1
|
Wang L, Gui J, Ding R, Song H, Tian B, Wang W, Liu J, Jiang L. Identification and verification of key molecules in the epileptogenic process of focal cortical dysplasia. Metab Brain Dis 2024; 40:47. [PMID: 39612062 DOI: 10.1007/s11011-024-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Focal cortical dysplasia (FCD) represents a common developmental malformation associated with drug-resistant epilepsy (DRE) among children. However, the exact molecular mechanisms behind this condition are still unclear. In our study, FCD-associated microarray data from the Gene Expression Omnibus (GEO) database were analyzed. A comprehensive series of bioinformatics analyses were conducted, including screening for differentially expressed genes (DEGs), functional enrichment analysis, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) analysis. Subsequently, a freezing lesion (FL) rat model was developed to validate expression levels of hub genes along with the molecular pathways behind FCD epileptogenicity. 320 DEGs were identified, and functional enrichment analysis revealed significant enrichment of these DEGs in "Neuroinflammatory response", "Cytokine production involved in immune response", and "Macrophage activation". Ultimately, 5 potential hub genes (CYBB, ITGAM, FCG3A, LY86, and CD86) were pinpointed. Notably, 4 hub genes (CYBB, ITGAM, FCG3A, and CD86) were validated in in vivo experiments, suggesting possible associations with neuroinflammation triggered by microglia. This underscores the tight relationship between microglia-induced neuroinflammation and the pathological progression of epileptic seizures in FCD. ITGAM, FCG3A, CD86, CYBB, and LY86 may emerge as promising candidate biomarkers, influencing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lingman Wang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jianxiong Gui
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Honghong Song
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bing Tian
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wandi Wang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China.
| |
Collapse
|
2
|
Cohen NT, You X, Krishnamurthy M, Sepeta LN, Zhang A, Oluigbo C, Whitehead MT, Gholipour T, Baldeweg T, Wagstyl K, Adler S, Gaillard WD. Networks Underlie Temporal Onset of Dysplasia-Related Epilepsy: A MELD Study. Ann Neurol 2022; 92:503-511. [PMID: 35726354 PMCID: PMC10410674 DOI: 10.1002/ana.26442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Xiaozhen You
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Leigh N Sepeta
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Anqing Zhang
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neurosurgery, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Matthew T Whitehead
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- Department of Neuroradiology, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
- George Washington University Epilepsy Center, The George Washington University School of Medicine, Washington, DC
| | - Torsten Baldeweg
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | | | - Sophie Adler
- Great Ormond Street Institute for Child Health, University College of London, London, UK
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
3
|
Kan Y, Feng L, Si Y, Zhou Z, Wang W, Yang J. Pathogenesis and Therapeutic Targets of Focal Cortical Dysplasia Based on Bioinformatics Analysis. Neurochem Res 2022; 47:3506-3521. [PMID: 35945307 DOI: 10.1007/s11064-022-03715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Focal cortical dysplasia (FCD), a malformation of cortical development, is the most common cause of intractable epilepsy in children. However, the causes and underlying molecular events of FCD need further investigation. The microarray dataset GSE62019 and GSE97365 were obtained from Gene Expression Omnibus. To examine critical genes and signaling pathways, bioinformatics analysis tools such as protein-protein interaction (PPI) networks, miRNA-mRNA interaction networks, and immune infiltration in FCD samples were used to fully elucidate the pathogenesis of FCD. A total of 534 differentially expressed genes (DEGs) and 71 differentially expressed miRNAs (DEMs) were obtained. The DEGs obtained were enriched in ribosomal, protein targeting, and pathways of neurodegeneration multiple diseases, whereas the target genes of DEMs were enriched in signaling pathways such as transforming growth factor beta, Wnt, PI3K-Akt, etc. Finally, four hub genes (RPL11, FAU, RPS20, RPL27) and five key miRNAs (hsa-let-7b, hsa-miR-185, hsa-miR-23b, hsa-miR-222 and hsa-miR-92b) were obtained by PPI network, miRNA-mRNA network, and ROC analysis. The immune infiltration results showed that the infiltration levels of five immune cells (MDSC, regulatory T cells, activated CD8+ T cells, macrophage and effector memory CD8+ T cells) were slightly higher in FCD samples than in control samples. Moreover, the gene expressions of RPS19, RPL19, and RPS24 were highly correlated with the infiltration levels and immune characteristics of 28 immune cells. It broadens the understanding of the molecular mechanisms underlying the development of FCD and enlightens the identification of molecular targets and diagnostic biomarkers for FCD.
