1
|
Feng S, Rcheulishvili N, Jiang X, Zhu P, Pan X, Wei M, Wang PG, Ji Y, Papukashvili D. A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach. Int J Biol Sci 2024; 20:2111-2129. [PMID: 38617529 PMCID: PMC11008270 DOI: 10.7150/ijbs.87741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme β-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.
Collapse
Affiliation(s)
- Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Pan Zhu
- Cheerland Biomedicine, Shenzhen, China
| | - Xuehua Pan
- Shenzhen Pengbo Biotech Co. Ltd, Shenzhen, China
| | - Meilan Wei
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Ji
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
3
|
Zhu J, Sun Y, Zheng W, Wang C. Case report: Multidisciplinary collaboration in diagnosis and treatment of child gaucher disease. Front Pediatr 2023; 11:1057574. [PMID: 37063666 PMCID: PMC10098188 DOI: 10.3389/fped.2023.1057574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Gaucher disease (GD) is an inherited lysosomal storage disease caused by mutations in the glucocerebrosidase gene. The decrease of glucocerebrosidase activity in lysosomes results in the accumulation of its substrate glucocerebroside in the lysosomes of macrophages in organs such as the liver, spleen, bones, lungs, brain and eyes, and the formation of typical storage cells, namely "Gaucher cells", leading to lesions in the affected tissues and organs. Hepatosplenomegaly, bone pain, cytopenia, neurological symptoms, and other systemic manifestations are common in clinical practice. Most pediatric patients have severe symptoms. Early diagnosis and treatment are crucial to improve the curative effect and prognosis. However, due to the low incidence of this disease, multi-system involvement in patients, and diverse clinical manifestations, multidisciplinary teamwork is needed for comprehensive evaluation, diagnosis and treatment. In this study, we reported 2 cases of different types of GD who were diagnosed, treated and followed up by multidisciplinary collaboration in infancy.
Collapse
Affiliation(s)
- Jianfang Zhu
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxiao Sun
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyan Zheng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Rodrigues KF, Yong WTL, Bhuiyan MSA, Siddiquee S, Shah MD, Venmathi Maran BA. Current Understanding on the Genetic Basis of Key Metabolic Disorders: A Review. BIOLOGY 2022; 11:biology11091308. [PMID: 36138787 PMCID: PMC9495729 DOI: 10.3390/biology11091308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Metabolic disorders (MD) are a challenge to healthcare systems; the emergence of the modern socio-economic system has led to a profound change in lifestyles in terms of dietary habits, exercise regimens, and behavior, all of which complement the genetic factors associated with MD. Diabetes Mellitus and Familial hypercholesterolemia are two of the 14 most widely researched MD, as they pose the greatest challenge to the public healthcare system and have an impact on productivity and the economy. Research findings have led to the development of new therapeutic molecules for the mitigation of MD as well as the invention of experimental strategies, which target the genes themselves via gene editing and RNA interference. Although these approaches may herald the emergence of a new toolbox to treat MD, the current therapeutic approaches still heavily depend on substrate reduction, dietary restrictions based on genetic factors, exercise, and the maintenance of good mental health. The development of orphan drugs for the less common MD such as Krabbe, Farber, Fabry, and Gaucher diseases, remains in its infancy, owing to the lack of investment in research and development, and this has driven the development of personalized therapeutics based on gene silencing and related technologies. Abstract Advances in data acquisition via high resolution genomic, transcriptomic, proteomic and metabolomic platforms have driven the discovery of the underlying factors associated with metabolic disorders (MD) and led to interventions that target the underlying genetic causes as well as lifestyle changes and dietary regulation. The review focuses on fourteen of the most widely studied inherited MD, which are familial hypercholesterolemia, Gaucher disease, Hunter syndrome, Krabbe disease, Maple syrup urine disease, Metachromatic leukodystrophy, Mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), Niemann-Pick disease, Phenylketonuria (PKU), Porphyria, Tay-Sachs disease, Wilson’s disease, Familial hypertriglyceridemia (F-HTG) and Galactosemia based on genome wide association studies, epigenetic factors, transcript regulation, post-translational genetic modifications and biomarker discovery through metabolomic studies. We will delve into the current approaches being undertaken to analyze metadata using bioinformatic approaches and the emerging interventions using genome editing platforms as applied to animal models.
