1
|
Cai Y, Tong F, Li K, Wang Q, Ding J, Wang X. Cannabinoid receptor 2 agonist AM1241 alleviates epileptic seizures and epilepsy-associated depression via inhibiting neuroinflammation in a pilocarpine-induced chronic epilepsy mouse model. Mol Cell Neurosci 2024; 130:103958. [PMID: 39151841 DOI: 10.1016/j.mcn.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
Increasing evidence suggests that cannabinoid receptor 2 (CB2R) serves as a promising anti-inflammatory target. While inflammation is known to play crucial roles in the pathogenesis of epilepsy, the involvement of CB2R in epilepsy remains unclear. This study aimed to investigate the effects of a CB2R agonist, AM1241, on epileptic seizures and depressive-like behaviors in a mouse model of chronic epilepsy induced by pilocarpine. A chronic epilepsy mouse model was established by intraperitoneal administration of pilocarpine. The endogenous cannabinoid system (eCBs) in the hippocampus was examined after status epilepticus (SE). Animals were then treated with AM1241 and compared with a vehicle-treated control group. Additionally, the role of the AMPK/NLRP3 signaling pathway was explored using the selective AMPK inhibitor dorsomorphin. Following SE, CB2R expression increased significantly in hippocampal microglia. Administration of AM1241 significantly reduced seizure frequency, immobility time in the tail suspension test, and neuronal loss in the hippocampus. In addition, AM1241 treatment attenuated microglial activation, inhibited pro-inflammatory polarization of microglia, and suppressed NLRP3 inflammasome activation in the hippocampus after SE. Further, the therapeutic effects of AM1241 were abolished by the AMPK inhibitor dorsomorphin. Our findings suggest that CB2R agonist AM1241 may alleviate epileptic seizures and its associated depression by inhibiting neuroinflammation through the AMPK/NLRP3 signaling pathway. These results provide insight into a novel therapeutic approach for epilepsy.
Collapse
Affiliation(s)
- Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kexian Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
PET imaging of animal models with depressive-like phenotypes. Eur J Nucl Med Mol Imaging 2023; 50:1564-1584. [PMID: 36642759 PMCID: PMC10119194 DOI: 10.1007/s00259-022-06073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/03/2022] [Indexed: 01/17/2023]
Abstract
Major depressive disorder is a growing and poorly understood pathology. Due to technical and ethical limitations, a significant proportion of the research on depressive disorders cannot be performed on patients, but needs to be investigated in animal paradigms. Over the years, animal studies have provided new insight in the mechanisms underlying depression. Several of these studies have used PET imaging for the non-invasive and longitudinal investigation of the brain physiology. This review summarises the findings of preclinical PET imaging in different experimental paradigms of depression and compares these findings with observations from human studies. Preclinical PET studies in animal models of depression can be divided into three main different approaches: (a) investigation of glucose metabolism as a biomarker for regional and network involvement, (b) evaluation of the availability of different neuroreceptor populations associated with depressive phenotypes, and (c) monitoring of the inflammatory response in phenotypes of depression. This review also assesses the relevance of the use of PET imaging techniques in animal paradigms for the understanding of specific aspects of the depressive-like phenotypes, in particular whether it might contribute to achieve a more detailed characterisation of the clinical depressive phenotypes for the development of new therapies for depression.