Collapse
Affiliation(s)
- Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yukun Si
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
4
|
Nguyen LH, Bordey A. Current Review in Basic Science: Animal Models of Focal Cortical Dysplasia and Epilepsy. Epilepsy Curr 2022; 22:234-240. [PMID: 36187145 PMCID: PMC9483763 DOI: 10.1177/15357597221098230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development that is a prevalent cause of intractable epilepsy in children. Of the three FCD subtypes, understanding the etiology and pathogenesis of FCD type II has seen the most progress owing to the recent advances in identifying gene mutations along the mTOR signaling pathway as a frequent cause of this disorder. Accordingly, numerous animal models of FCD type II based on genetic manipulation of the mTOR signaling pathway have emerged to investigate the mechanisms of epileptogenesis and novel therapeutics for epilepsy. These include transgenic and in utero electroporation-based animal models. Here, we review the histopathological and electroclinical features of existing FCD type II animal models and discuss the scientific and technical considerations, clinical applications, and limitations of current models. We also highlight other models of FCD based on early life acquired factors.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| | - Angélique Bordey
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Thamcharoenvipas T, Takahashi Y, Kimura N, Matsuda K, Usui N. Localizing and Lateralizing Value of Seizure Onset Pattern on Surface EEG in FCD Type II. Pediatr Neurol 2022; 129:48-54. [PMID: 35231790 DOI: 10.1016/j.pediatrneurol.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/26/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Surface ictal electroencephalographic (EEG) monitoring has an important role in the presurgical evaluation of patients with focal cortical dysplasia (FCD). This study aimed to examine the characteristics of seizure onset pattern (SOP) on surface ictal EEG. This information will be useful for invasive monitoring planning. METHODS We reviewed 290 seizures from 31 patients with intractable seizures related to FCD type II (6 patients with FCD IIa and 25 patients with FCD IIb). We categorized the SOPs into five patterns and evaluated the relationships between the SOPs and the location and pathology of the FCD II subtype. RESULTS The most common SOP was no apparent change (39.0%), followed by rhythmic slow wave and repetitive spikes/sharp waves. The SOP of rhythmic slow wave was associated with FCD II in the temporal lobe (P < 0.001), and the SOP of no apparent change was associated with FCD II in the occipital lobe (P = 0.012). The SOPs of rhythmic slow waves and fast activity were most common in FCD IIa, P < 0.001 and 0.031, respectively. The repetitive spikes/sharp waves SOP was the most common pattern in FCD IIb (P < 0.001). The surface SOPs provided correct localization and lateralization of epileptic foci in FCD in 62.1% and 62.7%, respectively. In 61.3% of the patients, over 50% of the SOPs in each patient indicated accurate localization. CONCLUSIONS SOPs in surface EEG monitoring are beneficial for presurgical evaluation and lead to localization of epileptic foci and pathologic subtypes of FCD.
Collapse
Affiliation(s)
- Titaporn Thamcharoenvipas
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan; Division of Neurology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Nobusuke Kimura
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Naotaka Usui
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
6
|
Setkowicz Z, Gzielo K, Kielbinski M, Janeczko K. Structural changes in the neocortex as correlates of variations in EEG spectra and seizure susceptibility in rat brains with different degrees of dysplasia. J Comp Neurol 2021; 530:1379-1398. [PMID: 34861050 PMCID: PMC9305260 DOI: 10.1002/cne.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022]
Abstract
Disturbances of the early stages of neurogenesis lead to irreversible changes in the structure of the mature brain and its functional impairment, including increased excitability, which may be the basis for drug‐resistant epilepsy. The range of possible clinical symptoms is as wide as the different stages of disturbed neurogenesis may be. In this study, we used a quadruple model of brain dysplasia by comparing structural and functional disorders in animals whose neurogenesis was disturbed with a single dose of 1 Gy of gamma rays at one of the four stages of neurogenesis, that is, on days 13, 15, 17, or 19 of prenatal development. When reached adulthood, the prenatally irradiated rats received EEG teletransmitter implantation. Thereafter, pilocarpine was administered and significant differences in susceptibility to seizure behavioral symptoms were detected depending on the degree of brain dysplasia. Before, during, and after the seizures significant correlations were found between the density of parvalbumin‐immunopositive neurons located in the cerebral cortex and the intensity of behavioral seizure symptoms or increases in the power of particular EEG bands. Neurons expressing calretinin or NPY showed also dysplasia‐related increases without, however, correlations with parameters of seizure intensity. The results point to significant roles of parvalbumin‐expressing interneurons, and also to expression of NPY—an endogenous anticonvulsant and neuroprotectant reducing susceptibility to seizures and supporting neuronal survival.