Collapse
Affiliation(s)
- Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.F.R.); (B.A.V.M.); Tel.: +60-16-2096905 (B.A.V.M.)
| |
Collapse
|
5
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
6
|
Rossi M, Castillo-Torres SA, Merello M. Early motor response to dopamine replacement therapy in Parkinson's disease patients carrying GBA variants. J Neurol Sci 2022; 440:120354. [PMID: 35907343 DOI: 10.1016/j.jns.2022.120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mutations in the glucocerebrosidase (GBA) gene represent the most common genetic risk factor for Parkinson's Disease (PD) and are associated with a more aggressive motor phenotype at late stages. However, the motor response at early stages of disease remains understudied. METHODS Retrospective study of PD patients that underwent next-generation sequencing panel tests for PD-related genes. We extracted demographic data and the MDS-UPDRS III response to an acute levodopa challenge (LDC), the best ON score, and the levodopa equivalent daily dose (LEDD) during the first six months after the LDC and initiation of DRT. We compared the response of GBA-PD patients to that of patients without pathogenic variants or rearrangements in other PD related genes (sporadic PD). RESULTS 13 GBA-PD and 48 sporadic PD patients were identified. Baseline MDS-UPDRS III score (24.6 ± 9.6 vs. 21.8 ± 9.3. p = 0.4), response to LDC (39.2% ± 7.9% vs. 32.7% ± 13.4%; p = 0.1), best ON score (36.9% ± 39.5% vs. 41.6% ± 20.8%; p = 0.6) and LEDD (188 mg ± 100 mg vs. 261.8 mg ± 164.8 mg; p = 0.2) during the first six months after initiation of DRT were not different between GBA-PD and sporadic PD patients. CONCLUSIONS At early disease stages of GBA-PD, the motor response to acute levodopa challenge test and the initial response to DRT are similar to that of patients with sporadic PD. Although limited by small sample size, these preliminary findings should be confirmed by future prospective larger studies.
Collapse
Affiliation(s)
- Malco Rossi
- Servicio de Movimientos Anormales, Departamento de Neurología, Fleni, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | | | - Marcelo Merello
- Servicio de Movimientos Anormales, Departamento de Neurología, Fleni, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Faculty of Medicine, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| |
Collapse
|
7
|
Minić S, Trpinac D, Novaković I, Cerovac N, Dobrosavljević Vukojević D, Rosain J. Challenges in Rare Diseases Diagnostics: Incontinentia Pigmenti with Heterozygous GBA Mutation. Diagnostics (Basel) 2022; 12:1711. [PMID: 35885615 PMCID: PMC9318020 DOI: 10.3390/diagnostics12071711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rare diseases represent a diagnostic challenge due to their number, variety of clinical phenomena, and possibility of a simultaneous presence of two or more diseases. An illustration of this challenge is an occurrence of a late diagnosis of a proband initially diagnosed with West syndrome, later revealed to be caused by Incontinentia pigmenti (IP). Furthermore, 20 years later, it was discovered that the proband was also a carrier of a heterozygous GBA gene mutation. The methods used in diagnostics were as follows: IKBKG gene analysis, the X-chromosome inactivation assay, analyses of the genes relevant for neurodegeneration, WES analysis, analysis of biochemical parameters typical for Gaucher disease (GD), and autoantibodies including IFN-α2a and IFN-ω. To avoid overlooking IP and other possible rare disease diagnoses, carefully searching for dermatological signs in these conditions is recommended. It is important that the diagnostic criteria are based on quality and extensive data from multiple studies of each rare disease. Establishing precise diagnostic criteria for as many rare diseases as possible and establishing a publicly accessible database of rare diseases with a search possibility according to phenotypic abnormalities and genetic mutations would greatly facilitate and speed up the establishment of an accurate diagnosis.
