
44
|
Bolay H, Vuralli D, Goadsby PJ. Aura and Head pain: relationship and gaps in the translational models. J Headache Pain 2019; 20:94. [PMID: 31481015 PMCID: PMC6734357 DOI: 10.1186/s10194-019-1042-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex brain disorder and initiating events for acute attacks still remain unclear. It seems difficult to explain the development of migraine headache with one mechanism and/or a single anatomical location. Cortical spreading depression (CSD) is recognized as the biological substrate of migraine aura and experimental animal studies have provided mechanisms that possibly link CSD to the activation of trigeminal neurons mediating lateralized head pain. However, some CSD features do not match the clinical features of migraine headache and there are gaps in translating CSD to migraine with aura. Clinical features of migraine headache and results from research are critically evaluated; and consistent and inconsistent findings are discussed according to the known basic features of canonical CSD: typical SD limited to the cerebral cortex as it was originally defined. Alternatively, arguments related to the emergence of SD in other brain structures in addition to the cerebral cortex or CSD initiated dysfunction in the thalamocortical network are proposed. Accordingly, including thalamus, particularly reticular nucleus and higher order thalamic nuclei, which functions as a hub connecting the visual, somatosensory, language and motor cortical areas and subjects to modulation by brain stem projections into the CSD theory, would greatly improve our current understanding of migraine.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, 06510 Ankara, Turkey
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
| | - Doga Vuralli
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
- Department of Algology, Bakirkoy Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
45
|
Borkum JM. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019; 59:1339-1357. [DOI: 10.1111/head.13591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology University of Maine Orono ME USA
- Health Psych Maine Waterville ME USA
| |
Collapse
|
46
|
Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol 2019; 15:483-490. [PMID: 31263254 DOI: 10.1038/s41582-019-0216-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
|
47
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
48
|
Hadjikhani N, Vincent M. Neuroimaging clues of migraine aura. J Headache Pain 2019; 20:32. [PMID: 30943894 PMCID: PMC6734229 DOI: 10.1186/s10194-019-0983-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
While migraine headaches can be provoked, or predicted by the presence of an aura or premonitory symptoms, the prediction or elicitation of the aura itself is more problematic. Therefore, imaging studies directly examining the aura phenomenon are sparse. There are however interictal imaging studies that can shed light on the pathophysiology of the migraine with aura (MWA) cascade. Here, we review findings pointing to the involvement of cortical spreading depression (CSD) and neuroinflammation in MWA. Whether asymptomatic CSD also happens in some migraine without aura is still under debate. In addition, new evidence points to glial activation in MWA, indicating the involvement of astrocytes in the neuroinflammatory cascade that follows CSD, as well as dural macrophages, supporting the involvement of the trigeminovascular system in migraine pain.
Collapse
Affiliation(s)
- Nouchine Hadjikhani
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA. .,Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | - Maurice Vincent
- Neuroscience Research, Eli Lilly and Company, Indianapolis, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Monoclonal antibodies (mAbs) targeting the calcitonin-gene-related peptide (CGRP) pathway have been developed for episodic and chronic migraine prevention, either through binding the CGRP ligand (eptinezumab, fremanezumab, galcanezumab) or the CGRP receptor (erenumab). We provide an update on published Phase 2 and Phase 3 trials, safety/tolerability data, pharmacokinetics and mechanism of action of these biologicals. RECENT FINDINGS The efficacy data from Phase 2 trials are corroborated by those from published Phase 3 trials, with a multitude of publications expected in 2018. Review of safety data concluded there was no difference in total adverse events or main adverse events (including upper respiratory tract infection, nasopharyngitis, nausea, injection-site pain and back pain) between the mAbs and placebo injections except apparently for dizziness. The site of action of these mAbs is not fully elucidated but current insight is that their effect resides in the periphery; a contribution of central effect(s) can however not be excluded at present. SUMMARY Although efficacy of all four drugs is modest over placebo in episodic and chronic migraine prevention and overall comparable with available oral preventive treatments, current tolerability and (short-term) safety data of this new treatment approach certainly promise a major step forward for migraine patients.
Collapse
|
50
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|