1
|
Moloney PB, Delanty N. An overview of the value of mTOR inhibitors to the treatment of epilepsy: the evidence to date. Expert Rev Neurother 2025:1-17. [PMID: 39903448 DOI: 10.1080/14737175.2025.2462280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Dysregulated mechanistic target of rapamycin (mTOR) activity is implicated in seizure development in epilepsies caused by variants in mTOR pathway genes. Sirolimus and everolimus, allosteric mTOR inhibitors, are widely used in transplant medicine and oncology. Everolimus is approved for treating seizures in tuberous sclerosis complex (TSC), the prototype mTORopathy. Emerging evidence suggests that mTOR inhibitors could also be effective in other mTORopathies, such as DEPDC5-related epilepsy and focal cortical dysplasia type 2 (FCD2). AREAS COVERED This narrative review summarizes key regulatory proteins in the mTOR cascade and outlines epilepsy syndromes linked to variants in genes encoding these proteins, particularly TSC, GATOR1-related epilepsies, and FCD2. It discusses the clinical pharmacology of mTOR inhibitors and the evidence supporting their efficacy as antiseizure medications (ASM) in mTORopathies. Lastly, potential benefits of next-generation mTOR inhibitors for CNS indications are evaluated. EXPERT OPINION The therapeutic benefits of mTOR inhibitors in TSC are well-established, but their value in other mTORopathies remains uncertain. Despite targeting the underlying disease biology, their efficacy in TSC is not significantly different from other ASM, likely due in part to pharmacokinetic constraints. Next-generation mTOR inhibitors that address these limitations may offer improved response rates, but they are in the preclinical development phase.
Collapse
Affiliation(s)
- Patrick B Moloney
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Epilepsy, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research Ireland FutureNeuro Centre, Dublin, Ireland
| |
Collapse
|
2
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
3
|
Ng ACH, Choudhary A, Barrett KT, Gavrilovici C, Scantlebury MH. Mechanisms of infantile epileptic spasms syndrome: What have we learned from animal models? Epilepsia 2024; 65:266-280. [PMID: 38036453 DOI: 10.1111/epi.17841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anamika Choudhary
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karlene T Barrett
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
5
|
Previtali R, Prontera G, Alfei E, Nespoli L, Masnada S, Veggiotti P, Mannarino S. Paradigm shift in the treatment of tuberous sclerosis: Effectiveness of everolimus. Pharmacol Res 2023; 195:106884. [PMID: 37549757 DOI: 10.1016/j.phrs.2023.106884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.
Collapse
Affiliation(s)
- Roberto Previtali
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giorgia Prontera
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrico Alfei
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Luisa Nespoli
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Silvia Masnada
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Savina Mannarino
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
6
|
Menezes CEG, Santos DLD, Nery ES, Serpa ED, Morais LAS, Dutra LS, Portela Filho MB, Goes JS. Everolimus as a therapeutic option in refractory epilepsy in children with tuberous sclerosis: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:392-398. [PMID: 36863402 PMCID: PMC10169230 DOI: 10.1055/s-0042-1758442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Tuberous sclerosis (TS) is a multisystem genetic disease in which epilepsy is a frequent manifestation and is often difficult to control. Everolimus is a drug with proven efficacy in the treatment of other conditions related to TS, and some evidence suggests that its use benefits the treatment of refractory epilepsy in these patients. OBJECTIVE To evaluate the efficacy of everolimus in controlling refractory epilepsy in children with TS. METHODS A literature review was conducted in the Pubmed, BVS, and Medline databases, using the descriptors Tuberous sclerosis, Children, Epilepsy, and Everolimus. Original clinical trials and prospective studies published in Portuguese or English in the last decade that evaluated the use of everolimus as an adjuvant therapy in the control of refractory epilepsy in pediatric patients with TS were included. RESULTS Our search screened 246 articles from electronic databases, 6 of which were chosen for review. Despite the methodological variations between the studies, most patients benefited from the use of everolimus to control refractory epilepsy, with response rates ranging from 28.6 to 100%. Adverse effects were present in all studies leading to dropouts of some patients; however, the majority were of low severity. CONCLUSION The selected studies suggest a beneficial effect of everolimus in the treatment of refractory epilepsy in children with TS, despite the adverse effects observed. Further studies involving a larger sample in double-blind controlled clinical trials should be performed to provide more information and statistical credibility.