Collapse
Affiliation(s)
- Snežana Minić
- A Clinics of Dermatovenerology, University Clinical Center of Serbia, Deligradska 34, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Trpinac
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia;
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia;
| | - Nataša Cerovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic for Neurology and Psychiatry for Children and Youth, University Clinical Center of Serbia, Dr. Subotica 6a, 11000 Belgrade, Serbia
| | - Danijela Dobrosavljević Vukojević
- A Clinics of Dermatovenerology, University Clinical Center of Serbia, Deligradska 34, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France;
- Imagine Institute, University of Paris, 75015 Paris, France
| |
Collapse
|
8
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
9
|
Alselehdar SK, Chakraborty M, Chowdhury S, Alcalay RN, Surface M, Ledeen R. Subnormal GM1 in PBMCs: Promise for Early Diagnosis of Parkinson's Disease? Int J Mol Sci 2021; 22:11522. [PMID: 34768952 PMCID: PMC8583888 DOI: 10.3390/ijms222111522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
The fact that Parkinson's disease (PD) pathologies are well advanced in most PD patients by the time of clinical elucidation attests to the importance of early diagnosis. Our attempt to achieve this has capitalized on our previous finding that GM1 ganglioside is expressed at subnormal levels in virtually all tissues of sporadic PD (sPD) patients including blood cells. GM1 is present in most vertebrate cells, is especially abundant in neurons where it was shown essential for their effective functioning and long term viability. We have utilized peripheral blood mononuclear cells (PBMCs) which, despite their low GM1, we found to be significantly lower in sPD patients compared to age-matched healthy controls. To quantify GM1 (and GD1a) we used high performance thin-layer chromatography combined with cholera toxin B linked to horseradish peroxidase, followed by densitometric quantification. GM1 was also deficient in PBMCs from PD patients with mutations in the glucocerebrosidase gene (PD-GBA), apparently even lower than in sPD. Reasons are given why we believe these results obtained with patients manifesting fully developed PD will apply as well to PD patients in preclinical stages-a topic for future study. We also suggest that these findings point to a potential disease altering therapy for PD once the early diagnosis is established.
Collapse
Affiliation(s)
- Samar K. Alselehdar
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Monami Chakraborty
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Suman Chowdhury
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.N.A.); (M.S.)
| | - Matthew Surface
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.N.A.); (M.S.)
| | - Robert Ledeen
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of NJ, Newark, NJ 07103, USA; (S.K.A.); (M.C.); (S.C.)
| |
Collapse
|
10
|
Lee CY, Menozzi E, Chau KY, Schapira AHV. Glucocerebrosidase 1 and leucine-rich repeat kinase 2 in Parkinson disease and interplay between the two genes. J Neurochem 2021; 159:826-839. [PMID: 34618942 DOI: 10.1111/jnc.15524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/24/2023]
Abstract
The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.
Collapse
Affiliation(s)
- Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Le Heron C, MacAskill M, Mason D, Dalrymple-Alford J, Anderson T, Pitcher T, Myall D. A Multi-Step Model of Parkinson's Disease Pathogenesis. Mov Disord 2021; 36:2530-2538. [PMID: 34374460 PMCID: PMC9290013 DOI: 10.1002/mds.28719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) may result from the combined effect of multiple etiological factors. The relationship between disease incidence and age, as demonstrated in the cancer literature, can be used to model a multistep pathogenic process, potentially affording unique insights into disease development. OBJECTIVES We tested whether the observed incidence of PD is consistent with a multistep process, estimated the number of steps required and whether this varies with age, and examined drivers of sex differences in PD incidence. METHODS Our validated probabilistic modeling process, based on medication prescribing, generated nationwide age- and sex-adjusted PD incidence data spanning 2006-2017. Models of log(incidence) versus log(age) were compared using Bayes factors, to estimate (1) if a linear relationship was present (indicative of a multistep process); (2) the relationship's slope (one less than number of steps); (3) whether slope was lower at younger ages; and (4) whether slope or y-intercept varied with sex. RESULTS Across >15,000 incident cases of PD, there was a clear linear relationship between log(age) and log(incidence). Evidence was strongest for a model with an initial slope of 5.2 [3.8, 6.4], an inflexion point at age 45, and beyond this a slope of 6.8 [6.4, 7.2]. There was evidence for the intercept varying by sex, but no evidence for slope being sex-dependent. CONCLUSIONS The age-specific incidence of PD is consistent with a process that develops in multiple, discrete steps - on average six before age 45 and eight after. The model supports theories emphasizing the primacy of environmental factors in driving sex differences in PD incidence. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Campbell Le Heron
