1
|
Yuan M, Wang X, Yang Z, Luo H, Gan J, Luo R. Advances in genetic developmental and epileptic encephalopathies with movement disorders. ACTA EPILEPTOLOGICA 2025; 7:9. [PMID: 40217411 PMCID: PMC11960234 DOI: 10.1186/s42494-024-00194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/20/2024] [Indexed: 04/15/2025] Open
Abstract
Genetic developmental and epileptic encephalopathies (DEE) are often associated with movement disorders. Accurate identification and classification of movement disorders are essential for management of these diseases. In this review, we describe the characteristics of various movement disorders associated with DEE and summarize the distribution of common DEE-related gene mutations reported in previous studies, aiming to provide references for the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Yibin Second People's Hospital, Yibin, 644000, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | | | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
De Luisa A, Cesaroni CA, Pollazzon M, Spagnoli C, Caraffi SG, Leon A, Rizzi S, Frattini D, Cavalli A, Garavelli L, Fusco C. Sensory-Motor Polyneuropathy in an 11-year- old Girl with a Pathogenic Variant in SMC1A: A Case Report. Neuropediatrics 2025; 56:56-60. [PMID: 39542017 DOI: 10.1055/a-2447-1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Pathogenic variants in the SMC1A gene are often dominant-negative and cause an X-linked form of Cornelia de Lange syndrome (CdLS) with growth retardation and typical facial features. However, rare SMC1A variants cause a developmental and epileptic encephalopathy (DEE) with intractable early-onset epilepsy that is absent in CdLS. Here we describe an 11-year-old girl with epilepsy, walking disorder, and neurodevelopmental disorder. A neurophysiological examination of nerve conduction velocity showed a mixed, sensory-motor, chronic 4-limb polyneuropathy. Whole-exome sequencing identified the variant c.3145C > T p.(Arg1049*) in SMC1A (NM_006306.3), which can be classified as pathogenic. To the best of our knowledge, among 79 individuals with SMC1A-related DEE reported in the literature, altered peripheral nerve conduction has never been described. In this article, we propose that severe sensory-motor polyneuropathy could be an expansion of the SMC1A-related phenotype.
Collapse
Affiliation(s)
- Angelica De Luisa
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo A Cesaroni
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano G Caraffi
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberta Leon
- R & I Genetics, Italian National Health System, C.So Stati Uniti 4int.F, Padua, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Amllal N, Lyahyai J, Afif L, Kriouile Y, Sefiani A, Elalaoui SC. Highlighting the different facets of SMC1A truncating variants: Two patients with novel SMC1A pathogenic variants. Epileptic Disord 2025; 27:114-116. [PMID: 39513746 DOI: 10.1002/epd2.20306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Nada Amllal
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genopath Centre, Faculty of Medicine and Pharmacy of Rabat, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genopath Centre, Faculty of Medicine and Pharmacy of Rabat, University Mohammed V of Rabat, Rabat, Morocco
| | - Lamiae Afif
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genopath Centre, Faculty of Medicine and Pharmacy of Rabat, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Yamna Kriouile
- Unit of Neuropediatrics and Neurometabolic Diseases, Faculty of Medicine and Pharmacy, Rabat Children's Hospital, Mohamed V University, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genopath Centre, Faculty of Medicine and Pharmacy of Rabat, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Siham Chafai Elalaoui
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genopath Centre, Faculty of Medicine and Pharmacy of Rabat, University Mohammed V of Rabat, Rabat, Morocco
- Medical Genetics Unit, Faculty of Medicine and Pharmacy of Rabat, Ibn Sina CHU, University Mohammed V, Rabat, Morocco
| |
Collapse
|
4
|
Yang Y, Chen L, Wang Z, Ding Y, Liu Y. A De Novo Frameshift Variant in SMC1A Causes Non-Classic Cornelia de Lange Syndrome With Epilepsy: A Case Report and Literature Review. Mol Genet Genomic Med 2025; 13:e70058. [PMID: 39831465 PMCID: PMC11744363 DOI: 10.1002/mgg3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder. Although individuals with variants in the SMC1A gene are less commonly seen in CdLS, they exhibit a high incidence of epilepsy and atypical phenotypic variability. METHODS The clinical data of a patient with non-classic CdLS and epilepsy caused by an SMC1A variant were summarized. A literature review was conducted to analyze the genotype-phenotype correlations and epilepsy characteristics in related cases. RESULTS A 5-year-6-month-old female patient presented with facial features, double outlet right ventricle (DORV), and recurrent epilepsy. Whole exome sequencing (WES) identified a de novo heterozygous frameshift mutation, c.2890_2893del (p.Ser964Valfs*26), in the SMC1A gene. A review of the literature identified several characteristics of non-classic CdLS with epilepsy caused by SMC1A variants: the majority of cases were non-classic (81.5%), predominantly female (68.2%), with a median onset age of 11.5 months. Common features included severe/profound developmental delay (52.6%), hypotonia (18.2%), cardiovascular anomalies (36.4%), and intrauterine growth retardation (IUGR) (22.7%). Among the non-classic cases, seizure clusters occurred in 22.7%, status epilepticus in 18.2%, and drug-resistant epilepsy in 33.3%. Genotypes in non-classic cases included missense mutations (40.9%), frameshift mutations (31.8%), splice site variants (9.1%), nonsense mutations (9.1%), deletions (4.5%), and truncations (4.5%). CONCLUSION Our study expanded the phenotypic data and mutational spectrum of non-classic CdLS with epilepsy caused by SMC1A variants. Compared to individuals with the classic form of CdLS, the non-classic cases appeared more frequently in females and were associated with a higher prevalence of severe/profound developmental delay and cardiovascular anomalies. In contrast, IUGR was significantly less common in non-classic individuals. Regarding epilepsy characteristics, some individuals including seizure clusters, status epilepticus, drug resistance, and hypotonia, no significant differences were observed between classic and non-classic cases. The predominant genotypes in non-classic cases were missense and frameshift mutations.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Liqing Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenzhen Wang