Collapse
|
3
|
Strogulski NR, Kopczynski A, de Oliveira VG, Carteri RB, Hansel G, Venturin GT, Greggio S, DaCosta JC, De Bastiani MA, Rodolphi MS, Portela LV. Nandrolone Supplementation Promotes AMPK Activation and Divergent 18[FDG] PET Brain Connectivity in Adult and Aged Mice. Neurochem Res 2022; 47:2032-2042. [PMID: 35415802 DOI: 10.1007/s11064-022-03592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Decreased anabolic androgen levels are followed by impaired brain energy support and sensing with loss of neural connectivity during physiological aging, providing a neurobiological basis for hormone supplementation. Here, we investigated whether nandrolone decanoate (ND) administration mediates hypothalamic AMPK activation and glucose metabolism, thus affecting metabolic connectivity in brain areas of adult and aged mice. Metabolic interconnected brain areas of rodents can be detected by positron emission tomography using 18FDG-mPET. Albino CF1 mice at 3 and 18 months of age were separated into 4 groups that received daily subcutaneous injections of either ND (15 mg/kg) or vehicle for 15 days. At the in vivo baseline and on the 14th day, brain 18FDG-microPET scans were performed. Hypothalamic pAMPKT172/AMPK protein levels were assessed, and basal mitochondrial respiratory states were evaluated in synaptosomes. A metabolic connectivity network between brain areas was estimated based on 18FDG uptake. We found that ND increased the pAMPKT172/AMPK ratio in both adult and aged mice but increased 18FDG uptake and mitochondrial basal respiration only in adult mice. Furthermore, ND triggered rearrangement in the metabolic connectivity of adult mice and aged mice compared to age-matched controls. Altogether, our findings suggest that ND promotes hypothalamic AMPK activation, and distinct glucose metabolism and metabolic connectivity rearrangements in the brains of adult and aged mice.
Collapse
Affiliation(s)
- N R Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - A Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - V G de Oliveira
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - R B Carteri
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - G Hansel
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - G T Venturin
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - S Greggio
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - J C DaCosta
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - M A De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - M S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - L V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Sun Y, Ren G, Ren J, Wang Q. Intrinsic Brain Activity in Temporal Lobe Epilepsy With and Without Depression: Insights From EEG Microstates. Front Neurol 2022; 12:753113. [PMID: 35058871 PMCID: PMC8764160 DOI: 10.3389/fneur.2021.753113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Depression is the most common psychiatric comorbidity of temporal lobe epilepsy (TLE). In the recent years, studies have focused on the common pathogenesis of TLE and depression. However, few of the studies focused on the dynamic characteristics of TLE with depression. We tested the hypotheses that there exist abnormalities in microstates in patients with TLE with depression. Methods: Participants were classified into patients with TLE with depression (PDS) (n = 19) and patients with TLE without depression (nPDS) (n = 19) based upon the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Microstate analysis was applied based on 256-channel electroencephalography (EEG) to detect the dynamic changes in whole brain. The coverage (proportion of time spent in each state), frequency of occurrence, and duration (average time of each state) were calculated. Results: Patients with PDS showed a shorter mean microstate duration with higher mean occurrence per second compared to patients with nPDS. There was no difference between the two groups in the coverage of microstate A–D. Conclusion: This is the first study to present the temporal fluctuations of EEG topography in comorbid depression in TLE using EEG microstate analysis. The temporal characteristics of the four canonical EEG microstates were significantly altered in patients with TLE suffer from comorbid depression.
Collapse
Affiliation(s)
- Yueqian Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoping Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jahreis I, Bascuñana P, Ross TL, Bankstahl JP, Bankstahl M. Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis. PLoS One 2021; 16:e0260482. [PMID: 34818362 PMCID: PMC8612569 DOI: 10.1371/journal.pone.0260482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Alterations in brain glucose metabolism detected by 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) may serve as an early predictive biomarker and treatment target for epileptogenesis. Here, we aimed to investigate changes in cerebral glucose metabolism before induction of epileptogenesis, during epileptogenesis as well as during chronic epilepsy. As anesthesia is usually unavoidable for preclinical PET imaging and influences the distribution of the radiotracer, four different protocols were compared. Procedures We investigated 18F-FDG uptake phase in conscious rats followed by a static scan as well as dynamic scans under continuous isoflurane, medetomidine-midazolam-fentanyl (MMF), or propofol anesthesia. Furthermore, we applied different analysis approaches: atlas-based regional analysis, statistical parametric mapping, and kinetic analysis. Results At baseline and compared to uptake in conscious rats, isoflurane and propofol anesthesia resulted in decreased cortical 18F-FDG uptake while MMF anesthesia led to a globally decreased tracer uptake. During epileptogenesis, MMF anesthesia was clearly best distinctive for visualization of prominently increased glucometabolism in epilepsy-related brain areas. Kinetic modeling further increased sensitivity, particularly for continuous isoflurane anesthesia. During chronic epilepsy, hypometabolism affecting more or less the whole brain was detectable with all protocols. Conclusion This study reveals evaluation of anesthesia protocols for preclinical 18F-FDG PET imaging as a critical step in the study design. Together with an appropriate data analysis workflow, the chosen anesthesia protocol may uncover otherwise concealed disease-associated regional glucometabolic changes.