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michael MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Deborah Mason
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Daniel Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
12
|
Fridman H, Yntema HG, Mägi R, Andreson R, Metspalu A, Mezzavila M, Tyler-Smith C, Xue Y, Carmi S, Levy-Lahad E, Gilissen C, Brunner HG. The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects. Am J Hum Genet 2021; 108:608-619. [PMID: 33740458 DOI: 10.1016/j.ajhg.2021.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
The number and distribution of recessive alleles in the population for various diseases are not known at genome-wide-scale. Based on 6,447 exome sequences of healthy, genetically unrelated Europeans of two distinct ancestries, we estimate that every individual is a carrier of at least 2 pathogenic variants in currently known autosomal-recessive (AR) genes and that 0.8%-1% of European couples are at risk of having a child affected with a severe AR genetic disorder. This risk is 16.5-fold higher for first cousins but is significantly more increased for skeletal disorders and intellectual disabilities due to their distinct genetic architecture.
Collapse
Affiliation(s)
- Hila Fridman
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Helger G Yntema
- Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Reidar Andreson
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Massimo Mezzavila
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands.
| | - Han G Brunner
- Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands; Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology and MHENS School for Mental Health and Neuroscience, Maastricht University Medical Center, PO Box 5800, Maastricht 6202AZ, the Netherlands.
| |
Collapse
|
13
|
Pinto F, Nassone E, Ismail M, Jamisse A, Kubaski F, Brusius-Facchin AC, Giugliani R, Madeira L, Fernandes F. Difficulties in the Diagnosis of Gaucher Disease in a Low-Income Country: A Case Report from Mozambique. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Francyne Kubaski
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
14
|
Del Tredici K, Ludolph AC, Feldengut S, Jacob C, Reichmann H, Bohl JR, Braak H. Fabry Disease With Concomitant Lewy Body Disease. J Neuropathol Exp Neurol 2020; 79:378-392. [PMID: 32016321 PMCID: PMC7092358 DOI: 10.1093/jnen/nlz139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/07/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Although Gaucher disease can be accompanied by Lewy pathology (LP) and extrapyramidal symptoms, it is unknown if LP exists in Fabry disease (FD), another progressive multisystem lysosomal storage disorder. We aimed to elucidate the distribution patterns of FD-related inclusions and LP in the brain of a 58-year-old cognitively unimpaired male FD patient suffering from predominant hypokinesia. Immunohistochemistry (CD77, α-synuclein, collagen IV) and neuropathological staging were performed on 100-µm sections. Tissue from the enteric or peripheral nervous system was unavailable. As controls, a second cognitively unimpaired 50-year-old male FD patient without LP or motor symptoms and 3 age-matched individuals were examined. Inclusion body pathology was semiquantitatively evaluated. Although Lewy neurites/bodies were not present in the 50-year-old individual or in controls, severe neuronal loss in the substantia nigra pars compacta and LP corresponding to neuropathological stage 4 of Parkinson disease was seen in the 58-year-old FD patient. Major cerebrovascular lesions and/or additional pathologies were absent in this individual. We conclude that Lewy body disease with parkinsonism can occur within the context of FD. Further studies determining the frequencies of both inclusion pathologies in large autopsy-controlled FD cohorts could help clarify the implications of both lesions for disease pathogenesis, potential spreading mechanisms, and therapeutic interventions.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| | | | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| | - Christian Jacob
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm.,Institute for Anatomy and Cell Biology, University of Ulm, Ulm
| | - Heinz Reichmann
- Department of Neurology, Dresden University of Technology, Dresden
| | - Jürgen R Bohl
- Institute of Neuropathology, University of Mainz, Mainz, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| |
Collapse
|
15
|
Bouscary A, Quessada C, René F, Spedding M, Turner BJ, Henriques A, Ngo ST, Loeffler JP. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin Cell Dev Biol 2020; 112:82-91. [PMID: 33160824 DOI: 10.1016/j.semcdb.2020.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Frédérique René
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Michael Spedding
- Spedding Research Solutions SAS, 6 rue Ampere, 78650 Le Vesinet, France
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | | | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Rd, Brisbane city, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia; Queensland Brain Institute Building 79, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France.