- Department of Child Development and Behavior, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Yaling Ding
- Department of Medical Imaging, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Gruca-Stryjak K, Doda-Nowak E, Dzierla J, Wróbel K, Szymankiewicz-Bręborowicz M, Mazela J. Advancing the Clinical and Molecular Understanding of Cornelia de Lange Syndrome: A Multidisciplinary Pediatric Case Series and Review of the Literature. J Clin Med 2024; 13:2423. [PMID: 38673696 PMCID: PMC11050916 DOI: 10.3390/jcm13082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex genetic disorder with distinct facial features, growth limitations, and limb anomalies. Its broad clinical spectrum presents significant challenges in pediatric diagnosis and management. Due to cohesin complex mutations, the disorder's variable presentation requires extensive research to refine care and improve outcomes. This article provides a case series review of pediatric CdLS patients alongside a comprehensive literature review, exploring clinical variability and the relationship between genotypic changes and phenotypic outcomes. It also discusses the evolution of diagnostic and therapeutic techniques, emphasizing innovations in genetic testing, including detecting mosaicism and novel genetic variations. The aim is to synthesize case studies with current research to advance our understanding of CdLS and the effectiveness of management strategies in pediatric healthcare. This work highlights the need for an integrated, evidence-based approach to diagnosis and treatment. It aims to fill existing research gaps and advocate for holistic care protocols and tailored treatment plans for CdLS patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Karolina Gruca-Stryjak
- Department of Perinatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Centers for Medical Genetics Diagnostyka GENESIS, 60-406 Poznan, Poland
| | - Emilia Doda-Nowak
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Julia Dzierla
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Karolina Wróbel
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| | | | - Jan Mazela
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
6
|
Bernardo P, Cuccurullo C, Rubino M, De Vita G, Terrone G, Bilo L, Coppola A. X-Linked Epilepsies: A Narrative Review. Int J Mol Sci 2024; 25:4110. [PMID: 38612920 PMCID: PMC11012983 DOI: 10.3390/ijms25074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.
Collapse
Affiliation(s)
- Pia Bernardo
- Pediatric Psychiatry and Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Claudia Cuccurullo
- Neurology and Stroke Unit, Ospedale del Mare Hospital, ASL Napoli 1 Centro, 80147 Naples, Italy;
| | - Marica Rubino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Gaetano Terrone
- Child Neuropsychiatry Units, Department of Translational Medical Sciences, University Federico II of Naples, 80131 Naples, Italy;
| | - Leonilda Bilo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| | - Antonietta Coppola
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy (L.B.)
| |
Collapse
|
7
|
Gibellato E, Cianci P, Mariani M, Parma B, Huisman S, Śmigiel R, Bisgaard AM, Massa V, Gervasini C, Moretti A, Cattoni A, Biondi A, Selicorni A. SMC1A epilepsy syndrome: clinical data from a large international cohort. Am J Med Genet A 2024:e63577. [PMID: 38421079 DOI: 10.1002/ajmg.a.63577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
SMC1A epilepsy syndrome or developmental and epileptic encephalopathy-85 with or without midline brain defects (DEE85, OMIM #301044) is an X-linked neurologic disorder associated with mutations of the SMC1A gene, which is also responsible for about 5% of patients affected by Cornelia de Lange syndrome spectrum (CdLS). Only described in female patients, SMC1A epilepsy syndrome is characterized by the onset of severe refractory epileptic seizures in the first year of life, global developmental delay, a variable degree of intellectual disability, and dysmorphic facial features not typical of CdLS. This was a descriptive observational study for the largest international cohort with this specific disorder. The main goal of this study was to improve the knowledge of the natural history of this phenotype with particular attention to the psychomotor development and the epilepsy data. The analyzed cohort shows normal prenatal growth with the subsequent development of postnatal microcephaly. The incidence of neonatal problems (seizures and respiratory compromise) is considerable (51.4%). There is a significant prevalence of central nervous system (20%) and cardiovascular malformations (20%). Motor skills are generally delayed. The presence of drug-resistant epilepsy is confirmed; the therapeutic role of a ketogenic diet is still uncertain. The significant regression of previously acquired skills following the onset of seizures has been observed. Facial dysmorphisms are variable and no patient shows a classic CdLS phenotype. To sum up, SMC1A variants caused drug-resistant epilepsy in these patients, more than two-thirds of whom were shown to progress to developmental and epileptic encephalopathy. The SMC1A gene variants are all different from each other (apart from a couple of monozygotic twins), demonstrating the absence of a mutational hotspot in the SMC1A gene. Owing to the absence of phenotypic specificity, whole-exome sequencing is currently the diagnostic gold standard.