Collapse
Affiliation(s)
- Ina Jahreis
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias L. Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
6
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
7
|
Ge F, Jiang J, Wang Y, Wan M, Zhang W. Mapping the Presence of Anxiety Symptoms in Adults With Major Depressive Disorder. Front Psychiatry 2021; 12:595418. [PMID: 34093253 PMCID: PMC8169985 DOI: 10.3389/fpsyt.2021.595418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Patients with major depressive disorder (MDD) often present with co-occurring anxiety symptoms. The network method provides a novel view on understanding the co-occurrence of depressive and anxiety symptoms. Thus, the purpose of our study was to explore it by applying network analysis methods. Methods: We used electronic medical records from West China Hospital in China. In total, 3,424 patients who met the criteria for MDD were included. R-studio 3.6 was used to estimate the network structure. First, we estimated the network structure of depression and anxiety symptoms using the graphic LASSO algorithm. Then, we estimated the centrality indices of nodes to determine which symptoms are more central in the network. We then estimated the bridge centrality indices using the bridge function via the R package networktools. Results: Some strong connections were found like "easy to wake up," "wake up early," and "difficulty falling asleep," "suicidal thoughts," and "hopelessness." "Depressed mood," "somatic anxiety," "hopelessness," "anxiety mood," and "tension" have the higher centrality indices. Results revealed eight bridge symptoms (e.g., concentration/memory difficulty, gastrointestinal symptoms) in the co-occurrence network structure. Conclusions: This research suggests that the described approach in mapping the presence of anxiety symptoms in individuals with major depression might potentially increase diagnostic precision and help choose more targeted interventions and potentially reduce the occurrence of treatment resistance.
Collapse
Affiliation(s)
- Fenfen Ge
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingwen Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mentong Wan
- Wuyuzhang Honors College, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Impact of Stress on Epilepsy: Focus on Neuroinflammation-A Mini Review. Int J Mol Sci 2021; 22:ijms22084061. [PMID: 33920037 PMCID: PMC8071059 DOI: 10.3390/ijms22084061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders worldwide, is characterized by recurrent seizures and subsequent brain damage. Despite strong evidence supporting a deleterious impact on seizure occurrence and outcome severity, stress is an overlooked component in people with epilepsy. With regard to stressor duration and timing, acute stress can be protective in epileptogenesis, while chronic stress often promotes seizure occurrence in epilepsy patients. Preclinical research suggests that chronic stress promotes neuroinflammation and leads to a depressive state. Depression is the most common psychiatric comorbidity in people with epilepsy, resulting in a poor quality of life. Here, we summarize studies investigating acute and chronic stress as a seizure trigger and an important factor that worsens epilepsy outcomes and psychiatric comorbidities. Mechanistic insight into the impact of stress on epilepsy may create a window of opportunity for future interventions targeting neuroinflammation-related disorders.
