1
|
McGreig S, Pufal H, Conyers C, Jones EP, Haynes E. Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius. INSECTS 2024; 15:732. [PMID: 39452308 PMCID: PMC11508802 DOI: 10.3390/insects15100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024]
Abstract
Dietary analysis of herbivorous insects relies on successfully eliminating surface contamination. If this cannot be performed reliably, then it will not be possible to differentiate between plants that the insect is feeding on and plants the insect has been in contact with, either directly or via pollen. Methods in the literature often use bleach and alcohol washes to remove contamination. We perform a controlled metabarcoding baseline study on a herbivorous, xylem-feeding insect, the Meadow Spittlebug (Philaenus spumarius), using Oxford Nanopore Technologies (ONT) sequencing, and identify possible contamination that persists after washes. Despite the reported success of methods in the literature, we find that contamination is still present, leading to possible false-positive results. We hypothesise that pollen is the main source of contamination, its robust nature making it difficult to remove, and conduct a further three experiments with the goal of removing pollen from the surface of Philaenus spumarius. This study investigates the effectiveness of robust bleach/Tween/alcohol washes, sterile gut excision (including combined with Distel application), and ultraviolet light as alternative sterilisation approaches. Overall, our findings indicate that we are unable to remove surface contamination and still detect signals that may originate in the gut. In no experiment did we unequivocally detect plant DNA that originated in the P. spumarius gut.
Collapse
Affiliation(s)
| | - Hollie Pufal
- Fera Science Limited, York YO41 1LZ, UK
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle NE1 7RU, UK
| | | | - Eleanor P. Jones
- Fera Science Limited, York YO41 1LZ, UK
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle NE1 7RU, UK
| | | |
Collapse
|
2
|
Ahmed E, Musio B, Todisco S, Mastrorilli P, Gallo V, Saponari M, Nigro F, Gualano S, Santoro F. Non-Targeted Spectranomics for the Early Detection of Xylella fastidiosa Infection in Asymptomatic Olive Trees, cv. Cellina di Nardò. Molecules 2023; 28:7512. [PMID: 38005234 PMCID: PMC10672767 DOI: 10.3390/molecules28227512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive trees in southern Italy since around 2009. During the disease, caused by Xylella fastidiosa subsp. pauca sequence type ST53 (Xf), the flow of water and nutrients within the trees is significantly compromised. Initially, infected trees may not show any symptoms, making early detection challenging. In this study, young artificially infected plants of the susceptible cultivar Cellina di Nardò were grown in a controlled environment and co-inoculated with additional xylem-inhabiting fungi. Asymptomatic leaves of olive plants at an early stage of infection were collected and analyzed using nuclear magnetic resonance (NMR), hyperspectral reflectance (HSR), and chemometrics. The application of a spectranomic approach contributed to shedding light on the relationship between the presence of specific hydrosoluble metabolites and the optical properties of both asymptomatic Xf-infected and non-infected olive leaves. Significant correlations between wavebands located in the range of 530-560 nm and 1380-1470 nm, and the following metabolites were found to be indicative of Xf infection: malic acid, fructose, sucrose, oleuropein derivatives, and formic acid. This information is the key to the development of HSR-based sensors capable of early detection of Xf infections in olive trees.
Collapse
Affiliation(s)
- Elhussein Ahmed
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Maria Saponari
- Istituto Per la Protezione Sostenibile Delle Piante, CNR, Via Amendola 122/D, I-70126 Bari, Italy;
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy;
| | - Stefania Gualano
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Franco Santoro
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| |
Collapse
|
3
|
Bodino N, Cavalieri V, Dongiovanni C, Saponari M, Bosco D. Bioecological Traits of Spittlebugs and Their Implications for the Epidemiology and Control of the Xylella fastidiosa Epidemic in Apulia (Southern Italy). PHYTOPATHOLOGY 2023; 113:1647-1660. [PMID: 36945728 DOI: 10.1094/phyto-12-22-0460-ia] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nicola Bodino
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
| | - Vincenzo Cavalieri
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Crescenza Dongiovanni
- CRSFA-Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, 70010 Locorotondo (BA), Italy
| | - Maria Saponari