Collapse
Affiliation(s)
- Elisabetta Gibellato
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Cianci
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Milena Mariani
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Barbara Parma
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Sylvia Huisman
- Pediatric Department, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Śmigiel
- Pediatric Department, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Anne-Marie Bisgaard
- Pediatric Department and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Alex Moretti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Cattoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Angelo Selicorni
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| |
Collapse
|
8
|
Nguyen MTQ, Nguyen TTM, Nguyen TTM, Do HTT. SMC1A-Related Developmental and Epileptic Encephalopathies: A Case Report and Literature Review. IFMBE PROCEEDINGS 2024:901-916. [DOI: 10.1007/978-3-031-44630-6_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and genomic analyses of Drosophila melanogaster models of chromatin modification disorders. Genetics 2023; 224:iyad061. [PMID: 37036413 PMCID: PMC10411607 DOI: 10.1093/genetics/iyad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Switch/sucrose nonfermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 associated factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce the expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration), and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, an SSRIDD-associated BAF component. k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in the behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in the discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
10
|
MacPherson RA, Shankar V, Anholt RRH, Mackay TFC. Genetic and Genomic Analyses of Drosophila melanogaster Models of Chromatin Modification Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534923. [PMID: 37034595 PMCID: PMC10081333 DOI: 10.1101/2023.03.30.534923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Switch/Sucrose Non-Fermentable (SWI/SNF)-related intellectual disability disorders (SSRIDDs) and Cornelia de Lange syndrome are rare syndromic neurodevelopmental disorders with overlapping clinical phenotypes. SSRIDDs are associated with the BAF (Brahma-Related Gene-1 Associated Factor) complex, whereas CdLS is a disorder of chromatin modification associated with the cohesin complex. Here, we used RNA interference in Drosophila melanogaster to reduce expression of six genes (brm, osa, Snr1, SMC1, SMC3, vtd) orthologous to human genes associated with SSRIDDs and CdLS. These fly models exhibit changes in sleep, activity, startle behavior (a proxy for sensorimotor integration) and brain morphology. Whole genome RNA sequencing identified 9,657 differentially expressed genes (FDR < 0.05), 156 of which are differentially expressed in both sexes in SSRIDD- and CdLS-specific analyses, including Bap60, which is orthologous to SMARCD1, a SSRIDD-associated BAF component, k-means clustering reveals genes co-regulated within and across SSRIDD and CdLS fly models. RNAi-mediated reduction of expression of six genes co-regulated with focal genes brm, osa, and/or Snr1 recapitulated changes in behavior of the focal genes. Based on the assumption that fundamental biological processes are evolutionarily conserved, Drosophila models can be used to understand underlying molecular effects of variants in chromatin-modification pathways and may aid in discovery of drugs that ameliorate deleterious phenotypic effects.
Collapse
Affiliation(s)
- Rebecca A. MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
11
|
Bozarth XL, Lopez J, Fang H, Lee-Eng J, Duan Z, Deng X. Phenotypes and Genotypes in Patients with SMC1A-Related Developmental and Epileptic Encephalopathy. Genes (Basel) 2023; 14:852. [PMID: 37107610 PMCID: PMC10138066 DOI: 10.3390/genes14040852] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The X-linked SMC1A gene encodes a core subunit of the cohesin complex that plays a pivotal role in genome organization and gene regulation. Pathogenic variants in SMC1A are often dominant-negative and cause Cornelia de Lange syndrome (CdLS) with growth retardation and typical facial features; however, rare SMC1A variants cause a developmental and epileptic encephalopathy (DEE) with intractable early-onset epilepsy that is absent in CdLS. Unlike the male-to-female ratio of 1:2 in those with CdLS associated with dominant-negative SMC1A variants, SMC1A-DEE loss-of-function (LOF) variants are found exclusively in females due to presumed lethality in males. It is unclear how different SMC1A variants cause CdLS or DEE. Here, we report on phenotypes and genotypes of three females with DEE and de novo SMC1A variants, including a novel splice-site variant. We also summarize 41 known SMC1A-DEE variants to characterize common and patient-specific features. Interestingly, compared to 33 LOFs detected throughout the gene, 7/8 non-LOFs are specifically located in the N/C-terminal ATPase head or the central hinge domain, both of which are predicted to affect cohesin assembly, thus mimicking LOFs. Along with the characterization of X-chromosome inactivation (XCI) and SMC1A transcription, these variants strongly suggest that a differential SMC1A dosage effect of SMC1A-DEE variants is closely associated with the manifestation of DEE phenotypes.
Collapse
Affiliation(s)
- Xiuhua L. Bozarth
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - Jonathan Lopez
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline Lee-Eng
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - Zhijun Duan
- Division of Hematology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Hashimoto K, Baba S, Nakagawa E, Sumitomo N, Takeshita E, Shimizu-Motohashi Y, Ishiyama A, Saito T, Abe-Hatano C, Inoue K, Iida A, Sasaki M, Goto YI. Long-term changes in electroencephalogram findings in a girl with a nonsense SMC1A variant: A case report. Brain Dev 2022; 44:551-557. [PMID: 35589488 DOI: 10.1016/j.braindev.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Pathogenic truncating variants in SMC1A, which is located on chromosome Xp11.2, are known to cause infantile-onset epilepsy and severe intellectual disability in girls. Several studies have reported a correlation between SMC1A truncations and seizure clustering; however, the associated electroencephalogram (EEG) patterns remain largely unknown. CASE PRESENTATION We investigated an 12-year-old girl who had developed epilepsy at the age of 4 months. The patient experienced unknown onset, tonic-clonic seizures that occurred in clusters several times a week. Her interictal EEG at the age of 2 years showed paroxysmal, generalized, high-amplitude slow waves, whereas epileptiform discharges were scarce. The patient's interictal EEG gradually deteriorated; at the age of 11 years, diffuse continuous spike-and-wave discharges were predominantly observed in the left temporal region and were particularly obvious in the awake state. Although the unknown onset, tonic seizures occurring weekly persisted under multiple antiepileptic medications, the patient did not experience seizure clustering since the age of 9 years. Whole-genome sequencing revealed a de novo known nonsense variant in SMC1A (c.2923C > T, p.R975*). CONCLUSION Our patient presented with a mild abnormality in the interictal EEG during infancy and early childhood despite frequent seizure clustering. Notably, the patient's EEG findings gradually deteriorated over time, which was inconsistent with the amelioration of seizure clustering.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Shimpei Baba
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan.