| |
Collapse
|
16
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
17
|
Bouscary A, Quessada C, René F, Spedding M, Henriques A, Ngo S, Loeffler JP. Drug repositioning in neurodegeneration: An overview of the use of ambroxol in neurodegenerative diseases. Eur J Pharmacol 2020; 884:173446. [PMID: 32739173 DOI: 10.1016/j.ejphar.2020.173446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. While it is primarily characterized by the death of upper and lower motor neurons, there is a significant metabolic component involved in the progression of the disease. Two-thirds of ALS patients have metabolic alterations that are associated with the severity of symptoms. In ALS, as in other neurodegenerative diseases, the metabolism of glycosphingolipids, a class of complex lipids, is strongly dysregulated. We therefore assume that this pathway constitutes an interesting avenue for therapeutic approaches. We have shown that the glucosylceramide degrading enzyme, glucocerebrosidase (GBA) 2 is abnormally increased in the spinal cord of the SOD1G86R mouse model of ALS. Ambroxol, a chaperone molecule that inhibits GBA2, has been shown to have beneficial effects by slowing the development of the disease in SOD1G86R mice. Currently used in clinical trials for Parkinson's and Gaucher disease, ambroxol could be considered as a promising therapeutic treatment for ALS.
Collapse
Affiliation(s)
- Alexandra Bouscary
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Cyril Quessada
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Frédérique René
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
| | | | | | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jean-Philippe Loeffler
- INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, France; Université de Strasbourg, UMR-S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
18
|
Mullin S, Smith L, Lee K, D'Souza G, Woodgate P, Elflein J, Hällqvist J, Toffoli M, Streeter A, Hosking J, Heywood WE, Khengar R, Campbell P, Hehir J, Cable S, Mills K, Zetterberg H, Limousin P, Libri V, Foltynie T, Schapira AHV. Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial. JAMA Neurol 2020; 77:427-434. [PMID: 31930374 PMCID: PMC6990847 DOI: 10.1001/jamaneurol.2019.4611] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Question Does ambroxol cross the blood-brain barrier, and what are the biochemical changes associated with ambroxol therapy in patients with Parkinson disease with and without glucocerebrosidase gene mutations? Findings In this open-label clinical trial of 17 patients with Parkinson disease, ambroxol crossed the blood-brain barrier and bound to the β-glucocerebrosidase enzyme, and it increased β-glucocerebrosidase enzyme protein levels and cerebrospinal fluid α-synuclein levels in patients both with and without glucocerebrosidase gene mutations. Meaning Ambroxol therapy has potential for study as a neuroprotective compound for the treatment of patients with Parkinson disease both with and without glucocerebrosidase gene mutations. Importance Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD. Objective To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations. Interventions An escalating dose of oral ambroxol to 1.26 g per day. Design, Setting, and Participants This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture–related complications). All data analyses were performed from November 1 to December 14, 2018. Main Outcomes and Measures Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity. Results Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was observed. The CSF GCase activity decreased by 19% (0.059 nmol/mL per hour; 95% CI, –0.115 to –0.002; P = .04). The ambroxol therapy was well tolerated, with no serious adverse events. An increase of 50 pg/mL (13%) in the CSF α-synuclein concentration (95% CI, 14-87; P = .01) and an increase of 88 ng/mol (35%) in the CSF GCase protein levels (95% CI, 40-137; P = .002) were observed. Mean (SD) scores on part 3 of the Movement Disorders Society Unified Parkinson Disease Rating Scale decreased (ie, improved) by 6.8 (7.1) points (95% CI, –10.4 to –3.1; P = .001). These changes were observed in patients with and without GBA1 mutations. Conclusions and Relevance The study results suggest that ambroxol therapy was safe and well tolerated; CSF penetration and target engagement of ambroxol were achieved, and CSF α-synuclein levels were increased. Placebo-controlled clinical trials are needed to examine whether ambroxol therapy is associated with changes in the natural progression of PD. Trial Registration ClinicalTrials.gov identifier: NCT02941822; EudraCT identifier: 2015-002571-24
