1
|
Rass V, Berek A, Altmann K, Goettfried E, Kindl P, Helbok R, Schiefecker A, Pfausler B, Zamarian L, Beer R. Health-related quality of life after spontaneous subarachnoid hemorrhage - a prospective cohort study. Qual Life Res 2025:10.1007/s11136-025-03955-6. [PMID: 40146502 DOI: 10.1007/s11136-025-03955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE Reduced health-related quality of life (HR-QoL) is common after spontaneous subarachnoid hemorrhage (SAH). Here, we aimed to describe the prevalence of HR-QoL impairment one year after SAH and to identify associated factors. METHODS In this prospective cohort study, HR-QoL was assessed in 183 patients one year after SAH. We used the Short-Form-36 (SF-36) questionnaire, which consists of eight health domains that can be subdivided into mental and physical health components. Participants responded to scales on subjective attention deficit, mental health symptoms, and fatigue. Functional outcome was assessed with the modified Rankin Scale (mRS). Multivariable regression analysis was used to identify factors associated with reduced HR-QoL (MCS or PCS < 40). RESULTS Patients were 53 years of age (IQR, 46-61) and presented with a median Hunt&Hess score of 2 (2-3). HR-QoL was reduced in 66/183 patients (36%) with the highest abnormality in physical and emotional role. A lower Hunt&Hess score (p = 0.036), female sex (p = 0.017), self-reported depression (p = 0.001), fatigue (p < 0.001), and reduction of drive (p = 0.019) were associated with overall reduced HR-QoL and explained 68.9% of the observed variance. 26% (n = 48) scored below the normal range on the MCS, and independent associations emerged for self-reported anxiety and depression, fatigue, and reduction of drive. A reduction in the PCS was reported by 35 (19%) patients and independent associations were found for worse three-month functional outcome and fatigue. CONCLUSION One in three patients reported a reduction in HR-QoL one year after SAH. Mental health problems and fatigue had a significant impact on HR-QoL.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Anna Berek
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Klaus Altmann
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Department of Neurology, General Hospital Barmherzige Schwestern, Ried Im Innkreis, Austria
| | - Elisabeth Goettfried
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Philipp Kindl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | - Alois Schiefecker
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Laura Zamarian
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Lynch DG, Shah KA, Powell K, Wadolowski S, Tambo W, Strohl JJ, Unadkat P, Eidelberg D, Huerta PT, Li C. Neurobehavioral Impairments Predict Specific Cerebral Damage in Rat Model of Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:950-969. [PMID: 37493939 DOI: 10.1007/s12975-023-01180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific method for detecting damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC 0.905; sensitivity 81.8%; specificity 90.9%) and striatum (AUC 0.913; sensitivity 90.1%; specificity 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC 0.902; sensitivity 74.1%; specificity 83.3%) than impaired reference memory (AUC 0.746; sensitivity 72.2%; specificity 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC 0.900; sensitivity 77.0%; specificity 81.7%) and thalamus (AUC 0.963; sensitivity 86.3%; specificity 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.