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Noriko Sumitomo
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Epileptology, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Chihiro Abe-Hatano
- Department of Mental Retardation and Birth Defect Research, NCNP, Kodaira, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, NCNP, Kodaira, Tokyo, Japan
| | | | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, NCNP, Kodaira, Tokyo, Japan; Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| |
Collapse
|
13
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
14
|
McTague A, Brunklaus A, Barcia G, Varadkar S, Zuberi SM, Chatron N, Parrini E, Mei D, Nabbout R, Lesca G. Defining causal variants in rare epilepsies: an essential team effort between biomedical scientists, geneticists and epileptologists. Eur J Med Genet 2022; 65:104531. [PMID: 35618197 DOI: 10.1016/j.ejmg.2022.104531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK; Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK.
| | - Andreas Brunklaus
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| |
Collapse
|
15
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 418] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK
- Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA
- Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
16
|
Hieu NLT, Thu NTM, Ngan LTA, Van LTK, Huy DP, Linh PTT, Mai NTQ, Hien HTD, Hang DTT. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A 2022; 188:2048-2060. [PMID: 35365919 DOI: 10.1002/ajmg.a.62741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refers to a group of rare and severe neurodevelopmental disorders where genetic etiologies can play a major role. This study aimed to elucidate the genetic etiologies of a cohort of 53 Vietnamese patients with DEE. All patients were classified into known electroclinical syndromes where possible. Exome sequencing (ES) followed by a targeted analysis on 294 DEE-related genes was then performed. Patients with identified causative variants were followed for 6 months to determine the impact of genetic testing on their treatment. The diagnostic yield was 38.0% (20/53), which was significantly higher in the earlier onset group (<12 months) than in the later onset group (≥12 months). The 19 identified variants belonged to 11 genes with various cellular functions. Genes encoding ion channels especially sodium voltage-gated channel were the most frequently involved. Most variants were missense variants and located in key protein functional domains. Four variants were novel and four had been reported previously but in different phenotypes. Within 6 months of further follow-up, treatment changes were applied for six patients based on the identified disease-causing variants, with five patients showing a positive impact. This is the first study in Vietnam to analyze the genetics of DEE. This study confirms the strong involvement of genetic etiologies in DEE, especially early onset DEE. The study also contributes to clarify the genotype-phenotype correlations of DEE and highlights the efficacy of targeted ES in the diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Nguyen Le Trung Hieu
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Le Tran Anh Ngan
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Le Thi Khanh Van
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Do Phuoc Huy
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Pham Thi Truc Linh
- Functional Genomic Unit, DNA Medical Technology Company, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Mai
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Huynh Thi Dieu Hien
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Do Thi Thu Hang
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Barañano KW, Kimball A, Fong SL, Egense AS, Hudon C, Kline AD. Further Characterization of SMC1A Loss of Function Epilepsy Distinct From Cornelia de Lange Syndrome. J Child Neurol 2022; 37:390-396. [PMID: 35238682 DOI: 10.1177/08830738221081244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cornelia de Lange syndrome is a rare developmental malformation syndrome characterized by small stature, limb anomalies, distinctive facial features, developmental delays, and behavioral issues. The diagnosis of Cornelia de Lange syndrome is made clinically or on the basis of an identified variant in one of the genes associated with Cornelia de Lange syndrome. SMC1A variants are the cause of 5% of the cases of Cornelia de Lange syndrome. SMC1A is located on the X-chromosome and is thought to escape X-inactivation in some females. Patients with SMC1A variants are being increasingly identified through panel testing or exome sequencing without prior clinical suspicion of Cornelia de Lange syndrome. In general, intractable epilepsy is not considered a prominent feature of Cornelia de Lange syndrome, yet this is found in these patients with SMC1A variants. Here we report on a series of patients with SMC1A variants and intractable epilepsy. In contrast to patients with typical SMC1A-associated Cornelia de Lange syndrome, all of the identified patients were female, and when available, X-inactivation studies were highly skewed with truncating variants. We describe the medical involvement and physical appearance of the participants, compared to the diagnostic criteria used for classical Cornelia de Lange syndrome. We also report on the clinical characteristics of the epilepsy, including age of onset, types of seizures, electroencephalographic (EEG) findings, and response to various antiepileptic medications. These findings allow us to draw conclusions about how this population of patients with SMC1A variants fit into the spectrum of Cornelia de Lange syndrome and the broader spectrum of cohesinopathies and allow generalizations that may impact clinical care and, in particular, epilepsy management.
Collapse
Affiliation(s)
- Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Kimball
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Susan L Fong
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alena S Egense
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Catherine Hudon
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| |
Collapse
|
18
|
Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 2022; 59:3159-3169. [DOI: 10.1007/s12035-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
19
|
Elwan M, Fowkes R, Lewis-Smith D, Winder A, Baker MR, Thomas RH. Late-onset cluster seizures and intellectual disability associated with a novel truncation variant in SMC1A. Epilepsy Behav Rep 2022; 19:100556. [PMID: 35712061 PMCID: PMC9194849 DOI: 10.1016/j.ebr.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/08/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Epilepsy due to truncating SMC1A variants can present with onset in later childhood. People with to truncating SMC1A variants can have normal development prior to presentation. Seizures occur periodically in clusters and are poorly responsive to antiseizure medications.
SMC1A variants are known to cause Cornelia de Lange Syndrome (CdLS) which encompasses a clinical spectrum of intellectual disability, dysmorphic features (long or thick eyebrows, a hypomorphic philtrum and small nose) and, in some cases, epilepsy. More recently, SMC1A truncating variants have been described as the cause of a neurodevelopmental disorder with early-childhood onset drug-resistant epilepsy with seizures that occur in clusters, similar to that seen in PCDH19-related epilepsy, but without the classical features of CdLS. Here, we report the case of a 28-year-old woman with a de novo heterozygous truncating variant in SMC1A who unusually presented with seizures at the late age of 12 years and had normal development into adulthood.