Collapse
Affiliation(s)
- Zuzanna Setkowicz
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Kinga Gzielo
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Michal Kielbinski
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Janeczko
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Nobili P, Cattalini A, de Grazia U, Cagnoli C, de Curtis M, Battaglia GS, Colciaghi F. Early Chronic Carbamazepine-in-Food Administration to MAM/Pilocarpine Rats Does Not Affect Convulsive Motor Seizures. Front Pharmacol 2020; 11:181. [PMID: 32180728 PMCID: PMC7059791 DOI: 10.3389/fphar.2020.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Antiepileptic drug-resistance is a major health problem in patients with cortical dysplasia (CD). Whether drug-resistant epilepsy is associated with progressive brain damage is still debated. We previously generated a rat model of acquired CD, the methylazoxymethanol-pilocarpine (MP) rat, in which the occurrence of status epilepticus and subsequent spontaneous seizures induce progressive brain damage (Nobili et al., 2015). The present study tested the outcome of early-chronic carbamazepine (CBZ) administration on both seizure activity and brain damage in MP rats. We took advantage of the non-invasive CBZ-in-food administration protocol, established by Ali (2012), which proved effective in suppressing generalized convulsive seizures in kainic acid rat model of epilepsy. MP rats were treated immediately after the onset of the first spontaneous seizure with 300 mg/kg/day CBZ formulated in pellets for a two-months-trial. CBZ-treated rats were continuously video-monitored to detect seizure activity and were compared with untreated epileptic MP rats. Despite CBZ serum levels in treated rats were within the suggested therapeutic range for humans, CBZ affected spontaneous convulsive seizures in 2 out of 10 treated rats (responders), whereas the remaining animals (non-responders) did not show any difference when compared to untreated MP rats. Histological analysis revealed cortical thinning paralleled by robust staining of Fluoro-Jade+ (FJ+) degenerating neurons and diffuse tissue necrosis in CBZ-non-responder vs CBZ-responder rats. Data reported here suggest that MP rat model represents suitable experimental setting where to investigate mechanisms of CD-related drug-resistant epilepsy and to verify if modulation of seizures, with appropriate treatment, may reduce seizure-induced brain damage.
Collapse
Affiliation(s)
- Paola Nobili
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Cattalini
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Cinzia Cagnoli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Stefano Battaglia
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesca Colciaghi
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- *Correspondence: Francesca Colciaghi,
| |
Collapse
|
8
|
Kovac S, Dinkova Kostova AT, Herrmann AM, Melzer N, Meuth SG, Gorji A. Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species. Int J Mol Sci 2017; 18:E1935. [PMID: 28885567 PMCID: PMC5618584 DOI: 10.3390/ijms18091935] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Acquired epilepsies can arise as a consequence of brain injury and result in unprovoked seizures that emerge after a latent period of epileptogenesis. These epilepsies pose a major challenge to clinicians as they are present in the majority of patients seen in a common outpatient epilepsy clinic and are prone to pharmacoresistance, highlighting an unmet need for new treatment strategies. Metabolic and homeostatic changes are closely linked to seizures and epilepsy, although, surprisingly, no potential treatment targets to date have been translated into clinical practice. We summarize here the current knowledge about metabolic and homeostatic changes in seizures and acquired epilepsy, maintaining a particular focus on mitochondria, calcium dynamics, reactive oxygen species and key regulators of cellular metabolism such as the Nrf2 pathway. Finally, we highlight research gaps that will need to be addressed in the future which may help to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Albena T Dinkova Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | - Nico Melzer
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Ali Gorji
- Department of Neurology, University of Münster, 48149 Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996836111, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Department of Neurosurgery, University of Münster, 48149 Münster, Germany.