Collapse
|
9
|
Almeida CGM, Costa-Higuchi K, Piovesan AR, Moro CF, Venturin GT, Greggio S, Costa-Ferro ZS, Salamoni SD, Peigneur S, Tytgat J, de Lima ME, Silva CND, Vinadé L, Rowan EG, DaCosta JC, Dal Belo CA, Carlini CR. Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology 2021; 454:152737. [PMID: 33631299 DOI: 10.1016/j.tox.2021.152737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
Ureases are microbial virulence factors either because of the enzymatic release of ammonia or due to many other non-enzymatic effects. Here we studied two neurotoxic urease isoforms, Canatoxin (CNTX) and Jack Bean Urease (JBU), produced by the plant Canavalia ensiformis, whose mechanisms of action remain elusive. The neurotoxins provoke convulsions in rodents (LD50 ∼2 mg/kg) and stimulate exocytosis in cell models, affecting intracellular calcium levels. Here, electrophysiological and brain imaging techniques were applied to elucidate their mode of action. While systemic administration of the toxins causes tonic-clonic seizures in rodents, JBU injected into rat hippocampus induced spike-wave discharges similar to absence-like seizures. JBU reduced the amplitude of compound action potential from mouse sciatic nerve in a tetrodotoxin-insensitive manner. Hippocampal slices from CNTX-injected animals or slices treated in vitro with JBU failed to induce long term potentiation upon tetanic stimulation. Rat cortical synaptosomes treated with JBU released L-glutamate. JBU increased the intracellular calcium levels and spontaneous firing rate in rat hippocampus neurons. MicroPET scans of CNTX-injected rats revealed increased [18]Fluoro-deoxyglucose uptake in epileptogenesis-related areas like hippocampus and thalamus. Curiously, CNTX did not affect voltage-gated sodium, calcium or potassium channels currents, neither did it interfere on cholinergic receptors, suggesting an indirect mode of action that could be related to the ureases' membrane-disturbing properties. Understanding the neurotoxic mode of action of C. ensiformis ureases could help to unveil the so far underappreciated relevance of these toxins in diseases caused by urease-producing microorganisms, in which the human central nervous system is affected.
Collapse
Affiliation(s)
- Carlos Gabriel Moreira Almeida
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kiyo Costa-Higuchi
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Materials Technology and Engineering, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Celular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlo Frederico Moro
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Zaquer Susana Costa-Ferro
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Maria Elena de Lima
- Institute of Teaching and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Lúcia Vinadé
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Edward G Rowan
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jaderson Costa DaCosta
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil.
| | - Celia Regina Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Scholl of Medicine, Pontificía Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Durán-Carabali LE, Odorcyk FK, Greggio S, Venturin GT, Sanches EF, Schu GG, Carvalho AS, Pedroso TA, de Sá Couto-Pereira N, Da Costa JC, Dalmaz C, Zimmer ER, Netto CA. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 2020; 157:1911-1929. [PMID: 33098090 DOI: 10.1111/jnc.15221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Collapse
Affiliation(s)
- Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduardo Farias Sanches
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Garcia Schu
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrey Soares Carvalho
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natividade de Sá Couto-Pereira
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Depression and anxiety substantially contribute to interictal disability in patients with epilepsy (PWE). This review summarizes current studies that shed light on mechanisms of comorbidity. RECENT FINDINGS Mounting epidemiological data implicate shared risk factors for anxiety/depression and seizure propensity, but these remain largely elusive and probably vary by epilepsy type. Within PWE, these symptoms appear to be associated with unique genetic, neuropathological, and connectivity profiles. Temporal lobe epilepsy has received enormous emphasis particularly in preclinical studies of comorbidity, where candidate neurobiological mechanisms underlying bidirectionality have been tested without psychopharmacological confounds. Depression and anxiety in epilepsy reflect dysfunction within broadly distributed limbic networks that may be the cause or consequence of epileptogenesis. In refractory epilepsy, seizures and/or certain anticonvulsants may distort central emotional homeostatic mechanisms that perpetually raise seizure risk. Developing future safe and effective combined anticonvulsant-antidepressant treatments will require a detailed understanding of anatomical and molecular nodes that pleiotropically enhance seizure risk and negatively alter emotionality.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor Comprehensive Epilepsy Center, Baylor College of Medicine, One Baylor Plaza St., MS: NB302, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Pernia AM, Zorzo C, Prieto MJ, Martinez JA, Higarza SG, Mendez M, Arias JL. Equipment for Repetitive Transcranial Magnetic Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:525-534. [PMID: 32175874 DOI: 10.1109/tbcas.2020.2981012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique used for the treatment of a great variety of neurological disorders. The technique involves applying a magnetic field in certain areas of the cerebral cortex in order to modify neuronal excitability outside the skull. However, the exact brain mechanisms underlying rTMS effects are not completely elucidated. For that purpose, and in order to generate a pulsed magnetic field, a half-bridge converter controlled by a microcontroller has been designed to apply rTMS in small animals. Moreover, the small size of the rodent head makes it necessary to design a magnetic transducer, with the aim of focusing the magnetic field on selected brain areas using a specific and a small magnetic head. Using such devices, our purpose was to compare the effects of five different rTMS dosages on rat brain metabolic activity. The experimental results showed that one day of stimulation leads to an enhancement of brain metabolic activity in cortical areas, meanwhile with three days of stimulation it is possible to also modify subcortical zones, results that were not found when extending the number of rTMS applications up to seven days. In consequence, the number of pulses delivered might be an important parameter in rTMS protocols, highlighting its importance in rTMS impact.