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Domenico Bosco
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
| |
Collapse
|
4
|
Yoon S, Lee WH. Assessing potential European areas of Pierce's disease mediated by insect vectors by using spatial ensemble model. FRONTIERS IN PLANT SCIENCE 2023; 14:1209694. [PMID: 37396635 PMCID: PMC10312007 DOI: 10.3389/fpls.2023.1209694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Pierce's disease (PD) is a serious threat to grape production in Europe. This disease is caused by Xylella fastidiosa and is mediated by insect vectors, suggesting its high potential for spread and necessity for early monitoring. In this study, hence, potential distribution of Pierce's disease varied with climate change and was spatially evaluated in Europe using ensemble species distribution modeling. Two models of X. fastidiosa and three major insect vectors (Philaenus spumarius, Neophilaenus campestris, and Cicadella viridis) were developed using CLIMEX and MaxEnt. The consensus areas of the disease and insect vectors, along with host distribution, were evaluated using ensemble mapping to identify high-risk areas for the disease. Our predictions showed that the Mediterranean region would be the most vulnerable to Pierce's disease, and the high-risk area would increase three-fold due to climate change under the influence of N. campestris distribution. This study demonstrated a methodology for species distribution modeling specific to diseases and vectors while providing results that could be used for monitoring Pierce's disease by simultaneously considering the disease agent, vectors, and host distribution.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| | - Wang-Hee Lee
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
de Chaves MQG, Morán F, Barbé S, Bertolini E, de la Rosa FS, Marco-Noales E. A new and accurate qPCR protocol to detect plant pathogenic bacteria of the genus 'Candidatus Liberibacter' in plants and insects. Sci Rep 2023; 13:3338. [PMID: 36849507 PMCID: PMC9971166 DOI: 10.1038/s41598-023-30345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Four pathogenic bacterial species of the genus 'Candidatus Liberibacter', transmitted by psyllid vectors, have been associated with serious diseases affecting economically important crops of Rutaceae, Apiaceae and Solanaceae families. The most severe disease of citrus plants, huanglongbing (HLB), is associated with 'Ca. Liberibacter asiaticus' (CaLas), 'Ca. Liberibacter americanus' (CaLam) and 'Ca. Liberibacter africanus' (CaLaf), while 'Ca. Liberibacter solanacearum' (CaLsol) is associated with zebra chip disease in potatoes and vegetative disorders in apiaceous plants. Since these bacteria remain non-culturable and their symptoms are non-specific, their detection and identification are done by molecular methods, mainly based on PCR protocols. In this study, a new quantitative real-time PCR protocol based on TaqMan probe, which can also be performed in a conventional PCR version, has been developed to detect the four known phytopathogenic species of the genus Liberibacter. The new protocol has been validated according to European Plant Protection Organization (EPPO) guidelines and is able to detect CaLas, CaLam, CaLaf and CaLsol in both plants and vectors, not only using purified DNA but also using crude extracts of potato and citrus or psyllids. A comparative analysis with other previously described qPCR protocols revealed that this new one developed in this study is more specific and equally or more sensitive. Thus, other genus-specific qPCR protocols have important drawbacks regarding the lack of specificity, while with the new protocol there was no cross-reactions in 250 samples from 24 different plant and insect species from eight different geographical origins. Therefore, it can be used as a rapid and time-saving screening test, as it allows simultaneous detection of all plant pathogenic species of 'Ca. Liberibacter' in a one-step assay.
Collapse
Affiliation(s)
- María Quintana-González de Chaves
- grid.493405.f0000 0004 1793 4432Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain
| | - Félix Morán
- grid.419276.f0000 0000 9605 0555Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Silvia Barbé
- grid.419276.f0000 0000 9605 0555Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Edson Bertolini
- grid.8532.c0000 0001 2200 7498Department of Plant Health, Faculty of Agronomys, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 91540-000 Brazil
| | - Felipe Siverio de la Rosa
- grid.493405.f0000 0004 1793 4432Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain
| | - Ester Marco-Noales
- Unidad de Bacteriología, Centro de Protección Vegetal y Biotecnología. Instituto Vaslenciano de Investigaciones Agrarias (IVIA), 46113, Valencia, Spain.