- Epilepsy Research Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
9
|
Kim EH, Yum MS, Lee M, Kim EJ, Shim WH, Ko TS. A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development. Front Neurol 2017; 8:271. [PMID: 28659857 PMCID: PMC5466970 DOI: 10.3389/fneur.2017.00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/26/2017] [Indexed: 02/03/2023] Open
Abstract
Malformations of cortical development (MCDs) can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM) to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA) to induce spasms. To produce cortical malformations to infant rats, two dosages of MAM (15 mg/kg, intraperitoneally) were injected to pregnant rats at gestational day 15. In prenatally MAM-exposed rats and the controls, spasms were triggered by single (6 mg/kg on postnatal day 12 (P12) or 10 mg/kg on P13 or 15 mg/kg on P15) or multiple doses (P12, P13, and P15) of NMDA. In prenatally MAM-exposed rats with single NMDA-provoked spasms at P15, we obtain the intracranial electroencephalography and examine the pretreatment response to adrenocorticotropic hormone (ACTH) or vigabatrin. Rat pups prenatally exposed to MAM exhibited a significantly greater number of spasms in response to single and multiple postnatal NMDA doses than vehicle-exposed controls. Vigabatrin treatment prior to a single NMDA dose on P15 significantly suppressed spasms in MAM group rats (p < 0.05), while ACTH did not. The MAM group also showed significantly higher fast oscillation (25–100 Hz) power during NMDA-induced spasms than controls (p = 0.047). This new model of MCD-based epileptic spasms with corresponding features of human spasms will be valuable for future research of the developmental epilepsy.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minyoung Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jin Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo-Hyun Shim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Characteristics of EEG Seizure-Onset Patterns Recorded From Subdural Electrodes Over MRI-Visible Frontal Focal Cortical Dysplasia Type IIb Lesions. J Clin Neurophysiol 2017; 34:427-433. [PMID: 28557904 DOI: 10.1097/wnp.0000000000000384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Focal cortical dysplasia (FCD) is intrinsically epileptogenic, and an MRI-visible lesion typically constitutes the core part of the epileptogenic zone. We aimed to identify ictal EEG patterns that represent the epileptogenic zone by using subdural electrodes placed over the MRI-visible FCD lesion. METHODS We selected seven patients with frontal lobe epilepsy caused by pathologically proven FCD type IIb who underwent preoperative intracranial EEG evaluation with subdural electrodes followed by resection surgery with seizure-free outcome. The characteristics of ictal EEG patterns, interictal/ictal high-frequency oscillations, and ictal direct current shifts from intracranial electrodes placed over the MRI-visible lesion were analyzed. RESULTS Two seizure-onset patterns (low voltage fast activity and fast spike activity) were identified. Low voltage fast activity was seen in all patients with a lateral frontal lesion, and it was always preceded by preictal spikes. Fast spike activity occurred only in patients with a mesial frontal lesion. Interictal/ictal high-frequency oscillations and ictal direct current shifts were seen in all patients. CONCLUSIONS The epileptogenic zone of frontal FCD type IIb may be characterized by EEG seizure-onset patterns consisting of low voltage fast activity and fast spike activity accompanied by ictal high-frequency oscillations and ictal direct current shifts. Further study is needed to determine whether other seizure-onset patterns exist in patients with FCD type IIb.
Collapse
|
11
|
IWASAKI M, JIN K, NAKASATO N, TOMINAGA T. Non-invasive Evaluation for Epilepsy Surgery. Neurol Med Chir (Tokyo) 2016; 56:632-640. [PMID: 27627857 PMCID: PMC5066084 DOI: 10.2176/nmc.ra.2016-0186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 12/02/2022] Open
Abstract
Epilepsy surgery is aimed to remove the brain tissues that are indispensable for generating patient's epileptic seizures. There are two purposes in the pre-operative evaluation: localization of the epileptogenic zone and localization of function. Surgery is planned to remove possible epileptogenic zone while preserving functional area. Since no single diagnostic modality is superior to others in identifying and localizing the epileptogenic zone, multiple non-invasive evaluations are performed to estimate the location of the epileptogenic zone after concordance between evaluations. Essential components of non-invasive pre-surgical evaluation of epilepsy include detailed clinical history, long-term video-electroencephalography monitoring, epilepsy-protocol magnetic resonance imaging (MRI), and neuropsychological testing. However, a significant portion of drug-resistant epilepsy is associated with no or subtle MRI lesions or with ambiguous electro-clinical signs. Additional evaluations including fluoro-deoxy glucose positron emission tomography (FDG-PET), magnetoencephalography and ictal single photon emission computed tomography can play critical roles in planning surgery. FDG-PET should be registered on three-dimensional MRI for better detection of focal cortical dysplasia. All diagnostic tools are complementary to each other in defining the epileptogenic zone, so that it is always important to reassess the data based on other results to pick up or confirm subtle abnormalities.