Collapse
|
15
|
Azevedo PN, Zanirati G, Venturin GT, Schu GG, Durán–Carabali LE, Odorcyk FK, Soares AV, Laguna GDO, Netto CA, Zimmer ER, da Costa JC, Greggio S. Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem 2020; 171:107207. [DOI: 10.1016/j.nlm.2020.107207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
16
|
Odorcyk FK, Duran-Carabali LE, Rocha DS, Sanches EF, Martini AP, Venturin GT, Greggio S, da Costa JC, Kucharski LC, Zimmer ER, Netto CA. Differential glucose and beta-hydroxybutyrate metabolism confers an intrinsic neuroprotection to the immature brain in a rat model of neonatal hypoxia ischemia. Exp Neurol 2020; 330:113317. [PMID: 32304750 DOI: 10.1016/j.expneurol.2020.113317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxia ischemia (HI) is the main cause of newborn mortality and morbidity. Preclinical studies have shown that the immature rat brain is more resilient to HI injury, suggesting innate mechanisms of neuroprotection. During neonatal period brain metabolism experience changes that might greatly affect the outcome of HI injury. Therefore, the aim of the present study was to investigate how changes in brain metabolism interfere with HI outcome in different stages of CNS development. For this purpose, animals were divided into 6 groups: HIP3, HIP7 and HIP11 (HI performed at postnatal days 3, 7 and 11, respectively), and their respective shams. In vivo [18F]FDG micro positron emission tomography (microPET) imaging was performed 24 and 72 h after HI, as well as ex-vivo assessments of glucose and beta-hydroxybutyrate (BHB) oxidation. At adulthood behavioral tests and histology were performed. Behavioral and histological analysis showed greater impairments in HIP11 animals, while HIP3 rats were not affected. Changes in [18F]FDG metabolism were found only in the lesion area of HIP11, where a substantial hypometabolism was detected. Furthermore, [18F]FDG hypometabolism predicted impaired cognition and worst histological outcomes at adulthood. Finally, substrate oxidation assessments showed that glucose oxidation remained unaltered and higher level of BHB oxidation found in P3 animals, suggesting a more resilient metabolism. Overall, present results show [18F]FDG microPET predicts long-term injury outcome and suggests that higher BHB utilization is one of the mechanisms that confer the intrinsic neuroprotection to the immature brain and should be explored as a therapeutic target for treatment of HI.