Collapse
Affiliation(s)
| | | | - Erick Santos Nery
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | - Evelin Duarte Serpa
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| | | | - Lucas Santana Dutra
- Escola Bahiana de Medicina e Saúde Pública, Departamento de Medicina, Salvador BA, Brazil
| | | | - Julieta Sobreira Goes
- Universidade do Estado da Bahia, Departamento de Ciências da Vida, Salvador BA, Brazil
| |
Collapse
|
7
|
Strzelczyk A, Schubert-Bast S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022; 36:1079-1111. [PMID: 36194365 PMCID: PMC9531646 DOI: 10.1007/s40263-022-00955-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
The developmental and epileptic encephalopathies encompass a group of rare syndromes characterised by severe drug-resistant epilepsy with onset in childhood and significant neurodevelopmental comorbidities. The latter include intellectual disability, developmental delay, behavioural problems including attention-deficit hyperactivity disorder and autism spectrum disorder, psychiatric problems including anxiety and depression, speech impairment and sleep problems. Classical examples of developmental and epileptic encephalopathies include Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. The mainstay of treatment is with multiple anti-seizure medications (ASMs); however, the ASMs themselves can be associated with psychobehavioural adverse events, and effects (negative or positive) on cognition and sleep. We have performed a targeted literature review of ASMs commonly used in the treatment of developmental and epileptic encephalopathies to discuss the latest evidence on their effects on behaviour, mood, cognition, sedation and sleep. The ASMs include valproate (VPA), clobazam, topiramate (TPM), cannabidiol (CBD), fenfluramine (FFA), levetiracetam (LEV), brivaracetam (BRV), zonisamide (ZNS), perampanel (PER), ethosuximide, stiripentol, lamotrigine (LTG), rufinamide, vigabatrin, lacosamide (LCM) and everolimus. Bromide, felbamate and other sodium channel ASMs are discussed briefly. Overall, the current evidence suggest that LEV, PER and to a lesser extent BRV are associated with psychobehavioural adverse events including aggressiveness and irritability; TPM and to a lesser extent ZNS are associated with language impairment and cognitive dulling/memory problems. Patients with a history of behavioural and psychiatric comorbidities may be more at risk of developing psychobehavioural adverse events. Topiramate and ZNS may be associated with negative effects in some aspects of cognition; CBD, FFA, LEV, BRV and LTG may have some positive effects, while the remaining ASMs do not appear to have a detrimental effect. All the ASMs are associated with sedation to a certain extent, which is pronounced during uptitration. Cannabidiol, PER and pregabalin may be associated with improvements in sleep, LTG is associated with insomnia, while VPA, TPM, LEV, ZNS and LCM do not appear to have detrimental effects. There was variability in the extent of evidence for each ASM: for many first-generation and some second-generation ASMs, there is scant documented evidence; however, their extensive use suggests favourable tolerability and safety (e.g. VPA); second-generation and some third-generation ASMs tend to have the most robust evidence documented over several years of use (TPM, LEV, PER, ZNS, BRV), while evidence is still being generated for newer ASMs such as CBD and FFA. Finally, we discuss how a variety of factors can affect mood, behaviour and cognition, and untangling the associations between the effects of the underlying syndrome and those of the ASMs can be challenging. In particular, there is enormous heterogeneity in cognitive, behavioural and developmental impairments that is complex and can change naturally over time; there is a lack of standardised instruments for evaluating these outcomes in developmental and epileptic encephalopathies, with a reliance on subjective evaluations by proxy (caregivers); and treatment regimes are complex involving multiple ASMs as well as other drugs.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University and University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.,Department of Neuropediatrics, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
The longitudinal evolution of cerebral blood flow in children with tuberous sclerosis assessed by arterial spin labeling magnetic resonance imaging may be related to cognitive performance. Eur Radiol 2022; 33:196-206. [PMID: 36066730 DOI: 10.1007/s00330-022-09036-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To study longitudinal changes in tuber and whole-brain perfusion in children with tuberous sclerosis complex (TSC) using arterial spin labeling (ASL) perfusion MRI and correlate them with pathological EEG slow wave activity and neurodevelopmental outcomes. METHODS Retrospective longitudinal cohort study of 13 children with TSC, 3 to 6 serial ASL-MRI scans between 2 months and 7 years of age (53 scans in total), and an EEG examination performed within 2 months of the last MRI. Tuber cerebral blood flow (CBF) values were calculated in tuber segmentation masks, and tuber:cortical CBF ratios were used to study tuber perfusion. Logistic regression analysis was performed to identify which initial tuber characteristics (CBF value, volume, location) in the first MRI predicted tubers subsequently associated with EEG slow waves. Whole-brain and lobar CBF values were extracted for all patient scans and age-matched controls. CBF ratios were compared in patients and controls to study longitudinal changes in whole-brain CBF. RESULTS Perfusion was reduced in tubers associated with EEG slow waves compared with other tubers. Low tuber CBF values around 6 months of age and large tuber volumes were predictive of tubers subsequently associated with EEG slow waves. Patients with severe developmental delay had more severe whole-brain hypoperfusion than those with no/mild delay, which became apparent after 2 years of age and were not associated with a higher tuber load. CONCLUSIONS Dynamic changes in tuber and brain perfusion occur over time. Perfusion is significantly reduced in tubers associated with EEG slow waves. Whole-brain perfusion is significantly reduced in patients with severe delay. KEY POINTS • Tubers associated with EEG slow wave activity were significantly more hypoperfused than other tubers, especially after 1 year of age. • Larger and more hypoperfused tubers at 6 months of age were more likely to subsequently be associated with pathological EEG slow wave activity. • Patients with severe developmental delay had more extensive and severe global hypoperfusion than those without developmental delay.