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom.,Institute of Translational and Stratified Medicine, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Laura Smith
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Katherine Lee
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Gayle D'Souza
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Philip Woodgate
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Josh Elflein
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jenny Hällqvist
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Adam Streeter
- Department of Medical Statistics, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Joanne Hosking
- Department of Medical Statistics, University of Plymouth School of Medicine, Plymouth, United Kingdom
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Rajeshree Khengar
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Philip Campbell
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Jason Hehir
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - Sarah Cable
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, United Kingdom
| |
Collapse
|
19
|
Simple and Complex Sugars in Parkinson's Disease: a Bittersweet Taste. Mol Neurobiol 2020; 57:2934-2943. [PMID: 32430844 DOI: 10.1007/s12035-020-01931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.
Collapse
|
20
|
Han TU, Sam R, Sidransky E. Small Molecule Chaperones for the Treatment of Gaucher Disease and GBA1-Associated Parkinson Disease. Front Cell Dev Biol 2020; 8:271. [PMID: 32509770 PMCID: PMC7248408 DOI: 10.3389/fcell.2020.00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease, the second most common movement disorder, is a complex neurodegenerative disorder hallmarked by the accumulation of alpha-synuclein, a neural-specific small protein associated with neuronal synapses. Mutations in the glucocerebrosidase gene (GBA1), implicated in the rare, autosomal recessive lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease. Insights into the inverse relationship between glucocerebrosidase and alpha-synuclein have led to new therapeutic approaches for the treatment of Gaucher disease and GBA1-associated Parkinson disease. Unlike the current drugs used to treat Gaucher disease, which are highly expensive and do not cross the blood-brain-barrier, new small molecules therapies, including competitive and non-competitive chaperones that enhance glucocerebrosidase levels are being developed to overcome these limitations. Some of these include iminosugars, ambroxol, other competitive glucocerebrosidase inhibitors, and non-inhibitory chaperones or activators that do not compete for the active site. These drugs, which have been shown in different disease models to increase glucocerebrosidase activity, could have potential as a therapy for Gaucher disease and GBA1- associated Parkinson disease. Some have been demonstrated to reduce α-synuclein levels in pre-clinical studies using cell-based or animal models of GBA1-associated Parkinson disease, and may also have utility for idiopathic Parkinson disease.
Collapse
Affiliation(s)
- Tae-Un Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Richard Sam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW GBA1 mutations, which result in the lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease and Dementia with Lewy Bodies (DLB). The pathogenesis of this association is not fully understood, but further elucidation of this link could lead to new therapeutic options. RECENT FINDINGS The characteristic clinical phenotype of GBA1-PD resembles sporadic Parkinson disease, but with an earlier onset and more severe course. Many different GBA1 mutations increase the risk of Parkinson disease, some primarily detected in specific populations. Glucocerebrosidase deficiency appears to be associated with increased α-synuclein aggregation and accumulation, mitochondrial dysfunction because of impaired autophagy, and increased endoplasmic reticulum stress. SUMMARY As our understanding of GBA1-associated Parkinson disease increases, new treatment opportunities emerge. MicroRNA profiles are providing examples of both up-regulated and down-regulated proteins related to GBA1 and may provide new therapeutic targets. Chaperone therapy, directed at either misfolded glucocerebrosidase or α-synuclein aggregation, is currently under development and there are several early clinical trials ongoing. Substrate reduction therapy, aimed at lowering the accumulation of metabolic by-products, especially glucosylsphingosine, is also being explored. Basic science insights from the rare disorder Gaucher disease are serving to catapult drug discovery for parkinsonism.