Collapse
Affiliation(s)
- Masaki IWASAKI
- Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazutaka JIN
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobukazu NAKASATO
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji TOMINAGA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Ahmed R, Rutka JT. The role of MEG in pre-surgical evaluation of epilepsy: current use and future directions. Expert Rev Neurother 2016; 16:795-801. [DOI: 10.1080/14737175.2016.1181544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raheel Ahmed
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - James T. Rutka
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
13
|
Abstract
Focal cortical dysplasia is a common cause of medication resistant epilepsy. A better understanding of its presentation, pathophysiology and consequences have helped us improved its treatment and outcome. This paper reviews the most recent classification, pathophysiology and imaging findings in clinical research as well as the knowledge gained from studying genetic and lesional animal models of focal cortical dysplasia. This review of this recently gained knowledge will most likely help develop new research models and new therapeutic targets for patients with epilepsy associated with focal cortical dysplasia.
Collapse
|
14
|
Mordel J, Sheikh A, Tsohataridis S, Kanold PO, Zehendner CM, Luhmann HJ. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex. Neurobiol Dis 2016; 88:29-43. [PMID: 26763603 DOI: 10.1016/j.nbd.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/11/2015] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO+INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8-10), one week after injury (P13-16), or in young adults (P28-30), we investigated how the neocortical network developed following these insults. No significant difference was observed between the four groups in an extracellular solution close to physiological conditions. In extracellular 8mM potassium solution, slices from the HYPO, INFL, and HYPO+INFL group were more excitable than SHAM at P8-10 and P13-16. In these two age groups, the number and frequency of spontaneous epileptiform events were significantly increased compared to SHAM. The frequency of epileptiform events was significantly reduced by the NMDA antagonist D-APV in HYPO, INFL, and HYPO+INFL, but not in SHAM, indicating a contribution of NMDA receptors to this pathophysiological activity. In addition, the AMPA/kainate receptor antagonist CNQX suppressed the remaining epileptiform activity. Electrical stimulation evoked prominent epileptiform activity in slices from HYPO, INFL and HYPO+INFL animals. Stimulation threshold to elicit epileptiform events was lower in these groups than in SHAM. Evoked events spread over larger areas and lasted longer in treated animals than in SHAM. In addition, the evoked epileptiform activity was reduced in the older (P28-30) group indicating that cortical dysfunction induced by hypoxia and inflammation was transient and compensated during early development.
Collapse
Affiliation(s)
- Jérôme Mordel
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Simeon Tsohataridis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Christoph M Zehendner
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; ZIM III, Department of Cardiology, Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany.
| |
Collapse
|
15
|
Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy. PLoS One 2015; 10:e0134352. [PMID: 26226628 PMCID: PMC4520590 DOI: 10.1371/journal.pone.0134352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/09/2015] [Indexed: 01/04/2023] Open
Abstract
Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity.
Collapse
|
16
|
Pennacchio P, Noé F, Gnatkovsky V, Moroni RF, Zucca I, Regondi MC, Inverardi F, de Curtis M, Frassoni C. Increased pCREB expression and the spontaneous epileptiform activity in a BCNU-treated rat model of cortical dysplasia. Epilepsia 2015; 56:1343-54. [DOI: 10.1111/epi.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Paolo Pennacchio
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Francesco Noé
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Vadym Gnatkovsky
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Ramona Frida Moroni
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Ileana Zucca
- Scientific Department; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Maria Cristina Regondi
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Francesca Inverardi
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Marco de Curtis
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| | - Carolina Frassoni
- Clinical Epileptology and Experimental Neurophysiology Unit; IRCCS Foundation Neurological Institute “C. Besta”; Milano Italy
| |
Collapse
|
17
|
Bagić A. Look back to leap forward: The emerging new role of magnetoencephalography (MEG) in nonlesional epilepsy. Clin Neurophysiol 2015; 127:60-66. [PMID: 26055337 DOI: 10.1016/j.clinph.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/02/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
This review considers accumulating evidence for a new role of MEG/MSI in increasing the diagnostic yield of supposedly negative MRIs, and suggests changes in the use of MEG/MSI in presurgical epilepsy evaluations. Specific alterations in practice protocols for both the MEG practitioner (i.e. physician magnetoencephalographer) and MEG user (i.e. referring physician) are proposed that should further enhance the overall value of MEG/MSI. Although advances in MEG analysis methods will likely become increasingly assisted by computers, interpretive competency and prudent clinical judgment remain irreplaceable.