Collapse
Affiliation(s)
- Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Joshua J Strohl
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Laboratory of Immune and Neural Networks, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Prashin Unadkat
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Center for Neurosciences, Lab for Behavioral and Molecular Neuroimaging, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Center for Neurosciences, Lab for Behavioral and Molecular Neuroimaging, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Patricio T Huerta
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Laboratory of Immune and Neural Networks, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
3
|
Zolnourian A, Garland P, Holton P, Arora M, Rhodes J, Uff C, Birch T, Howat D, Franklin S, Galea I, Bulters D. A Randomised Controlled Trial of SFX-01 After Subarachnoid Haemorrhage - The SAS Study. Transl Stroke Res 2024:10.1007/s12975-024-01278-1. [PMID: 39028412 DOI: 10.1007/s12975-024-01278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
SFX-01 is a novel drug for clinical delivery of sulforaphane (SFN). SFN is a potent nuclear factor erythroid 2-related factor 2 activator that reduces inflammation and oxidation, improving outcomes after subarachnoid haemorrhage (SAH) in animal models. This was a multi-centre, double-blind, placebo-controlled, parallel-group randomised clinical trial to evaluate the safety, pharmacokinetics and efficacy of 28 days of SFX-01 300 mg BD in patients aged 18-80 with spontaneous SAH and high blood load on CT. Primary outcomes were (1) safety, (2) plasma and CSF SFN and metabolite levels and (3) vasospasm on transcranial doppler ultrasound. Secondary outcomes included CSF haptoglobin and malondialdehyde and clinical outcome on the modified Rankin Scale (mRS) and SAH outcome tool (SAHOT). A total of 105 patients were randomised (54 SFX-01, 51 placebo). There were no differences in adverse events other than nausea (9 SFX-01 (16.7%), 1 placebo (2.0%)). SFN, SFN-glutathione and SFN-N-acetyl-cysteine AUClast were 16.2, 277 and 415 h × ng/ml. Plasma SFN was higher in GSTT1 null individuals (t = 2.40, p = 0.023). CSF levels were low with many samples below the lower limit of quantification and predicted by the CSF/serum albumin ratio (R2 = 0.182, p = 0.039). There was no difference in CSF haptoglobin (1.981 95%CI 0.992-3.786, p = 0.052) or malondialdehyde (1.12 95%CI 0.7477-1.687, p = 0.572) or middle cerebral artery flow velocity (1.04 95%CI 0.903-1.211, p = 0.545) or functional outcome (mRS 1.647 95%CI 0.721-3.821, p = 0.237, SAHOT 1.082 95%CI 0.464-2.525, p = 0.855). SFX-01 is safe and effective for the delivery of SFN in acutely unwell patients. SFN penetrated CSF less than expected and did not reduce large vessel vasospasm or improve outcome. Trial registration: NCT02614742 clinicaltrials.gov.
Collapse
Affiliation(s)
| | - Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick Holton
- Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Mukul Arora
- Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Jonathan Rhodes
- Neuro Intensive Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Tony Birch
- Medical Physics, University Hospital Southampton, Southampton, UK
| | | | | | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Neurology, University Hospital Southampton, Southampton, UK
| | - Diederik Bulters
- Neurosurgery, University Hospital Southampton, Southampton, UK.
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Gaastra B, Whyte S, Hankin B, Bulters D, Galea I, Campbell N. An assistive listening device improves hearing following aneurysmal subarachnoid haemorrhage. Eur J Neurol 2024; 31:e16240. [PMID: 38332663 PMCID: PMC11235765 DOI: 10.1111/ene.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND PURPOSE Hearing impairment is common following aneurysmal subarachnoid haemorrhage (aSAH). Previous studies have demonstrated that auditory processing disorder (APD) is the primary underlying pathology. Assistive listening devices (ALDs) can be used to manage APD but have not been explored in aSAH. The aim of this study was to assess the benefit of an ALD for patients reporting hearing difficulty after aSAH. METHODS This was a prospective pilot single-arm intervention study of an ALD for APD following aSAH. Patients who reported subjective hearing difficulty following aSAH were identified from the Wessex Neurological Centre aSAH database. Speech-in-noise was evaluated using the Bamford-Kowal-Bench (BKB) test under 60 and 65 dB noise conditions. BKB performance was compared with and without an ALD. Cognition was assessed using the Addenbrooke's Cognitive Examination-III. RESULTS Fourteen aSAH patients with self-reported hearing loss were included in the analysis. Under both noise conditions the ALD significantly improved BKB performance (60 dB, Z = -3.30, p < 0.001; 65 dB, Z = -3.33, p < 0.001). There was no relationship between cognition and response to the ALD. CONCLUSIONS This study demonstrates the marked benefit of ALDs to manage APD following aSAH, regardless of cognitive status. This finding has implications for the management of this common yet disabling deficit which impacts quality of life and employment. A further trial of ALDs in this patient group is needed to test whether these large, short-term benefits can be practically translated to the community for long-term benefit when used at home.