| |
Collapse
|
6
|
Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greco D, Ippolito A, Lahbib N, Logrieco AF, López-Llorca LV, Lopez-Moya F, Luvisi A, Mincuzzi A, Molina-Acevedo JP, Pazzani C, Scortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 2023; 11:440. [PMID: 36838405 PMCID: PMC9967823 DOI: 10.3390/microorganisms11020440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | | | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Mariantonietta Colagiero
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giuseppe Cozzi
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Antonio Francesco Logrieco
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | | | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annamaria Mincuzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Juan Pablo Molina-Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana-AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Colombia
| | - Carlo Pazzani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Maria Scrascia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Valenzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
7
|
Montilon V, Potere O, Susca L, Bottalico G. Phytosanitary Rules for the Movement of Olive ( Olea europaea L.) Propagation Material into the European Union (EU). PLANTS (BASEL, SWITZERLAND) 2023; 12:699. [PMID: 36840047 PMCID: PMC9958701 DOI: 10.3390/plants12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Phytosanitary legislation involves government laws that are essential to minimize the risk of the introduction and diffusion of pests, especially invasive non-native species, as a consequence of the international exchange of plant material, thus allowing us to safeguard agricultural production and biodiversity of a territory. These measures ensure compliance with adequate requirements relating to the absence of pests, especially of harmful quarantine organisms through inspections and diagnosis tests of the consignments to ascertain the presence of the pests concerned. They also regulate the eradication and containment measures that are implemented in the eventuality of an unintentional introduction of these organisms. In the present contribution, the current plant protection legislation for the exchange of plants or propagation material within the European Union or for export to foreign countries, represented by Regulation (EU) 2016/2031, has been reviewed, with a particular focus on the olive tree (Olea europaea L.). Furthermore, a brief summary of the main olive tree pests transmissible with the propagation material is also reported, indicating their current categorization with respect to the relative quarantine status.
Collapse
|
8
|
Lovell-Read FA, Parnell S, Cunniffe NJ, Thompson RN. Using 'sentinel' plants to improve early detection of invasive plant pathogens. PLoS Comput Biol 2023; 19:e1010884. [PMID: 36730434 PMCID: PMC9928126 DOI: 10.1371/journal.pcbi.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.
Collapse
Affiliation(s)
| | - Stephen Parnell
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robin N. Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Dupas E, Durand K, Rieux A, Briand M, Pruvost O, Cunty A, Denancé N, Donnadieu C, Legendre B, Lopez-Roques C, Cesbron S, Ravigné V, Jacques MA. Suspicions of two bridgehead invasions of Xylella fastidiosa subsp. multiplex in France. Commun Biol 2023; 6:103. [PMID: 36707697 PMCID: PMC9883466 DOI: 10.1038/s42003-023-04499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Of American origin, a wide diversity of Xylella fastidiosa strains belonging to different subspecies have been reported in Europe since 2013 and its discovery in Italian olive groves. Strains from the subspecies multiplex (ST6 and ST7) were first identified in France in 2015 in urban and natural areas. To trace back the most probable scenario of introduction in France, the molecular evolution rate of this subspecies was estimated at 3.2165 × 10-7 substitutions per site per year, based on heterochronous genome sequences collected worldwide. This rate allowed the dating of the divergence between French and American strains in 1987 for ST6 and in 1971 for ST7. The development of a new VNTR-13 scheme allowed tracing the spread of the bacterium in France, hypothesizing an American origin. Our results suggest that both sequence types were initially introduced and spread in Provence-Alpes-Côte d'Azur (PACA); then they were introduced in Corsica in two waves from the PACA bridgehead populations.
Collapse
Affiliation(s)
- Enora Dupas
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France ,French Agency for Food, Environmental and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | - Karine Durand
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion France
| | - Martial Briand
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Amandine Cunty
- French Agency for Food, Environmental and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | - Nicolas Denancé
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Cécile Donnadieu
- grid.507621.7INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Bruno Legendre
- French Agency for Food, Environmental and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | | | - Sophie Cesbron
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Virginie Ravigné
- grid.8183.20000 0001 2153 9871CIRAD, UMR PHIM, F-34398 Montpellier, France
| | - Marie-Agnès Jacques
- grid.7252.20000 0001 2248 3363Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
10
|
Trkulja V, Tomić A, Iličić R, Nožinić M, Milovanović TP. Xylella fastidiosa in Europe: From the Introduction to the Current Status. THE PLANT PATHOLOGY JOURNAL 2022; 38:551-571. [PMID: 36503185 PMCID: PMC9742796 DOI: 10.5423/ppj.rw.09.2022.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | - Andrija Tomić
- University of East Sarajevo, Faculty of Agriculture, Vuka Karadžića 30, 71123 East Sarajevo,
Bosnia and Herzegovina
| | - Renata Iličić
- University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad,
Serbia