Collapse
Affiliation(s)
- Anto Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), UPMC MEG Epilepsy Program, Department of Neurology, University of Pittsburgh Medical School, Suite 811, Kaufmann Medical Building, 3471 Fifth Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Menezes Cordeiro I, von Ellenrieder N, Zazubovits N, Dubeau F, Gotman J, Frauscher B. Sleep influences the intracerebral EEG pattern of focal cortical dysplasia. Epilepsy Res 2015; 113:132-9. [PMID: 25986200 PMCID: PMC4451468 DOI: 10.1016/j.eplepsyres.2015.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/15/2015] [Accepted: 03/28/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is able to generate an intrinsic pathological EEG activity characterized by a continuous or near-continuous spiking. Different patterns of discharge were described. We examined quantitatively the distribution of the intracerebral FCD patterns in relation to sleep in order to investigate whether this activity is independent of thalamocortical influences. METHODS We analyzed the first sleep cycle of 5 patients with a diagnosis of FCD type II who underwent combined scalp-intracranial electroencephalography (EEG), and showed an intracranial EEG pattern typical for FCD. Three patterns of FCD intracranial EEG activity were identified in all 5 patients, and visually marked for a maximum of 30min of each stage (wake, N1, N2, N3, REM): spike or polyspike exceeding 2Hz (pattern 1), spike or polyspike interrupted by flat periods below 2Hz (pattern 2) and discharges of >15Hz low-voltage rhythmic activity with regular morphology (pattern 3). After marking, the percentages of the three patterns across the different stages were calculated. RESULTS The three patterns of FCD were present between 45% and 97% of the total time analyzed. Pattern 1 was the predominant pattern in wakefulness (73-100%), N1 (76-97%) and N2 (58-88.5%) in all patients, and in REM in 4 of 5 patients (91-100%). During N2 and N3, there was an increase in pattern 2 in all patients, becoming the predominant pattern in 3 of the 5 patients during N3 (63-89%). Pattern 3 was rare and only sporadically observed during N2 and N3. Wakefulness and REM sleep showed a similar pattern (pattern 1) with a slight amplitude reduction in REM sleep. SIGNIFICANCE Despite the presence of an almost continuous discharge, sleep is an important modulator of the pathological EEG patterns found in FCD type II. This might suggest that dysplastic tissue is influenced by the thalamo-cortical control mechanisms involved in the generation of sleep.
Collapse
Affiliation(s)
- Inês Menezes Cordeiro
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada; Neurology Department, Centro Hospitalar do Algarve, Faro Hospital, Rua Leao Penedo, 8000-386 Faro, Portugal.
| | - Nicolas von Ellenrieder
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada.
| | - Natalja Zazubovits
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada.
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada.
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada.
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Québec H3A 2B4, Canada; Neurology Department, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Doisy ET, Wenzel HJ, Mu Y, Nguyen DV, Schwartzkroin PA. Nodule excitability in an animal model of periventricular nodular heterotopia: c-fos activation in organotypic hippocampal slices. Epilepsia 2015; 56:626-35. [PMID: 25752321 DOI: 10.1111/epi.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.
Collapse
Affiliation(s)
- Emily T Doisy
- Department of Neurological Surgery, University of California, Davis, Davis, California, U.S.A
| | | | | | | | | |
Collapse
|
20
|
Bagić A. An ignored lighthouse: Is there underappreciation and underutilization of electro-magnetic source imaging? Clin Neurophysiol 2014; 125:2322-3. [DOI: 10.1016/j.clinph.2014.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/29/2023]
|
21
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
22
|
Luhmann HJ, Kilb W, Clusmann H. Malformations of cortical development and neocortical focus. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:35-61. [PMID: 25078498 DOI: 10.1016/b978-0-12-418693-4.00003-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| |
Collapse
|