Collapse
Affiliation(s)
- Ben Gaastra
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Department of Neurosurgery, Wessex Neurological CentreUniversity Hospital SouthamptonSouthamptonUK
| | - Stuart Whyte
- Faculty of Engineering and Physical Sciences, Auditory Implant ServiceUniversity of SouthamptonSouthamptonUK
| | - Bethan Hankin
- Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological CentreUniversity Hospital SouthamptonSouthamptonUK
| | - Ian Galea
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Nicole Campbell
- Faculty of Engineering and Physical Sciences, Auditory Implant ServiceUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
5
|
Byun E, McCurry SM, Kwon S, Tsai CS, Jun J, Bammler TK, Becker KJ, Thompson HJ. Fatigue, Toll-Like Receptor 4, and Pro-Inflammatory Cytokines in Adults With Subarachnoid Hemorrhage: A 6-Month Longitudinal Study. Biol Res Nurs 2024; 26:192-201. [PMID: 37788710 DOI: 10.1177/10998004231203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
BACKGROUND Fatigue is prevalent in subarachnoid hemorrhage (SAH) survivors. Biological mechanisms underlying fatigue post-SAH are not clear. Inflammation may contribute to the development of fatigue. This study aimed to examine the associations between inflammatory markers and fatigue during the first 6 months post-SAH. Specific biomarkers examined included both early and concurrent expression of Toll-Like Receptor 4 (TLR4) messenger RNA (mRNA) and plasma concentrations of pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)1β, and IL6. METHODS We conducted a 6-month longitudinal study with a convenience sample of 43 SAH survivors. We collected blood samples on days 2, 3, and 7 and 2, 3, and 6 months post-SAH to assess biomarkers. Fatigue was assessed by the PROMIS Fatigue Scale at 2, 3, and 6 months. Linear mixed models were used to test the associations between early (days 2, 3, and 7) and concurrent (2, 3, and 6 months) TLR4 mRNA expression (TagMan gene expression assays) and TNF-α, IL1β, and IL6 plasma concentrations (multiplex assays) and concurrent fatigue. RESULTS 28% of SAH survivors experienced fatigue during the first 6 months post-SAH. Fatigue levels in SAH survivors were higher than those of the U.S. population and consistent during the 6 months. Experience of fatigue during the 6 months post-SAH was associated with higher IL1β plasma concentrations on day 7 and IL1β, IL6, and TNF-α plasma concentrations during the 6 months post-SAH. CONCLUSION Inflammation appears to underlie the development of fatigue in SAH survivors.
Collapse
Affiliation(s)
- Eeeseung Byun
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Susan M McCurry
- Department of Child, Family and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - Suyoung Kwon
- Department of Child, Family and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - Chi-Shan Tsai
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Jeehye Jun
- Red Cross College of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kyra J Becker
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Hilaire J Thompson
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Galea I, Bandyopadhyay S, Bulters D, Humar R, Hugelshofer M, Schaer DJ. Haptoglobin Treatment for Aneurysmal Subarachnoid Hemorrhage: Review and Expert Consensus on Clinical Translation. Stroke 2023; 54:1930-1942. [PMID: 37232189 PMCID: PMC10289236 DOI: 10.1161/strokeaha.123.040205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of stroke frequently affecting young to middle-aged adults, with an unmet need to improve outcome. This special report focusses on the development of intrathecal haptoglobin supplementation as a treatment by reviewing current knowledge and progress, arriving at a Delphi-based global consensus regarding the pathophysiological role of extracellular hemoglobin and research priorities for clinical translation of hemoglobin-scavenging therapeutics. After aneurysmal subarachnoid hemorrhage, erythrocyte lysis generates cell-free hemoglobin in the cerebrospinal fluid, which is a strong determinant of secondary brain injury and long-term clinical outcome. Haptoglobin is the body's first-line defense against cell-free hemoglobin by binding it irreversibly, preventing translocation of hemoglobin into the brain parenchyma