Collapse
|
9
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
10
|
Srivastava S, Jo B, Zhang B, Frazier T, Gallagher AS, Peck F, Levin AR, Mondal S, Li Z, Filip-Dhima R, Geisel G, Dies KA, Diplock A, Eng C, Hanna R, Sahin M, Hardan A. A randomized controlled trial of Everolimus for neurocognitive symptoms in PTEN hamartoma tumor syndrome. Hum Mol Genet 2022; 31:3393-3404. [PMID: 35594551 PMCID: PMC9558845 DOI: 10.1093/hmg/ddac111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND PTEN hamartoma tumor syndrome (PHTS) is a complex neurodevelopmental disorder characterized by mTOR (mechanistic target of rapamycin) overactivity. Limited data suggest that mTOR inhibitors may be therapeutic. No placebo-controlled studies have examined mTOR inhibition on cognition and behavior in humans with PHTS with/without autism. METHODS We conducted a 6-month phase II, randomized, double-blinded, placebo-controlled trial to examine the safety profile and efficacy of everolimus (4.5 mg/m2) in individuals (5-45 years) with PHTS. We measured several cognitive and behavioral outcomes, and electroencephalography (EEG) biomarkers. The primary endpoint was a neurocognitive composite derived from Stanford Binet-5 (SB-5) nonverbal working memory score, SB-5 verbal working memory, Conners' Continuous Performance Test hit reaction time, and Purdue Pegboard Test score. RESULTS Forty-six participants underwent 1:1 randomization: n = 24 (everolimus) and n = 22 (placebo). Gastrointestinal adverse events were more common in the everolimus group (p < 0.001). Changes in the primary endpoint between groups from baseline to month 6 were not apparent (Cohen's d = -0.10, p = 0.518). However, several measures were associated with modest effect sizes (≥0.2) in the direction of improvement, including measures of nonverbal IQ, verbal learning, autism symptoms, motor skills, adaptive behavior, and global improvement. There was a significant difference in EEG central alpha power (p = 0.049) and central beta power (p = 0.039) six months after everolimus treatment. CONCLUSIONS Everolimus is well tolerated in PHTS; adverse events were similar to previous reports. The primary efficacy endpoint did not reveal improvement. Several secondary efficacy endpoints moved in the direction of improvement. EEG measurements indicate target engagement following 6 months of daily oral everolimus. Trial Registration Information: ClinicalTrials.gov NCT02991807 Classification of Evidence: I.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Frazier
- Department of Psychology, John Carroll University, University Heights, Ohio, USA
| | - Anne Snow Gallagher
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fleming Peck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sangeeta Mondal
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Zetan Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Rajna Filip-Dhima
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Geisel
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kira A Dies
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amelia Diplock
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rabi Hanna
- Department of Pediatrics, Hematology, Oncology, Blood and Marrow Transplantation, Cleveland Clinic, Cleveland, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Shen YW, Wang YY, Zhang MN, Xu Y, Lu Q, He W, Chen HM, Liu LY, Pang LY, Wang QH, Dun S, Li YF, Gao J, Han F, Zou LP. Sirolimus treatment for tuberous sclerosis complex prior to epilepsy: Evidence from a registry-based real-world study. Seizure 2022; 97:23-31. [PMID: 35286974 DOI: 10.1016/j.seizure.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To evaluate whether sirolimus treatment could relieve the later burden of new-onset seizures in patients with tuberous sclerosis complex (TSC) prior to epilepsy. METHODS A real-world matched case-control study was nested in another registry cohort study. Infants with TSC (<12 months old) without seizures whose parents agreed on sirolimus treatment for other symptoms were eligible for inclusion to the early sirolimus (ES) group. These patients were enrolled from 2015 to 2018. Controls in the late sirolimus (LS) group were matched from the registry cohort database for 2015-2018. Age and genotype were used as the initial stratifying criteria and other symptoms as the greedy matching criteria at a matching ratio of 1:4. None of the preventive drugs were introduced before seizure onset or before 2 years of age in the LS group. Both groups were followed up until June 2020. The primary objective was a comparison of the characteristics of the first seizure between the two groups. The secondary objective was the assessment of the final seizure status at the endpoint. RESULTS There were 42 and 168 patients with TSC in the ES and LS groups, respectively. Early sirolimus treatment significantly reduced the seizure onset, especially in the patients aged <6 months. The mean onset-age was significantly delayed by sirolimus treatment (11.34±7.93 months vs. 6.94±6.03 months, P<0.001). The subtype of seizures that benefited the most was spastic (onset) seizures (all were infantile spasms) [5/42 (11.90%) vs. 73/168 (43.45%), P<0.001]; these seizures were either eliminated or alleviated. The sirolimus treatment addition prior to seizures was more effective than its addition after seizures in reducing drug-resistant epilepsy [10/42 (23.81%) vs. 70/147 (47.62%), P=0.004]. CONCLUSION Early sirolimus treatment for TSC effectively modified the disease by preventing infantile spasms, delaying seizure onset, and relieving its severity. The anti-epileptogenic effect of sirolimus may be time- and dose-dependent.