Collapse
Affiliation(s)
- F K Odorcyk
- Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - L E Duran-Carabali
- Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - D S Rocha
- Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - E F Sanches
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A P Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - L C Kucharski
- Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - E R Zimmer
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Pharmacology and therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C A Netto
- Graduate Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Neves LT, Neves PFR, Paz LV, Zancan M, Milanesi BB, Lazzari GZ, da Silva RB, de Oliveira MMBP, Venturin GT, Greggio S, da Costa JC, Rasia-Filho AA, Mestriner RG, Xavier LL. Increases in dendritic spine density in BLA without metabolic changes in a rodent model of PTSD. Brain Struct Funct 2019; 224:2857-2870. [PMID: 31440907 DOI: 10.1007/s00429-019-01943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Abstract
Imaging studies have shown abnormal amygdala function in patients with posttraumatic stress disorder (PTSD). In addition, alterations in synaptic plasticity have been associated with psychiatric disorders and previous reports have indicated alterations in the amygdala morphology, especially in basolateral (BLA) neurons, are associated with stress-related disorders. Since, some individuals exposed to a traumatic event develop PTSD, the goals of this study were to evaluate the early effects of PTSD on amygdala glucose metabolism and analyze the possible BLA dendritic spine plasticity in animals with different levels of behavioral response. We employed the inescapable footshock protocol as an experimental model of PTSD and the animals were classified according to the duration of their freezing behavior into distinct groups: "extreme behavioral response" (EBR) and "minimal behavioral response". We evaluated the amygdala glucose metabolism at baseline (before the stress protocol) and immediately after the situational reminder using the microPET and the radiopharmaceutical 18F-FDG. The BLA dendritic spines were analyzed according to their number, density, shape and morphometric parameters. Our results show the EBR animals exhibited longer freezing behavior and increased proximal dendritic spines density in the BLA neurons. Neither the amygdaloid glucose metabolism, the types of dendritic spines nor their morphometric parameters showed statistically significant differences. The extreme behavior response induced by this PTSD protocol produces an early increase in BLA spine density, which is unassociated with either additional changes in the shape of spines or metabolic changes in the whole amygdala of Wistar rats.
Collapse
Affiliation(s)
- Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Zancan
- Departamento de Ciências Básicas/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Rafaela Barboza da Silva
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Marina Mena Barreto Peres de Oliveira
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Gianina Teribele Venturin
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Greggio
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaderson Costa da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alberto A Rasia-Filho
- Departamento de Ciências Básicas/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity. Brain Behav Immun 2019; 80:879-888. [PMID: 31176000 DOI: 10.1016/j.bbi.2019.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.
Collapse
|
19
|
Sex differences in the effects of acute stress on cerebral glucose metabolism: A microPET study. Brain Res 2019; 1722:146355. [PMID: 31356782 DOI: 10.1016/j.brainres.2019.146355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Stress has been considered as a risk factor for the development and aggravation of several diseases. The hypothalamic-pituitary-adrenal axis (HPA) is one of the main actors for the stress response and homeostasis maintenance. Positron emission tomography (PET) has been used to evaluate neuronal activity and to study brain regions that may be related to the HPA axis response. Since neuroimaging is an important tool in detecting neuroendocrine-related changes, we used fluorodeoxyglucose-18 (18F-FDG) and positron emission microtomography (microPET) to evaluate sexual differences in the glucose brain metabolism after 10, 30 and 40 min of acute stress in Balb/c mice. We also investigated the effects of restraint stress in blood, liver and adrenal gland 18F-FDG biodistribution using a gamma counter. A decreased glucose uptake in the whole brain in both females and males was found. Additionally, there were time and sex-dependent alterations in the 18F-FDG uptake after restraint stress in specific brain regions, indicating that males could be more vulnerable to the short-term effects of acute stress. According to the gamma counter biodistribution, only females showed a significant decreased glucose uptake in the blood, liver and right adrenal after restraint stress. In addition, in comparisons between the sexes, males showed a decreased glucose uptake in the whole brain and in several brain regions compared to females. In conclusion, exposure to acute restraint stress resulted in significant decreased glucose metabolism in the brain, with particular effects in different regions and organs in a sex-specific manner.