and nitric oxide-sensitive functional compartments of cerebral arteries. In mouse and sheep models, intraventricular administration of haptoglobin reversed hemoglobin-induced clinical, histological, and biochemical features of human aneurysmal subarachnoid hemorrhage. Clinical translation of this strategy imposes unique challenges set by the novel mode of action and the anticipated need for intrathecal drug administration, necessitating early input from stakeholders. Practising clinicians (n=72) and scientific experts (n=28) from 5 continents participated in the Delphi study. Inflammation, microvascular spasm, initial intracranial pressure increase, and disruption of nitric oxide signaling were deemed the most important pathophysiological pathways determining outcome. Cell-free hemoglobin was thought to play an important role mostly in pathways related to iron toxicity, oxidative stress, nitric oxide, and inflammation. While useful, there was consensus that further preclinical work was not a priority, with most believing the field was ready for an early phase trial. The highest research priorities were related to confirming haptoglobin's anticipated safety, individualized versus standard dosing, timing of treatment, pharmacokinetics, pharmacodynamics, and outcome measure selection. These results highlight the need for early phase trials of intracranial haptoglobin for aneurysmal subarachnoid hemorrhage, and the value of early input from clinical disciplines on a global scale during the early stages of clinical translation.
Collapse
Affiliation(s)
- Ian Galea
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Soham Bandyopadhyay
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Diederik Bulters
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Rok Humar
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center (M.H.), Universitätsspital and University of Zurich, Switzerland
| | - Dominik J. Schaer
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| |
Collapse
|
7
|
Lynch DG, Shah KA, Powell K, Wadolowski S, Ayol WT, Strohl JJ, Unadkat P, Eidelberg D, Huerta PT, Li C. Neurobehavioral impairments predict specific cerebral damage in rat model of subarachnoid hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2943917. [PMID: 37292945 PMCID: PMC10246236 DOI: 10.21203/rs.3.rs-2943917/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe form of stroke that can cause unpredictable and diffuse cerebral damage, which is difficult to detect until it becomes irreversible. Therefore, there is a need for a reliable method to identify dysfunctional regions and initiate treatment before permanent damage occurs. Neurobehavioral assessments have been suggested as a possible tool to detect and approximately localize dysfunctional cerebral regions. In this study, we hypothesized that a neurobehavioral assessment battery could be a sensitive and specific early warning for damage in discrete cerebral regions following SAH. To test this hypothesis, a behavioral battery was employed at multiple time points after SAH induced via an endovascular perforation, and brain damage was confirmed via postmortem histopathological analysis. Our results demonstrate that impairment of sensorimotor function accurately predict damage in the cerebral cortex (AUC: 0.905; sensitivity: 81.8%; specificity: 90.9%) and striatum (AUC: 0.913; sensitivity: 90.1%; specificity: 100%), while impaired novel object recognition is a more accurate indicator of damage to the hippocampus (AUC: 0.902; sensitivity: 74.1%; specificity: 83.3%) than impaired reference memory (AUC: 0.746; sensitivity: 72.2%; specificity: 58.0%). Tests for anxiety-like and depression-like behaviors predict damage to the amygdala (AUC: 0.900; sensitivity: 77.0%; specificity: 81.7%) and thalamus (AUC: 0.963; sensitivity: 86.3%; specificity: 87.8%), respectively. This study suggests that recurring behavioral testing can accurately predict damage in specific brain regions, which could be developed into a clinical battery for early detection of SAH damage in humans, potentially improving early treatment and outcomes.
Collapse
Affiliation(s)
- Daniel G Lynch
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | | | | | | | | | | | | | - Chunyan Li
- The Feinstein Institutes for Medical Research
| |
Collapse
|