Collapse
Affiliation(s)
- Yan-Wen Shen
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Yang-Yang Wang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Meng-Na Zhang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Yong Xu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Qian Lu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Wen He
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Hui-Min Chen
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Li-Ying Liu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Ling-Yu Pang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Qiu-Hong Wang
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Shuo Dun
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Yu-Fen Li
- Department of Pediatrics, Shandong Linyi People's Hospital, Linyi 276000, China
| | - Jing Gao
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Fang Han
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, Beijing 100583, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China; Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
12
|
Nabavi Nouri M, Zak M, Jain P, Whitney R. Epilepsy Management in Tuberous Sclerosis Complex: Existing and Evolving Therapies and Future Considerations. Pediatr Neurol 2022; 126:11-19. [PMID: 34740132 DOI: 10.1016/j.pediatrneurol.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition that affects multiple body systems. Disruption of the mammalian target of rapamycin (mTOR) pathway results in abnormal cell growth, proliferation, protein synthesis, and cell differentiation and migration in TSC. In the central nervous system, mTOR disruption is also believed to influence neuronal excitability and promote epileptogenesis. Epilepsy is the most common neurological manifestation of TSC and affects 80% to 90% of individuals with high rates of treatment resistance (up to 75%). The onset of epilepsy in the majority of individuals with TSC occurs before the age of two years, which is a critical time in neurodevelopment. Both medically refractory epilepsy and early-onset epilepsy are associated with intellectual disability in TSC, while seizure control and remission are associated with lower rates of cognitive impairment. Our current knowledge of the treatment of epilepsy in TSC has expanded immensely over the last decade. Several new therapies such as preemptive vigabatrin therapy in infants, cannabidiol, and mTOR inhibitors have emerged in recent years for the treatment of epilepsy in TSC. This review will provide clinicians with a comprehensive overview of the pharmacological and nonpharmacological therapies available for the treatment of epilepsy related to TSC.
Collapse
Affiliation(s)
- Maryam Nabavi Nouri
- Division of Neurology, Department of Pediatrics, Western University, London, Ontario, Canada
| | - Maria Zak
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Trollmann R, Borggräfe I, Müller-Felber W, Brandl U. Pädiatrische epileptische Enzephalopathien mit Manifestation oberhalb des Neugeborenenalters: ein Up-date. KLIN NEUROPHYSIOL 2021; 52:167-179. [DOI: 10.1055/a-1528-3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungEntwicklungs-und epileptische Enzephalopathien manifestieren sich überwiegend bereits im Säuglings-und frühen Kleinkindesalter. Mit der neuen ILAE-Klassifikation der Epilepsien konnten epileptische Enzephalopathien sowohl hinsichtlich des elektroklinischen Phänotyps als auch des ätiologischen Spektrums und assoziierter Komorbiditäten genauer definiert werden. Einige elektroklinischer Entitäten wie das West-Syndrom oder das Dravet-Syndrom können auf der Basis ihres Genotyps inzwischen als spezifische Enzephalopathien klassifiziert werden. Das EEG stellt eine wichtige Zusatzdiagnostik in der Abklärung einer epileptischen Enzephalopathie dar. Es hat einen besonderen Stellenwert für die Diagnose von Komplikationen wie z. B. subklinischer Anfälle oder eines Status epilepticus sowie für ein adäquates Therapiemonitoring. Der Betrag fasst anhand ausgewählter pädiatrischer Epilepsiesyndrome aktuelle Aspekte zur Komplexität der pädiatrischen epileptischen Enzephalopathien und den Stellenwert der EEG-Diagnostik zusammen.