Collapse
|
20
|
Dagnino APA, da Silva RBM, Chagastelles PC, Pereira TCB, Venturin GT, Greggio S, Costa da Costa J, Bogo MR, Campos MM. Nociceptin/orphanin FQ receptor modulates painful and fatigue symptoms in a mouse model of fibromyalgia. Pain 2019; 160:1383-1401. [PMID: 30720581 DOI: 10.1097/j.pain.0000000000001513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Generalized pain and fatigue are both hallmarks of fibromyalgia, a syndrome with an indefinite etiology. The treatment options for fibromyalgia are currently limited, probably because of its intricate pathophysiology. Thus, further basic and clinical research on this condition is currently needed. This study investigated the effects of nociceptin/orphanin FQ (N/OFQ) receptor (NOPr) ligands and the modulation of the NOP system in the preclinical mouse model of reserpine-induced fibromyalgia. The effects of administration of the natural agonist N/OFQ and the selective NOPr antagonists (UFP-101 and SB-612111) were evaluated in fibromyalgia-related symptoms in reserpine-treated mice. The expression of prepronociceptin/orphanin FQ and NOPr was assessed in central and peripheral sites at different time points after reserpine administration. Nociceptin/orphanin FQ displayed dual effects in the behavioral changes in the reserpine-elicited fibromyalgia model. The peptide NOPr antagonist UFP-101 produced analgesic and antifatigue effects, by preventing alterations in brain activity and skeletal muscle metabolism, secondary to fibromyalgia induction. The nonpeptide NOPr antagonist SB-612111 mirrored the favorable effects of UFP-101 in painful and fatigue alterations induced by reserpine. A time-related up- or downregulation of prepronociceptin/orphanin FQ and NOPr was observed in supraspinal, spinal, and peripheral sites of reserpine-treated mice. Our data shed new lights on the mechanisms underlying the fibromyalgia pathogenesis, supporting a role for N/OFQ-NOP receptor system in this syndrome.
Collapse
Affiliation(s)
- Ana Paula Aquistapase Dagnino
- Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências da Saúde, Centro de Pesquisa em Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira da Silva
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Cesar Chagastelles
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Talita Carneiro Brandão Pereira
- Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências, Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências da Saúde, Curso de Graduação em Biomedicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências, Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Martha Campos
- Escola de Ciências, Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências da Saúde, Centro de Pesquisa em Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Escola de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
21
|
Suleymanova EM, Borisova MA, Vinogradova LV. Early endocannabinoid system activation attenuates behavioral impairments induced by initial impact but does not prevent epileptogenesis in lithium-pilocarpine status epilepticus model. Epilepsy Behav 2019; 92:71-78. [PMID: 30634156 DOI: 10.1016/j.yebeh.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
Abstract
Mood and anxiety disorders, as well as memory impairments, are important factors affecting quality of life in patients with epilepsy and can influence the antiepileptic therapy. Clinical studies of psychiatric comorbidities are quite complicated to design and interpret, so animal studies of behavioral impairments associated with seizures can be of use. We investigated the effect of early administration of endocannabinoid receptor agonist WIN-55,212-2 on the development of spontaneous seizures, long-term behavioral and memory impairments, and neurodegeneration in the hippocampus on the lithium-pilocarpine model of status epilepticus (SE). We also studied the role of spontaneous seizures in the development of pathologic consequences of the SE. Our results showed that behavioral impairments found in the elevated plus maze test depended mostly on the consequences of SE itself and not on the development of spontaneous seizures while hyperactivity in the open-field test and light-dark chamber was more prominent in rats with spontaneous seizures. Administration of WIN-55,212-2 decreased emotional behavior in the elevated plus maze but did not affect hyperactive behavior in the open-field test. Spatial memory impairment developed both in the presence or absence of spontaneous seizures and was not affected by administration of WIN-55,212-2. Both administration of endocannabinoid receptor agonist WIN-55,212-2 and the presence of spontaneous seizures affected SE-induced neuronal loss in the hippocampus.
Collapse
Affiliation(s)
- Elena M Suleymanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia.