Collapse
Affiliation(s)
- Menatalla Elwan
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Ross Fowkes
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - David Lewis-Smith
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Amy Winder
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Mark R. Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Rhys H. Thomas
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Corresponding author at: Intermediate Clinical Lecturer and Honorary Consultant in Epilepsy, Translational and Clinical Research Institute, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon Tyne NE2 4HH.
| |
Collapse
|
20
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
21
|
Selicorni A, Mariani M, Lettieri A, Massa V. Cornelia de Lange Syndrome: From a Disease to a Broader Spectrum. Genes (Basel) 2021; 12:1075. [PMID: 34356091 PMCID: PMC8307173 DOI: 10.3390/genes12071075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetic disease that exemplifies the evolution of knowledge in the field of rare genetic disorders. Originally described as a unique pattern of major and minor anomalies, over time this syndrome has been shown to be characterized by a significant variability of clinical expression. By increasing the number of patients described, knowledge of the natural history of the condition has been enriched with the demonstration of the relative frequency of various potential comorbidities. Since 2006, the discovery of CdLS's molecular basis has shown an equally vast genetic heterogeneity linked to the presence of variants in genes encoding for the cohesin complex pathway. The most recent clinical-genetic data led to the classification of the "original syndrome" into a "clinical spectrum" that foresees the presence of classic patients, of non-classic forms, and of conditions that show a modest phenotypic overlapping with the original disease. Finally, the knowledge of the molecular basis of the disease has allowed the development of basic research projects that could lay the foundations for the development of possible innovative pharmacological treatments.
Collapse
Affiliation(s)
- Angelo Selicorni
- Mariani Foundation Center for Fragile Child, Pediatric Unit ASST Lariana, 22100 Como, Italy;
| | - Milena Mariani
- Mariani Foundation Center for Fragile Child, Pediatric Unit ASST Lariana, 22100 Como, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (A.L.); (V.M.)
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (A.L.); (V.M.)
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
22
|
Kim SY, Jang SS, Kim H, Hwang H, Choi JE, Chae JH, Kim KJ, Lim BC. Genetic diagnosis of infantile-onset epilepsy in the clinic: Application of whole-exome sequencing following epilepsy gene panel testing. Clin Genet 2021; 99:418-424. [PMID: 33349918 DOI: 10.1111/cge.13903] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the clinical utility of whole-exome sequencing in a group of infantile-onset epilepsy patients who tested negative for epilepsy using a gene panel test. Whole-exome sequencing was performed on 59 patients who tested negative on customized epilepsy gene panel testing. We identified eight pathogenic or likely pathogenic sequence variants in eight different genes (FARS2, YWHAG, KCNC1, DYRK1A, SMC1A, PIGA, OGT, and FGF12), one pathogenic structural variant (8.6 Mb-sized deletion on chromosome X [140 994 419-149 630 805]), and three putative low-frequency mosaic variants from three different genes (GABBR2, MTOR, and CUX1). Subsequent whole-exome sequencing revealed an additional 8% of diagnostic yield with genetic confirmation of epilepsy in 55.4% (62/112) of our cohort. Three genes (YWHAG, KCNC1, and FGF12) were identified as epilepsy-causing genes after the original gene panel was designed. The others were initially linked with mitochondrial encephalopathy or different neurodevelopmental disorders, although an epilepsy phenotype was listed as one of the clinical features. Application of whole-exome sequencing following epilepsy gene panel testing provided 8% of additional diagnostic yield in an infantile-onset epilepsy cohort. Whole-exome sequencing could provide an opportunity to reanalyze newly recognized epilepsy-linked genes without updating the gene panel design.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea
| | - Se Song Jang
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul National University Children's Hospital, Seoul, South Korea.,Rare Diseases Center, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
24
|
Henriksen MW, Breck H, Sejersted Y, Diseth T, von Tetzchner S, Paus B, Skjeldal OH. Genetic and clinical variations in a Norwegian sample diagnosed with Rett syndrome. Brain Dev 2020; 42:484-495. [PMID: 32336485 DOI: 10.1016/j.braindev.2020.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in MECP2. The diagnostic criteria of RTT are clinical; mutations in MECP2 are neither diagnostic nor necessary, and a mutation in another gene does not exclude RTT. We attempted to correlate genotype and phenotype to see if there are significant clinical associations. METHODS All available females diagnosed with RTT in Norway were invited to the study. Parents were interviewed, the girl or woman with RTT examined and medical records reviewed. All diagnoses were revisited according to the current diagnostic criteria and exome-based sequencing analyses were performed in individuals without an identified causative mutation. Participants were categorized according to genotypes and RTT diagnosis. Individuals with RTT with and without mutations in MECP2 were compared. RESULTS Ninety-one individuals were included. A presumed causative mutation was identified in 86 individuals, of these, mutations in MECP2 in 77 individuals and mutations in SMC1A, SYNGAP1, SCN1A, CDKL5, FOXG1 or chromosome 13q in nine. Seventy-two individuals fulfilled the diagnostic criteria for classic and 12 for atypical RTT. Significant differences in early development, loss of hand use and language, intense eye gaze and the presence of early onset epilepsy were revealed in individuals with RTT according to their MECP2 genotypic status. CONCLUSION Using the current diagnostic criteria, genetic and clinical variation in RTT is considerable. Significant differences between individuals with RTT with and without MECP2 mutations indicate that MECP2 is a major determinant for the clinical phenotype in individuals with RTT.