Collapse
Affiliation(s)
- Regina Trollmann
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum, Kinder-und Jugendklinik am Universitätsklinikum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - Ingo Borggräfe
- Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, Dr. von Haunersches Kinderspital, LMU Klinikum München, München
- Interdisziplinäres Epilepsiezentrum, LMU Klinikum München, München
| | - Wolfgang Müller-Felber
- Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, Dr. von Haunersches Kinderspital, LMU Klinikum München, München
| | - Ulrich Brandl
- Klinik für Neuropädiatrie, Universitätsklinikum Jena, Jena
| |
Collapse
|
14
|
Akman O, Briggs SW, Mowrey WB, Moshé SL, Galanopoulou AS. Antiepileptogenic effects of rapamycin in a model of infantile spasms due to structural lesions. Epilepsia 2021; 62:1985-1999. [PMID: 34212374 DOI: 10.1111/epi.16975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Infantile spasms may evolve into persistent epilepsies including Lennox-Gastaut syndrome. We compared adult epilepsy outcomes in models of infantile spasms due to structural etiology (multiple-hit model) or focal cortical inflammation and determined the anti-epileptogenic effects of pulse-rapamycin, previously shown to stop spasms in multiple-hit rats. METHODS Spasms were induced in 3-day-old male rats via right intracerebral doxorubicin/lipopolysaccharide (multiple-hit model) infusions. Controls and sham rats were used. Separate multiple-hit rats received pulse-rapamycin or vehicle intraperitoneally between postnatal days 4 and 6. In adult mice, video-EEG (electroencephalography) scoring for seizures and sleep and histology were done blinded to treatment. RESULTS Motor-type seizures developed in 66.7% of multiple-hit rats, usually from sleep, but were reduced in the pulse-rapamycin-treated group (20%, p = .043 vs multiple-hit) and rare in other groups (0-9.1%, p < .05 vs multiple-hit). Spike-and-wave bursts had a slower frequency in multiple-hit rats (5.4-5.8Hz) than in the other groups (7.6-8.3Hz) (p < .05); pulse rapamycin had no effect on the hourly spike-and-wave burst rates in adulthood. Rapamycin, however, reduced the time spent in slow-wave-sleep (17.2%), which was increased in multiple-hit rats (71.6%, p = .003). Sham rats spent more time in wakefulness (43.7%) compared to controls (30.6%, p = .043). Multiple-hit rats, with or without rapamycin treatment, had right more than left corticohippocampal, basal ganglia lesions. There was no macroscopic pathology in the other groups. SIGNIFICANCE Structural corticohippocampal/basal ganglia lesions increase the risk for post-infantile spasms epilepsy, Lennox-Gastaut syndrome features, and sleep dysregulation. Pulse rapamycin treatment for infantile spasms has anti-epileptogenic effects, despite the structural lesions, and decreases the time spent in slow wave sleep.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Stephen W Briggs
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Bronx, New York, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA.,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Bronx, New York, USA.,Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| |
Collapse
|
15
|
Mizuguchi M, Ohsawa M, Kashii H, Sato A. Brain Symptoms of Tuberous Sclerosis Complex: Pathogenesis and Treatment. Int J Mol Sci 2021; 22:ijms22136677. [PMID: 34206526 PMCID: PMC8268912 DOI: 10.3390/ijms22136677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of the rapamycin (mTOR) system plays multiple, important roles in the brain, regulating both morphology, such as cellular size, shape, and position, and function, such as learning, memory, and social interaction. Tuberous sclerosis complex (TSC) is a congenital disorder caused by a defective suppressor of the mTOR system, the TSC1/TSC2 complex. Almost all brain symptoms of TSC are manifestations of an excessive activity of the mTOR system. Many children with TSC are afflicted by intractable epilepsy, intellectual disability, and/or autism. In the brains of infants with TSC, a vicious cycle of epileptic encephalopathy is formed by mTOR hyperactivity, abnormal synaptic structure/function, and excessive epileptic discharges, further worsening epilepsy and intellectual/behavioral disorders. Molecular target therapy with mTOR inhibitors has recently been proved to be efficacious for epilepsy in human TSC patients, and for autism in TSC model mice, indicating the possibility for pharmacological treatment of developmental synaptic disorders.
Collapse
Affiliation(s)
- Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Itabashi-ku, Tokyo 173-0037, Japan
- Correspondence: ; Tel.: +81-3-5841-3515
| | - Maki Ohsawa
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Itabashi-ku, Tokyo 173-0037, Japan
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan;
| | - Atsushi Sato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan;
| |
Collapse
|
16
|
Galanopoulou AS, Löscher W, Lubbers L, O’Brien TJ, Staley K, Vezzani A, D’Ambrosio R, White HS, Sontheimer H, Wolf JA, Twyman R, Whittemore V, Wilcox KS, Klein B. Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 2021; 6:276-296. [PMID: 34033232 PMCID: PMC8166793 DOI: 10.1002/epi4.12490] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common chronic brain diseases and is often associated with cognitive, behavioral, or other medical conditions. The need for therapies that would prevent, ameliorate, or cure epilepsy and the attendant comorbidities is a priority for both epilepsy research and public health. In 2018, the National Institute of Neurological Disease and Stroke (NINDS) convened a workshop titled "Accelerating the Development of Therapies for Antiepileptogenesis and Disease Modification" that brought together preclinical and clinical investigators and industry and regulatory bodies' representatives to discuss and propose a roadmap to accelerate the development of antiepileptogenic (AEG) and disease-modifying (DM) new therapies. This report provides a summary of the discussions and proposals of the Preclinical Science working group. Highlights of the progress of collaborative preclinical research projects on AEG/DM of ongoing research initiatives aiming to improve infrastructure and translation to clinical trials are presented. Opportunities and challenges of preclinical epilepsy research, vis-à-vis clinical research, were extensively discussed, as they pertain to modeling of specific epilepsy types across etiologies and ages, the utilization of preclinical models in AG/DM studies, and the strategies and study designs, as well as on matters pertaining to transparency, data sharing, and reporting research findings. A set of suggestions on research initiatives, infrastructure, workshops, advocacy, and opportunities for expanding the borders of epilepsy research were discussed and proposed as useful initiatives that could help create a roadmap to accelerate and optimize preclinical translational AEG/DM epilepsy research.