Collapse
|
22
|
Weissbach A, Wittke C, Kasten M, Klein C. 'Atypical' Parkinson's disease - genetic. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:207-235. [PMID: 31779813 DOI: 10.1016/bs.irn.2019.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic atypical Parkinson's disease (PD) describes monogenic forms of PD that resemble idiopathic PD but feature prominent atypical clinical signs and symptoms and can be sub-grouped into i) atypical monogenic forms caused by mutations in the ATP13A2, DNAJC6, FBXO7, SYNJ1, VPS13C, and DCTN genes; ii) monogenic PD more closely resembling idiopathic PD, but associated with atypical features in at least a subset of cases (SNCA-, LRRK2-, VPS35-, Parkin-, PINK1-, and DJ-1-linked PD; iii) carriers of mutations in genes that are usually associated with other movement disorders but may present with parkinsonism, such as dopa-responsive dystonia. Some atypical features are shared by almost all forms, such as an overall early age at onset. Other clinical signs are present in carriers of mutations across several different genes, such as for example, early cognitive decline. Finally, several clinical features can serve as red flags for specific forms of atypical PD including a supranuclear gaze palsy in ATP13A2 mutation carriers or hypoventilation linked to mutations in the DCTN1 gene.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christina Wittke
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Ciani M, Bonvicini C, Scassellati C, Carrara M, Maj C, Fostinelli S, Binetti G, Ghidoni R, Benussi L. The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. Int J Mol Sci 2019; 20:ijms20163903. [PMID: 31405128 PMCID: PMC6721049 DOI: 10.3390/ijms20163903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a common form of dementia among early-onset cases. Several genetic factors for FTD have been revealed, but a large proportion of FTD cases still have an unidentified genetic origin. Recent studies highlighted common pathobiological mechanisms among neurodegenerative diseases. In the present study, we investigated a panel of candidate genes, previously described to be associated with FTD and/or other neurodegenerative diseases by targeted next generation sequencing (NGS). We focused our study on sporadic FTD (sFTD), devoid of disease-causing mutations in GRN, MAPT and C9orf72. Since genetic factors have a substantially higher pathogenetic contribution in early onset patients than in late onset dementia, we selected patients with early onset (<65 years). Our study revealed that, in 50% of patients, rare missense potentially pathogenetic variants in genes previously associated with Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis and Lewy body dementia (GBA, ABCA7, PARK7, FUS, SORL1, LRRK2, ALS2), confirming genetic pleiotropy in neurodegeneration. In parallel, a synergic genetic effect on FTD is suggested by the presence of variants in five different genes in one single patient. Further studies employing genome-wide approaches might highlight pathogenic variants in novel genes that explain the still missing heritability of FTD.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Catia Scassellati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Matteo Carrara
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, 53127 Bonn, Germany
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy.
| |
Collapse
|
24
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
25
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
26
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
27
|
Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Mol Brain 2019; 12:18. [PMID: 30866990 PMCID: PMC6417073 DOI: 10.1186/s13041-019-0439-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
A number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, share intra- and/or extracellular deposition of protein aggregates as a common core pathology. While the species of accumulating proteins are distinct in each disease, an increasing body of evidence indicates that defects in the protein clearance system play a crucial role in the gradual accumulation of protein aggregates. Among protein degradation systems, the endosome-autophagosome-lysosome pathway (EALP) is the main degradation machinery, especially for large protein aggregates. Lysosomal dysfunction or defects in fusion with vesicles containing cargo are commonly observed abnormalities in proteinopathic neurodegenerative diseases. In this review, we discuss the available evidence for a mechanistic connection between components of the EALP-especially lysosomes-and neurodegenerative diseases. We also focus on lysosomal pH regulation and its significance in maintaining flux through the EALP. Finally, we suggest that raising cAMP and free zinc levels in brain cells may be beneficial in normalizing lysosomal pH and EALP flux.
Collapse
Affiliation(s)
- Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|