1
|
Kan ASH, Kusay AS, Mohammadi NA, Lin SXN, Liao VWY, Lesca G, Souci S, Milh M, Christophersen P, Chebib M, Møller RS, Absalom NL, Jensen AA, Ahring PK. Understanding paralogous epilepsy-associated GABA A receptor variants: Clinical implications, mechanisms, and potential pitfalls. Proc Natl Acad Sci U S A 2024; 121:e2413011121. [PMID: 39642202 DOI: 10.1073/pnas.2413011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024] Open
Abstract
Recent discoveries have revealed that genetic variants in γ-aminobutyric acid type A (GABAA) receptor subunits can lead to both gain-of-function (GOF) and loss-of-function (LOF) receptors. GABAA receptors, however, have a pseudosymmetrical pentameric assembly, and curiously diverse functional outcomes have been reported for certain homologous variants in paralogous genes (paralogous variants). To investigate this, we assembled a cohort of 11 individuals harboring paralogous M1 proline missense variants in GABRA1, GABRB2, GABRB3, and GABRG2. Seven mutations (α1P260L, α1P260S, β2P252L, β3P253L, β3P253S, γ2P282A, and γ2P282S) in α1β2/3γ2 receptors were analyzed using electrophysiological examinations and molecular dynamics simulations. All individuals in the cohort were diagnosed with developmental and epileptic encephalopathy, with a median seizure onset age of 3.5 mo, and all exhibited global developmental delay. The clinical data for this cohort aligned with established GABAA receptor GOF but not LOF cohorts. Electrophysiological assessments revealed that all variants caused GOF by increasing GABA sensitivity by 3- to 23-fold. In some cases, this was accompanied by LOF traits such as reduced maximal current amplitude and enhanced receptor desensitization. The specific subunit mutated and whether the mutation occurred in one or two subunits within the pentamer influenced the overall effects. Molecular dynamics simulations confirmed similar structural changes from all mutations, but with position-dependent asymmetry. These findings establish that paralogous variants affecting the 100% conserved proline residue in the M1 transmembrane helix of GABAAR subunits all lead to overall GOF traits. The unexpected asymmetric and mixed effects on receptor function have broader implications for interpreting functional analyses for multimeric ion-channel proteins.
Collapse
Affiliation(s)
- Anthony S H Kan
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ali S Kusay
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping SE-581 83, Sweden
| | - Nazanin A Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center Filadelfia, Member of the European Reference Network EpiCARE, Dianalund DK-4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense DK-5230, Denmark
| | - Susan X N Lin
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vivian W Y Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the European Reference Network EpiCARE, Hospices Civils de Lyon, Lyon 69002, France
- Institut Neuromyogène, CNRS UMR 5310-INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Sabrine Souci
- Department of Neurology, Hospices Civils de Lyon, Lyon Sud University Hospital, Pierre Bénite 69495, France
| | - Mathieu Milh
- Department of Pediatric Neurology, Assistance Publique - Hôpitaux de Marseille, La Timone Children's Hospital, Marseille 13005, France
- Institut de Neurobiologie de la Méditerranée, INSERM, Aix-Marseille Université, Marseille 13273, France
| | | | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center Filadelfia, Member of the European Reference Network EpiCARE, Dianalund DK-4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense DK-5230, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Philip K Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Sajan SA, Gradisch R, Vogel FD, Coffey AJ, Salyakina D, Soler D, Jayakar P, Jayakar A, Bianconi SE, Cooper AH, Liu S, William N, Benkel-Herrenbrück I, Maiwald R, Heller C, Biskup S, Leiz S, Westphal DS, Wagner M, Clarke A, Stockner T, Ernst M, Kesari A, Krenn M. De novo variants in GABRA4 are associated with a neurological phenotype including developmental delay, behavioral abnormalities and epilepsy. Eur J Hum Genet 2024; 32:912-919. [PMID: 38565639 PMCID: PMC11291759 DOI: 10.1038/s41431-024-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alison J Coffey
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana Soler
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Anuj Jayakar
- Department of Neurology, Division of Epilepsy, Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | | | | - Robert Maiwald
- Medizinisches Versorgungszentrum für Gerinnungsdiagnostik und Medizinische Genetik Köln, Köln, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amy Clarke
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Mohammadi NA, Ahring PK, Yu Liao VW, Chua HC, Ortiz de la Rosa S, Johannesen KM, Michaeli-Yossef Y, Vincent-Devulder A, Meridda C, Bruel AL, Rossi A, Patel C, Klepper J, Bonanni P, Minghetti S, Trivisano M, Specchio N, Amor D, Auvin S, Baer S, Meyer P, Milh M, Salpietro V, Maroofian R, Lemke JR, Weckhuysen S, Christophersen P, Rubboli G, Chebib M, Jensen AA, Absalom NL, Møller RS. Distinct neurodevelopmental and epileptic phenotypes associated with gain- and loss-of-function GABRB2 variants. EBioMedicine 2024; 106:105236. [PMID: 38996765 PMCID: PMC11296288 DOI: 10.1016/j.ebiom.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Variants in GABRB2, encoding the β2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS Electrophysiological assessments of α1β2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.