Collapse
Affiliation(s)
- Aristea S. Galanopoulou
- Saul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNYUSA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany
| | | | - Terence J. O’Brien
- Department of NeuroscienceCentral Clinical SchoolAlfred HealthMonash UniversityMelbourneVic.Australia
| | - Kevin Staley
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS‐Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | | | - H. Steve White
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeattleWAUSA
| | | | - John A. Wolf
- Center for Brain Injury and RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPAUSA
| | | | - Vicky Whittemore
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Karen S. Wilcox
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Brian Klein
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
17
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Sannagowdara K, Khan N. Medical Management in Focal versus Generalized Epilepsy. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0040-1722297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAbout 70% of children with new-onset epilepsy have the potential to become seizure-free on antiepileptic drug (AED) monotherapy with appropriately selected first-line medication. In ideal world, physician is expected to achieve best possible seizure control without impacting the quality of life. There is rapid increase in number of AEDs available over last couple of decades. Although not necessarily all of them are superior to old generation drugs in terms of seizure control, certainly there is change in landscape from perspective of tolerability and side-effect profile. Physicians must therefore be familiar with safety, tolerability, therapeutic effects, synergistic combinations as well as AEDs to avoid in specific circumstances. The article attempts to give general overview of available AEDs under broad umbrella of effectiveness against focal and generalized seizures as well as drugs with “broad spectrum.” The emergence of newer AEDs with broad spectrum and favorable side-effect profile is welcome. However, the future lies in better understanding of underlying diverse pathophysiology of clinical symptom “epilepsy” and developing new compounds acting on molecular targets as well as individualizing therapy. Technological advances in molecular genetics research are bringing precision medicine to the fore.
Collapse
Affiliation(s)
- Kumar Sannagowdara
- Department of Child Neurology and Epilepsy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nadir Khan
- Department of Child Neurology and Epilepsy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
19
|
Everolimus als krankheitsspezifische Therapieoption bei mit tuberöser Sklerose assoziierter, therapierefraktärer Epilepsie – ein systematischer Überblick. ZEITSCHRIFT FUR EPILEPTOLOGIE 2021. [DOI: 10.1007/s10309-020-00393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ZusammenfassungTuberöse Sklerose („tuberous sclerosis complex“ [TSC]) ist eine seltene genetische Erkrankung, die neben kutanen und viszeralen Organmanifestationen typischerweise bereits in einem sehr frühen Erkrankungsstadium mit einer schweren, meist therapierefraktären Epilepsie einhergeht. Aufgrund seiner direkten Wirkung am durch TSC dysregulierten mTOR-Signalweg sowie der synergistischen Effekte auf andere Organmanifestationen kommt das Rapamycin-Derivat Everolimus (EVE) zunehmend zur Anwendung. Ziel dieses systematischen Reviews ist, die Wirksamkeit, Sicherheit und Verträglichkeit von EVE bei Patienten mit TSC-assoziierter, therapierefraktärer Epilepsie aufzuarbeiten.
Collapse
|
20
|
Sidira C, Vargiami E, Dragoumi P, Zafeiriou DI. Hemimegalencephaly and tuberous sclerosis complex: A rare yet challenging association. Eur J Paediatr Neurol 2021; 30:58-65. [PMID: 33387903 DOI: 10.1016/j.ejpn.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Hemimegalencephaly is a rare malformation of cortical development characterised by enlargement of one cerebral hemisphere. The association between hemimegalencephaly and tuberous sclerosis complex, an autosomal dominant genetic disorder, is uncommon and has so far been reported only in a few cases. Intractable epilepsy and severe developmental delay are typical clinical manifestations. Aberrant activation of the mTOR signalling pathway is considered to be the hallmark of the pathogenesis of these two disorders. Thus, mTOR inhibitors such as everolimus represent a promising therapeutic approach to mTOR-associated manifestations. We present a thorough literature review of the association between hemimegaloencephaly and tuberous sclerosis complex.