Collapse
Affiliation(s)
- Mari Wold Henriksen
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, P.O. Box 800, 3004 Drammen, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern 0318, Oslo, Norway.
| | - Hilde Breck
- Department of Habilitation, Innlandet Hospital Trust, Anders Sandvigs v. 17, 2629 Lillehammer, Norway; Department of Psychology, University of Oslo, P.O. Box 1094, Blindern 0317, Oslo, Norway
| | - Yngve Sejersted
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424 Oslo, Norway
| | - Trond Diseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern 0318, Oslo, Norway
| | - Stephen von Tetzchner
- Department of Psychology, University of Oslo, P.O. Box 1094, Blindern 0317, Oslo, Norway
| | - Benedicte Paus
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern 0318, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424 Oslo, Norway
| | - Ola H Skjeldal
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Kungsgatan 12, 41119 Gothenburg, Sweden
| |
Collapse
|
25
|
Fang H, Zhang X, Xiao B, Zhang L, Long H. A de novo mutation in SMC1A gene identified in a Chinese infant with nonclassical Cornelia de Lange syndrome and drug-resistant epilepsy. Neurol Sci 2020; 42:329-331. [PMID: 32648047 DOI: 10.1007/s10072-020-04559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Hongjun Fang
- Neurology Department, Hunan Children's Hospital, Changsha, China
| | - Xi Zhang
- Neurology Department, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lily Zhang
- Neurology Department, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hongyu Long
- Neurology Department, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Abstract
Structural Maintenance of Chromosomes (SMCs) are part of a large family of ring complexes that participates in a number of DNA transactions. Among SMCs, SMC1A gene is unique. It encodes a subunit of the cohesin-core complex that tethers sister chromatids together to ensure correct chromosome segregation in both mitosis and meiosis. As a member of the cohesin ring, SMC1A takes part in gene transcription regulation and genome organization; and it participates in the DNA Damage Repair (DDR) pathway, being phosphorylated by Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 Related (ATR) threonine/serine kinases. It is also a component of the Recombination protein complex (RC-1) involved in DNA repair by recombination. SMC1A pathogenic variants have been described in Cornelia de Lange syndrome (CdLS), a human rare disease, and recently SMC1A variants have been associated with epilepsy or resembling Rett syndrome phenotype. Finally, SMC1A variants have been identified in several human cancers. In this review, our current knowledge of the SMC1A gene has been summarized.
Collapse
Affiliation(s)
- Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
27
|
Expansion of the phenotypic spectrum of SMC1A nonsense variants: a patient with cerebellar atrophy and review of the literature. Clin Dysmorphol 2020; 29:217-223. [PMID: 32496272 DOI: 10.1097/mcd.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020; 62:178-191. [PMID: 31784983 DOI: 10.1111/dmcn.14407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
An ever-increasing number of neurogenetic conditions presenting with both epilepsy and atypical movements are now recognized. These disorders within the 'genetic epilepsy-dyskinesia' spectrum are clinically and genetically heterogeneous. Increased clinical awareness is therefore necessary for a rational diagnostic approach. Furthermore, careful interpretation of genetic results is key to establishing the correct diagnosis and initiating disease-specific management strategies in a timely fashion. In this review we describe the spectrum of movement disorders associated with genetically determined epilepsies. We also propose diagnostic strategies and putative pathogenic mechanisms causing these complex syndromes associated with both seizures and atypical motor control. WHAT THIS PAPER ADDS: Implicated genes encode proteins with very diverse functions. Pathophysiological mechanisms by which epilepsy and movement disorder phenotypes manifest are often not clear. Early diagnosis of treatable disorders is essential and next generation sequencing may be required.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Federica Rachele Danti
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Robert Spaull
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Amy Mctague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
29
|
Naik NA, Shah AR. X linked Infantile Epileptic Encephalopathy due to SMC1A Truncating Mutation. Ann Indian Acad Neurol 2020; 24:98-101. [PMID: 33911395 PMCID: PMC8061502 DOI: 10.4103/aian.aian_518_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Neeta Ajit Naik
- EN1 Neuro Pediatric Neuroscience Centre, BKC Annexe, LBS Marg, Kurla, Mumbai, Maharashtra, India
| | - Ami Rajesh Shah
- EN1 Neuro Pediatric Neuroscience Centre, BKC Annexe, LBS Marg, Kurla, Mumbai, Maharashtra, India
| |
Collapse
|
30
|
Oguni H, Nishikawa A, Sato Y, Otani Y, Ito S, Nagata S, Kato M, Hamanaka K, Miyatake S, Matsumoto N. A missense variant of SMC1A causes periodic pharmaco-resistant cluster seizures similar to PCDH19-related epilepsy. Epilepsy Res 2019; 155:106149. [DOI: 10.1016/j.eplepsyres.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 02/02/2023]
|
31
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Gataullina S, Bienvenu T, Nabbout R, Huberfeld G, Dulac O. Gene mutations in paediatric epilepsies cause NMDA-pathy, and phasic and tonic GABA-pathy. Dev Med Child Neurol 2019; 61:891-898. [PMID: 30680721 DOI: 10.1111/dmcn.14152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
Abstract
The aim of this study was to disentangle mechanisms of epileptogenesis in monogenic epilepsies in children. We reviewed paediatric monogenic epilepsies excluding brain malformation or an inborn error of metabolism, but including the gene function whether there is loss-of-function or gain-of-function, age at gene expression when available, and associated epilepsy syndrome. Genes for which at least five patients with similar epilepsy phenotype had been reported were selected. Three mechanisms are shared by most monogenic epilepsies: (1) excess of N-methyl-d-aspartate (NMDA) transmission activation (NMDA-pathies); (2) abnormal gamma-aminobutyric acid (GABA) transmission with reduced inhibition (phasic GABA-pathies); and (3) tonic activation of extrasynaptic GABAA receptors by extracellular GABA (tonic GABA-pathies). NMDA-pathies comprise early epileptic encephalopathy with suppression-burst, neonatal/infantile benign seizures, West and Lennox-Gastaut syndromes, and encephalopathy with continuous spike waves in slow sleep, thus brief seizures with major interictal spiking. Phasic GABA-pathies comprise mostly generalized epilepsy with febrile seizures plus and Dravet syndrome, thus long-lasting seizures with mild interictal spiking. Tonic GABA-pathies cause epilepsy with myoclonic-atonic seizures and Angelman syndrome, thus major high-amplitude slow-wave activity. This pathophysiological approach to monogenic epilepsies provides diagnostic clues and helps to guide treatment strategy. WHAT THIS PAPER ADDS: In paediatric monogenic epilepsies, electroclinical patterns point to three main mechanisms: NMDA-pathies, and phasic and tonic GABA-pathies. Antiepileptic treatment choice could be guided by each of these mechanisms.