Collapse
Affiliation(s)
- Nazanin Azarinejad Mohammadi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Philip Kiær Ahring
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vivian Wan Yu Liao
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Han Chow Chua
- Sydney Pharmacy School, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sebastián Ortiz de la Rosa
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Marie Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yael Michaeli-Yossef
- Pediatric Neurology Unit and Metabolic Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
| | | | | | | | - Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Pediatric Clinic, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Joerg Klepper
- Children's Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Conegliano, Treviso, Italy
| | - Sara Minghetti
- IRCCS E. Medea Scientific Institute, Clinical Neurophysiology Unit, Bosisio Parini, LC, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - David Amor
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Stéphane Auvin
- Université de Paris, Child Neurology & Epilepsy, Paris, France; Robert-Debré Hospital, Center for Rare Epilepsies - Pediatric Neurology, Paris, France
| | - Sarah Baer
- Department of Paediatric Neurology, French Reference Center of Rare Epilepsies CREER, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Meyer
- Paediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CNRS, University Hospital Montpellier, Montpellier, France
| | - Mathieu Milh
- Department of Pediatric Neurology, AP-HM, La Timone Children's Hospital, Marseille, France; Faculté de Médecine Timone, Aix Marseille Univ, INSERM, MMG, U1251, ERN EpiCARE, Marseille, France
| | - Vincenzo Salpietro
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mary Chebib
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan L Absalom
- School of Medical Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Science, Western Sydney University, Sydney, Australia.
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Filadelfia (Member of the ERN EpiCARE), Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Demos-Davies K, Lawrence J, Coffey J, Morgan A, Ferreira C, Hoeppner LH, Seelig D. Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice. Int J Mol Sci 2024; 25:5731. [PMID: 38891920 PMCID: PMC11171684 DOI: 10.3390/ijms25115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a consequence of chemotherapy and extracranial radiation therapy (ECRT). Our prior work demonstrated gliosis in the brain following ECRT in SKH1 mice. The signals that induce gliosis were unclear. Right hindlimb skin from SKH1 mice was treated with 20 Gy or 30 Gy to induce subclinical or clinical dermatitis, respectively. Mice were euthanized at 6 h, 24 h, 5 days, 12 days, and 25 days post irradiation, and the brain, thoracic spinal cord, and skin were collected. The brains were harvested for spatial proteomics, immunohistochemistry, Nanostring nCounter® glial profiling, and neuroinflammation gene panels. The thoracic spinal cords were evaluated by immunohistochemistry. Radiation injury to the skin was evaluated by histology. The genes associated with neurotransmission, glial cell activation, innate immune signaling, cell signal transduction, and cancer were differentially expressed in the brains from mice treated with ECRT compared to the controls. Dose-dependent increases in neuroinflammatory-associated and neurodegenerative-disease-associated proteins were measured in the brains from ECRT-treated mice. Histologic changes in the ECRT-treated mice included acute dermatitis within the irradiated skin of the hindlimb and astrocyte activation within the thoracic spinal cord. Collectively, these findings highlight indirect neuronal transmission and glial cell activation in the pathogenesis of ECRT-related CRCI, providing possible signaling pathways for mitigation strategies.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Jessica Coffey
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Amy Morgan
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Luke H. Hoeppner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Sharma D, Tripathi M, Doddamani R, Sharma MC, Lalwani S, Sarat Chandra P, Banerjee Dixit A, Banerjee J. Correlation of age at seizure onset with GABA A receptor subunit and chloride Co-transporter configuration in Focal cortical dysplasia (FCD). Neurosci Lett 2023; 796:137065. [PMID: 36638954 DOI: 10.1016/j.neulet.2023.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Focal cortical dysplasia (FCD) represents a group of malformations of cortical development, which are speculated to be related to early developmental defects in the cerebral cortex. According to dysmature cerebral development hypothesis of FCD altered GABAA receptor function is known to contribute to abnormal neuronal network. Here, we studied the possible association between age at seizure onset in FCD with the subunit configuration of GABAA receptors in resected brain specimens obtained from patients with FCD. We observed a significantly higher ratio of α4/α1 subunit-containing GABAA receptors in patients with early onset (EO) FCD as compared to those with late onset (LO) FCD as is seen during the course of development where α4-containing GABAA receptors expression is high as compared to α1-containing GABAA receptors expression. Likewise, the influx to efflux chloride co-transporter expression of NKCC1/KCC2 was also increased in patients with EO FCD as seen during brain development. In addition, we observed that the ratio of GABA/Glutamate neurotransmitters was lower in patients with EO FCD as compared to that in patients with LO FCD. Our findings suggest altered configuration of GABAA receptors in FCD which could be contributing to aberrant depolarizing GABAergic activity. In particular, we observed a correlation of age at seizure onset in FCD with subunit configuration of GABAA receptors, levels of NKCC1/KCC2 and the ratio of GABA/Glutamate neurotransmitters such that the patients with EO FCD exhibited a more critically modulated GABAergic network.
Collapse
Affiliation(s)
- Devina Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - M C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
9
|
Ahring PK, Liao VWY, Lin S, Absalom NL, Chebib M, Møller RS. The de novo GABRA4 p.Thr300Ile variant found in a patient with early-onset intractable epilepsy and neurodevelopmental abnormalities displays gain-of-function traits. Epilepsia 2022; 63:2439-2441. [PMID: 35781801 DOI: 10.1111/epi.17358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Philip K Ahring
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan Lin
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan L Absalom
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|