Collapse
Affiliation(s)
- Christina Sidira
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Efthymia Vargiami
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Pinelopi Dragoumi
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- 1st Paediatric Department, Developmental Centre "A. Fokas", Aristotle University of Thessaloniki, "Hippokration" General Hospital, Thessaloniki, Greece.
| |
Collapse
|
21
|
Kadish NE, Riedel C, Stephani U, Wiegand G. Developmental outcomes in children/adolescents and one adult with tuberous sclerosis complex (TSC) and refractory epilepsy treated with everolimus. Epilepsy Behav 2020; 111:107182. [PMID: 32535369 DOI: 10.1016/j.yebeh.2020.107182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
This prospective observational study focuses on developmental outcomes in the treatment of tuberous sclerosis complex (TSC) with everolimus (EVO). Fourteen children/adolescents aged 1.7-13.07 and one adult aged 31 years, all with TSC and refractory epilepsy participated. All were treated with EVO for 3-70 months (md: 37). Development/adaptive functioning were evaluated at baseline with follow-up in 11 patients; all patients were assessed during the course of treatment. Our exploratory analyses included factors contributing to developmental impairment and change from baseline to last evaluation. The majority of patients showed severe developmental impairment (86%). Patients with a higher age at inclusion, duration of epilepsy, and number of previous antiepileptic drugs (AEDs) showed lower developmental levels. Earlier onset of epilepsy and a higher number of current AEDs were associated with worse adaptive functioning. At their last examination, four patients were seizure-free (27%), and four experienced a reduction of seizures >50% (27%). With treatment, (slight) increase was seen in absolute values of developmental age (DA) regarding both development and adaptive functioning. Yet, when accounting for age, decrease was seen in both assessments. While developmental disorders were prominent, we observed an overall progression at a slower pace. Despite a positive effect on seizure occurrence, treatment with EVO did not reverse developmental problems in the observation period of this study.
Collapse
Affiliation(s)
- Navah E Kadish
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Arnold-Heller-Straße 3, Haus C, 24105 Kiel, Germany; Department of Medical Psychology and Medical Sociology, University Medical Centre Schleswig-Holstein, Preußer Straße 1-9, 24105 Kiel, Germany.
| | - Christian Riedel
- Department of Radiology and Neuroradiology, University Medical Centre Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany; Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Ulrich Stephani
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Arnold-Heller-Straße 3, Haus C, 24105 Kiel, Germany.
| | - Gert Wiegand
- Department of Neuropediatrics, University Medical Centre Schleswig-Holstein, Arnold-Heller-Straße 3, Haus C, 24105 Kiel, Germany; Neuropediatrics Section of the Department of Pediatrics, Asklepios Clinic Hamburg Nord-Heidberg, Tangstedter Landstraße 400, 22417 Hamburg, Germany.
| |
Collapse
|
22
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
23
|
Moavero R, Curatolo P. Long-term use of mTORC1 inhibitors in tuberous sclerosis complex associated neurological aspects. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1789862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
24
|
An update on the central nervous system manifestations of tuberous sclerosis complex. Acta Neuropathol 2020; 139:613-624. [PMID: 30976976 DOI: 10.1007/s00401-019-02003-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
The autosomal dominant disorder tuberous sclerosis complex (TSC) is characterized by an array of manifestations both within and outside of the central nervous system (CNS), including hamartomas and other malformations. TSC is caused by mutations in the TSC1 or TSC2 gene resulting in activation of the mechanistic target of rapamycin (mTOR) signaling pathway. Study of TSC has shed light on the critical role of the mTOR pathway in neurodevelopment. This update reviews the genetic basis of TSC, its cardinal phenotypic CNS features, and recent developments in the field of TSC and other mTOR-altered disorders.
Collapse
|
25
|
Overwater IE, Rietman AB, van Eeghen AM, de Wit MCY. Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): current perspectives. Ther Clin Risk Manag 2019; 15:951-955. [PMID: 31440057 PMCID: PMC6666377 DOI: 10.2147/tcrm.s145630] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022] Open
Abstract
Up to 90% of patients with tuberous sclerosis complex (TSC) have epilepsy, and in over half of patients seizure control cannot be achieved by regular antiepileptic drugs. The underlying problem is mTOR hyperactivation due to loss of function of the TSC proteins. Treatment with everolimus, an mTOR inhibitor, has been shown to be of great benefit to TSC patients, both in reducing tumor growth and as a treatment for intractable epilepsy. Up to 40% of TSC patients with intractable epilepsy show a clinically relevant seizure response to everolimus. It has not yet fully lived up to its promise as a disease-modifying drug, however, as half of TSC patients with intractable epilepsy do not show a clinically relevant seizure frequency reduction. There is no evidence yet of a positive effect on the cognitive and neuropsychiatric deficits in TSC patients. In preclinical studies, mTOR inhibition can rescue abnormal neuronal migration and synapse formation that is caused by mTOR hyperactivation. These studies show a critical time window that suggests that mTOR inhibition may be most beneficial in young children. The trials done so far have not studied treatment in children under 2 years of age, although case series suggest that the safety profile is similar to that in older children. Further studies into the optimal time window, dosing schedules and possibly combination with other drugs may further improve the benefit of everolimus for TSC patients.