Collapse
Affiliation(s)
- Svetlana Gataullina
- Service d' Explorations Fonctionnelles multidisciplinaires Hôpital Antoine Béclère, AP-HP, Clamart, France.,Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,Service de Pédiatrie, Centre Hospitalier Intercommunal, Montreuil, France
| | - Thierry Bienvenu
- Biochemistry and Molecular Genetics Laboratory, Hôpital Cochin, Paris Centre University Group, Paris, France.,Institut Cochin, Inserm U1016, Paris Descartes University, Paris, France
| | - Rima Nabbout
- Centre de Reference Épilepsies Rares, Necker-Enfants Malades Hospital, Paris, France
| | - Gilles Huberfeld
- Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,Clinical Neurophysiology Department, Pitié-Salpêtrière Hospital, Sorbone University, AP-HP, Paris, France.,Neuroglial Interactions in Cerebral Pathophysiology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7421, Inserm U1050, Labex MemolifePSL Research University, Paris, France
| | - Olivier Dulac
- Inserm U1129, Infantile Epilepsies and Brain Plasticity, CEA Gif/Yvette, Pôle de Recherche et d'Enseignement Supérieur Sorbonne Paris Cité, Paris Descartes University, Paris, France.,AdPueriVitam, Antony, France
| |
Collapse
|
33
|
Chinen Y, Nakamura S, Kaneshi T, Nakayashiro M, Yanagi K, Kaname T, Naritomi K, Nakanishi K. A novel nonsense SMC1A mutation in a patient with intractable epilepsy and cardiac malformation. Hum Genome Var 2019; 6:23. [PMID: 31098032 PMCID: PMC6513828 DOI: 10.1038/s41439-019-0053-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/11/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a cohesinopathy caused by genetic variations. We present a female with SMC1A-associated CdLS with a novel SMC1A truncation mutation (p. Arg499Ter), transposition of the great arteries, and periodic intractable seizures from 40 months of age. A review of the literature revealed that a seizure-free period after birth of at least 15 months is required for these patients to be able to walk, irrespective of the epileptic course.
Collapse
Affiliation(s)
- Yasutsugu Chinen
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Sadao Nakamura
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takuya Kaneshi
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Mami Nakayashiro
- Department of Pediatrics, Okinawa Prefectural Nanbu Medical Center Children's Medical Center, Haebaru, Okinawa Japan
| | - Kumiko Yanagi
- 3Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- 3Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Naritomi
- Okinawa Nanbu Habilitation and Medical Center, Naha, Japan
| | - Koichi Nakanishi
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
34
|
Epilepsy Genetics Initiative. The Epilepsy Genetics Initiative: Systematic reanalysis of diagnostic exomes increases yield. Epilepsia 2019; 60:797-806. [PMID: 30951195 PMCID: PMC6519344 DOI: 10.1111/epi.14698] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The Epilepsy Genetics Initiative (EGI) was formed in 2014 to create a centrally managed database of clinically generated exome sequence data. EGI performs systematic research-based reanalysis to identify new molecular diagnoses that were not possible at the time of initial sequencing and to aid in novel gene discovery. Herein we report on the efficacy of this approach 3 years after inception. METHODS One hundred sixty-six individuals with epilepsy who underwent diagnostic whole exome sequencing (WES) were enrolled, including 139 who had not received a genetic diagnosis. Sequence data were transferred to the EGI and periodically reevaluated on a research basis. RESULTS Eight new diagnoses were made as a result of updated annotations or the discovery of novel epilepsy genes after the initial diagnostic analysis was performed. In five additional cases, we provided new evidence to support or contradict the likelihood of variant pathogenicity reported by the laboratory. One novel epilepsy gene was discovered through dual interrogation of research and clinically generated WES. SIGNIFICANCE EGI's diagnosis rate of 5.8% represents a considerable increase in diagnostic yield and demonstrates the value of periodic reinterrogation of whole exome data. The initiative's contributions to gene discovery underscore the importance of data sharing and the value of collaborative enterprises.
Collapse
|
35
|
X-chromosomale Entwicklungsstörungen im weiblichen Geschlecht. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zusammenfassung
In den letzten Jahren wurden Mutationen in einer wachsenden Zahl von X‑chromosomalen Genen als Ursache für Entwicklungsstörungen bei Mädchen identifiziert. Dies führt zu einer Aufweichung der traditionellen Abgrenzung von X‑chromosomal-rezessiven und X‑chromosomal-dominanten Erbgängen. Für viele X‑chromosomale, mit Entwicklungsstörungen assoziierte Gene zeichnet sich nun ein phänotypisches Spektrum ab, welches beide Geschlechter umfasst. Die Mechanismen, die zu einer oft variablen Krankheitsausprägung zwischen den Geschlechtern aber auch innerhalb des weiblichen Geschlechts führen, sind bisher noch sehr unvollständig verstanden. Verschiedene Faktoren wie Art, Lokalisation und „Schwere“ der jeweiligen Mutation sowie insbesondere die X‑Inaktivierung spielen dabei eine Rolle. Dieser Artikel gibt einen Überblick über den derzeitigen Kenntnisstand (ohne Anspruch auf Vollständigkeit) X‑chromosomaler Entwicklungsstörungen bei Mädchen. Exemplarisch werden zudem einige neue Krankheitsbilder bei Mädchen beschrieben und diskutiert, die durch De-novo-Mutationen in X‑chromosomalen Genen verursacht werden.