| | - Maria A Borisova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia
| | - Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Butlerova 5A, Moscow, Russia
| |
Collapse
|
22
|
van Dijk RM, Di Liberto V, Brendel M, Waldron AM, Möller C, Gildehaus FJ, von Ungern-Sternberg B, Lindner M, Ziegler S, Hellweg R, Gass P, Bartenstein P, Potschka H. Imaging biomarkers of behavioral impairments: A pilot micro-positron emission tomographic study in a rat electrical post-status epilepticus model. Epilepsia 2018; 59:2194-2205. [PMID: 30370531 DOI: 10.1111/epi.14586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In patients with epilepsy, psychiatric comorbidities can significantly affect the disease course and quality of life. Detecting and recognizing these comorbidities is central in determining an optimal treatment plan. One promising tool in detecting biomarkers for psychiatric comorbidities in epilepsy is positron emission tomography (PET). METHODS Behavioral and biochemical variables were cross-correlated with the results from two μPET scans using the tracers [18 F]fluoro-2-deoxy-D-glucose ([18 F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18 F-fluoro-benzamidoethylpiperazine ([18 F]MPPF) to explore potential biomarkers for neurobehavioral comorbidities in an electrically induced post-status epilepticus rat model of epilepsy. RESULTS In rats with epilepsy, μPET analysis revealed a local reduction in hippocampal [18 F]FDG uptake, and a local increase in [18 F]MPPF binding. These changes exhibited a correlation with burrowing as a "luxury" behavior, social interaction, and anxiety-associated behavioral patterns. Interestingly, hippocampal [18 F]FDG uptake did not correlate with spontaneous recurrent seizure activity. SIGNIFICANCE In the electrically induced post-status epilepticus rat model, we demonstrated hippocampal hypometabolism and its correlation with a range of neurobehavioral alterations. These findings require further confirmation in other preclinical models and patients with epilepsy and psychiatric disorders to address the value of [18 F]FDG uptake as an imaging biomarker candidate for psychiatric comorbidities in patients as well as for severity assessment in rodent epilepsy models.
Collapse
Affiliation(s)
- R Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ann Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina Möller
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara von Ungern-Sternberg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Peter Gass
- Central Institute of Mental Health Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
23
|
Catarina AV, Luft C, Greggio S, Venturin GT, Ferreira F, Marques EP, Rodrigues L, Wartchow K, Leite MC, Gonçalves CA, Wyse ATS, Da Costa JC, De Oliveira JR, Branchini G, Nunes FB. Fructose-1,6-bisphosphate preserves glucose metabolism integrity and reduces reactive oxygen species in the brain during experimental sepsis. Brain Res 2018; 1698:54-61. [PMID: 29932894 DOI: 10.1016/j.brainres.2018.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/30/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Sepsis is one of the main causes of hospitalization and mortality in Intensive Care Units. One of the first manifestations of sepsis is encephalopathy, reported in up to 70% of patients, being associated with higher mortality and morbidity. The factors that cause sepsis-associated encephalopathy (SAE) are still not well known, and may be multifactorial, as perfusion changes, neuroinflammation, oxidative stress and glycolytic metabolism alterations. Fructose-1,6-bisphosphate (FBP), a metabolite of the glycolytic route, has been reported as neuroprotective agent. The present study used an experimental sepsis model in C57BL/6 mice. We used in vivo brain imaging to evaluate glycolytic metabolism through microPET scans and the radiopharmaceutical 18F-fluoro-2-deoxy-D-glucose (18F-FDG). Brain images were obtained before and 12 h after the induction of sepsis in animals with and without FBP treatment. We also evaluated the treatment effects in the brain oxidative stress by measuring the production of reactive oxygen species (ROS), the activity of catalase (CAT) and glutathione peroxidase (GPx), and the levels of fluorescent marker 2'7'-dichlorofluorescein diacetate (DCF). There was a significant decrease in brain glucose metabolism due to experimental sepsis. A significant protective effect of FBP treatment was observed in the cerebral metabolic outcomes. FBP also modulated the production of ROS, evidenced by reduced CAT activity and lower levels of DCF. Our results suggest that FBP may be a possible candidate in the treatment of SAE.
Collapse
Affiliation(s)
- Anderson V Catarina
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil.
| | - Carolina Luft
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Fernanda Ferreira
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Eduardo P Marques
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Letícia Rodrigues
- Laboratório de Proteínas Ligante de Cálcio do Sistema Nervoso Central, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Krista Wartchow
- Laboratório de Proteínas Ligante de Cálcio do Sistema Nervoso Central, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marina C Leite
- Laboratório de Proteínas Ligante de Cálcio do Sistema Nervoso Central, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Carlos A Gonçalves
- Laboratório de Proteínas Ligante de Cálcio do Sistema Nervoso Central, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Jaderson C Da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Jarbas R De Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Fernanda B Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil; Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Brazil
| |
Collapse
|