Collapse
Affiliation(s)
- Iris E Overwater
- Department of Pediatric Neurology and ENCORE Expertise Center, Erasmus MC, Rotterdam, the Netherlands
| | - André B Rietman
- Department of Child and Adolescent Psychiatry/Psychology and ENCORE Expertise Center, Erasmus MC, Rotterdam, the Netherlands
| | - Agnies M van Eeghen
- Heeren Loo Care Group and ENCORE Expertise Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marie Claire Y de Wit
- Department of Pediatric Neurology and ENCORE Expertise Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Saffari A, Brösse I, Wiemer-Kruel A, Wilken B, Kreuzaler P, Hahn A, Bernhard MK, van Tilburg CM, Hoffmann GF, Gorenflo M, Hethey S, Kaiser O, Kölker S, Wagner R, Witt O, Merkenschlager A, Möckel A, Roser T, Schlump JU, Serfling A, Spiegler J, Milde T, Ziegler A, Syrbe S. Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age - a multicenter retrospective study. Orphanet J Rare Dis 2019; 14:96. [PMID: 31053163 PMCID: PMC6500021 DOI: 10.1186/s13023-019-1077-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a multisystem disease with prominent neurologic manifestations such as epilepsy, cognitive impairment and autism spectrum disorder. mTOR inhibitors have successfully been used to treat TSC-related manifestations in older children and adults. However, data on their safety and efficacy in infants and young children are scarce. The objective of this study is to assess the utility and safety of mTOR inhibitor treatment in TSC patients under the age of 2 years. Results A total of 17 children (median age at study inclusion 2.4 years, range 0–6; 12 males, 5 females) with TSC who received early mTOR inhibitor therapy were studied. mTOR inhibitor treatment was started at a median age of 5 months (range 0–19 months). Reasons for initiation of treatment were cardiac rhabdomyomas (6 cases), subependymal giant cell astrocytomas (SEGA, 5 cases), combination of cardiac rhabdomyomas and SEGA (1 case), refractory epilepsy (4 cases) and disabling congenital focal lymphedema (1 case). In all cases everolimus was used. Everolimus therapy was overall well tolerated. Adverse events were classified according to the Common Terminology Criteria of Adverse Events (CTCAE, Version 5.0). Grade 1–2 adverse events occurred in 12 patients and included mild transient stomatitis (2 cases), worsening of infantile acne (1 case), increases of serum cholesterol and triglycerides (4 cases), changes in serum phosphate levels (2 cases), increase of cholinesterase (2 cases), transient neutropenia (2 cases), transient anemia (1 case), transient lymphopenia (1 case) and recurrent infections (7 cases). No grade 3–4 adverse events were reported. Treatment is currently continued in 13/17 patients. Benefits were reported in 14/17 patients and included decrease of cardiac rhabdomyoma size and improvement of arrhythmia, decrease of SEGA size, reduction of seizure frequency and regression of congenital focal lymphedema. Despite everolimus therapy, two patients treated for intractable epilepsy are still experiencing seizures and another one treated for SEGA showed no volume reduction. Conclusion This retrospective multicenter study demonstrates that mTOR inhibitor treatment with everolimus is safe in TSC patients under the age of 2 years and shows beneficial effects on cardiac manifestations, SEGA size and early epilepsy.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ines Brösse
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Wilken
- Department of Pediatric Neurology, Kassel Hospital, Kassel, Germany
| | - Paula Kreuzaler
- Department of Child Neurology, University Hospital, Gießen, Germany
| | - Andreas Hahn
- Department of Child Neurology, University Hospital, Gießen, Germany
| | - Matthias K Bernhard
- Department of Neuropediatrics, University Hospital of Children, Leipzig, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department for Congenital Heart Defects/Paediatric Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven Hethey
- Auf der Bult - Center for Children and Adolescents, Hannover, Germany
| | - Olaf Kaiser
- Department of Paediatrics I, Paediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Wagner
- Department of Pediatric Cardiology, University of Leipzig, Heart Center, Leipzig, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Timo Roser
- Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Jan-Ulrich Schlump
- Division for Children and Adolescents, Evangelical Hospital Oberhausen, Oberhausen, Germany
| | | | - Juliane Spiegler
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Child Neurology and Metabolic Medicine, Center for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|