Collapse
|
36
|
Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA, Gillett PM, Ishman SL, Kerr LM, Levin AV, Mulder PA, Ramos FJ, Wierzba J, Ajmone PF, Axtell D, Blagowidow N, Cereda A, Costantino A, Cormier-Daire V, FitzPatrick D, Grados M, Groves L, Guthrie W, Huisman S, Kaiser FJ, Koekkoek G, Levis M, Mariani M, McCleery JP, Menke LA, Metrena A, O'Connor J, Oliver C, Pie J, Piening S, Potter CJ, Quaglio AL, Redeker E, Richman D, Rigamonti C, Shi A, Tümer Z, Van Balkom IDC, Hennekam RC. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 2018; 19:649-666. [PMID: 29995837 PMCID: PMC7136165 DOI: 10.1038/s41576-018-0031-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.
Collapse
Affiliation(s)
- Antonie D Kline
- Harvey Institute of Human Genetics, Greater Baltimore Medical Centre, Baltimore, MD, USA
| | - Joanna F Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Angelo Selicorni
- Department of Paediatrics, Presidio S. Femro, ASST Lariana, Como, Italy
| | - Anne-Marie Bisgaard
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter M Gillett
- GI Department, Royal Hospital for Sick Children, Edinburgh, Scotland, UK
| | - Stacey L Ishman
- Departments of Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Lynne M Kerr
- Division of Pediatric Neurology, Department of Paediatrics, University of Utah Medical Centre, Salt Lake City, UT, USA
| | - Alex V Levin
- Paediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul A Mulder
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Jolanta Wierzba
- Department of Paediatrics, Haematology and Oncology, Department of General Nursery, Medical University of Gdansk, Gdansk, Poland
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Axtell
- CdLS Foundation UK and Ireland, The Tower, North Stifford, Grays, Essex, UK
| | - Natalie Blagowidow
- Harvey Institute of Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Anna Cereda
- Department of Paediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Antonella Costantino
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valerie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - David FitzPatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Marco Grados
- Division of Child and Adolescent Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Groves
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Whitney Guthrie
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia Huisman
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Frank J Kaiser
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | | | - Mary Levis
- Wicomico County Board of Education, Salisbury, MD, USA
| | - Milena Mariani
- Clinical Paediatric Genetics Unit, Paediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Joseph P McCleery
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonie A Menke
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Julia O'Connor
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Juan Pie
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sigrid Piening
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Carol J Potter
- Department of Gastroenterology, Nationwide Children's, Columbus, OH, USA
| | - Ana L Quaglio
- Genética Médica, Hospital del Este, Eva Perón, Tucumán, Argentina
| | - Egbert Redeker
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - David Richman
- Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, USA
| | - Claudia Rigamonti
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angell Shi
- The Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Zeynep Tümer
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Ingrid D C Van Balkom
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
- Rob Giel Research Centre, Department of Psychiatry, University Medical Centre Groningen, Groningen, Netherlands
| | - Raoul C Hennekam
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
37
|
Chiang LM, Huang GS, Sun CC, Hsiao YL, Hui CK, Hu MH. Association of developing childhood epilepsy subsequent to febrile seizure: A population-based cohort study. Brain Dev 2018; 40:775-780. [PMID: 29801922 DOI: 10.1016/j.braindev.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/15/2017] [Accepted: 05/09/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Epilepsy is an important neurological condition that frequently associated with neurobehavioral disorders in childhood. Our aim was to identify the risk of developing epilepsy subsequent to febrile seizure and the association between epilepsy risk factors and neurobehavioral disorders. SUBJECTS AND METHODS This longitudinal population-based cohort data included 952 patients with a febrile seizure diagnosis and 3808 age- and sex-matched controls. Participants were recruited for the study from 1996 to 2011, and all patients were followed up for maximum 12.34 years. RESULTS The association of epilepsy was significantly higher (18.76-fold) in individuals that experienced febrile seizure compared to controls. Further, of those individuals who experienced febrile seizure, the frequency of subsequent development of epilepsy was 2.15-fold greater in females, 4.846-fold greater in patients with recurrent febrile seizure, and 11.26-fold greater patients with comorbid autism. CONCLUSIONS Our study showed that being female, comorbid autism with febrile seizure and recurrent febrile seizure had an increased association with development of epilepsy. Increased recognition the association for epilepsy might be warranted in those febrile seizure children with certain characteristics.
Collapse
Affiliation(s)
- Lin-Mei Chiang
- Department of Pediatric, Keelung Branch, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Go-Shine Huang
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Keelung Branch, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Li Hsiao
- Department of Medical Research and Development, Keelung Branch, Chang Gung Memorial Hospital, Taiwan
| | - Chung Kun Hui
- Department of Anesthesiology, Keelung Branch, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hua Hu
- Division of Pediatric General Medicine, Chang Gung Memorial Hospital, LinKou Branch, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
38
|
Gorman KM, Forman E, Conroy J, Allen NM, Shahwan A, Lynch SA, Ennis S, King MD. Novel SMC1A variant and epilepsy of infancy with migrating focal seizures: Expansion of the phenotype. Epilepsia 2018; 58:1301-1302. [PMID: 28677859 DOI: 10.1111/epi.13794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Eva Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Judith Conroy
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Nicholas M Allen
- Department of Paediatrics, National University of Ireland Galway and Galway University Hospital, Galway, Ireland
| | - Amre Shahwan
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Sally A Lynch
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Clinical Genetics, Children's University Hospital, Dublin, Ireland
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland.,Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Tidball AM, Dang LT, Glenn TW, Kilbane EG, Klarr DJ, Margolis JL, Uhler MD, Parent JM. Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing. Stem Cell Reports 2017; 9:725-731. [PMID: 28781079 PMCID: PMC5599229 DOI: 10.1016/j.stemcr.2017.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Louis T Dang
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Trevor W Glenn
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Emma G Kilbane
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Daniel J Klarr
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Joshua L Margolis
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Michael D Uhler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, 5021 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; VA Ann Arbor HealthCare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|