| | - Miloš Nožinić
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | | |
Collapse
|
11
|
Baró A, Saldarelli P, Saponari M, Montesinos E, Montesinos L. Nicotiana benthamiana as a model plant host for Xylella fastidiosa: Control of infections by transient expression and endotherapy with a bifunctional peptide. FRONTIERS IN PLANT SCIENCE 2022; 13:1061463. [PMID: 36531347 PMCID: PMC9752042 DOI: 10.3389/fpls.2022.1061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Transient expression of genes encoding peptides BP134 and BP178 by means of a Potato virus X (PVX) based-vector system, and treatment with synthetic peptides by endotherapy, were evaluated in the control of Xylella fastidiosa infections, in the model plant Nicotiana benthamiana. Transient production of BP178 significantly decreased disease severity compared to PVX and non-treated control (NTC) plants, without adverse effects. Plants treated with synthetic BP134 and BP178 showed consistently lower levels of disease than NTC plants. However, the coinfection with PVX-BP134 and X. fastidiosa caused detrimental effects resulting in plant death. The levels of X. fastidiosa in three zones sampled, upwards and downwards of the inoculation/treatment point, significantly decreased compared to the NTC plants, after the treatment with BP178, but not when BP178 was produced transiently. The effect of treatment and transient production of BP178 in the induction of defense-related genes was also studied. Synthetic BP178 applied by endotherapy induced the expression of ERF1, PR1a, PAL, PALII and WRKY25, while the transient expression of BP178 overexpressed the Cath, Cyc, PR4a, 9-LOX and Endochitinase B genes. Both treatments upregulated the expression of PR1, PR3, PR4 and CycT9299 genes compared to the NTC or PVX plants. It was concluded that the effect of BP178, either by endotherapy or by transient expression, on the control of the X. fastidiosa infections in N. benthamiana, was due in part to the induction of the plant defense system in addition to its bactericidal activity reported in previous studies. However, the protection observed when BP178 was transiently produced seems mainly mediated by the induction of plant defense, because the levels of X. fastidiosa were not significantly affected.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
12
|
Lago C, Cornara D, Minutillo SA, Moreno A, Fereres A. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. PEST MANAGEMENT SCIENCE 2022; 78:4841-4849. [PMID: 35908181 PMCID: PMC9804339 DOI: 10.1002/ps.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticides are essential, though controversial tools in modern pest management. Insecticides can slow the spread of key vector-borne plant pathogens, but often lead to inconsistent results given that insecticide use is generally focused on acute toxicity under no-choice conditions. Here, we analysed the lethal (survival) and sublethal (feeding behaviour) effects of six commercial products (acetamiprid, deltamethrin, spinosad, sulfoxaflor, pyrethrin and kaolin) on Philaenus spumarius, vector of the bacterium Xylella fastidiosa. Furthermore, we assessed the impact of insecticides displaying different degrees of acute toxicity against spittlebugs (highest to lowest: acetamiprid, pyrethrin and kaolin) on the transmission of X. fastidiosa by P. spumarius under both free-choice and no-choice conditions. RESULTS Deltamethrin, acetamiprid and to a limited extent pyrethrin significantly altered the feeding behaviour of P. spumarius. Deltamethrin and acetamiprid were highly toxic against P. spumarius, but the mortality induced by exposure to pyrethrin was limited overall. By contrast, spinosad, sulfoxaflor and kaolin did not significantly impact P. spumarius feeding behaviour or survival. Under no-choice conditions, both pyrethrin and acetamiprid reduced the X. fastidiosa inoculation rate compared with kaolin and the control. On the other hand, pyrethrin reduced transmission, but acetamiprid failed to significantly affect bacterial inoculation under free-choice conditions. CONCLUSION Pyrethrin was the only compound able to reduce X. fastidiosa transmission under both free-choice and no-choice conditions. Xylella fastidiosa management strategy based exclusively on the evaluation of insecticide acute toxicity under no-choice conditions would most likely fail to prevent, or slow, bacterial spread. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Clara Lago
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Departamento de Producción AgrariaEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Daniele Cornara
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Department of Soil, Plant and Food SciencesEntomological and Zoological Section, University of Bari Aldo MoroBariItaly
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Serena Anna Minutillo
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| |
Collapse
|
13
|
Sarcina L, Macchia E, Loconsole G, D'Attoma G, Bollella P, Catacchio M, Leonetti F, Di Franco C, Elicio V, Scamarcio G, Palazzo G, Boscia D, Saldarelli P, Torsi L. Fast and Reliable Electronic Assay of a Xylella fastidiosa Single Bacterium in Infected Plants Sap. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203900. [PMID: 36031404 PMCID: PMC9596825 DOI: 10.1002/advs.202203900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Pathogens ultra-sensitive detection is vital for early diagnosis and provision of restraining actions and/or treatments. Among plant pathogens, Xylella fastidiosa is among the most threatening as it can infect hundreds of plant species worldwide with consequences on agriculture and the environment. An electrolyte-gated transistor is here demonstrated to detect X. fastidiosa at a limit-of-quantification (LOQ) of 2 ± 1 bacteria in 0.1 mL (20 colony-forming-unit per mL). The assay is carried out with a millimeter-wide gate functionalized with Xylella-capturing antibodies directly in saps recovered from naturally infected plants. The proposed platform is benchmarked against the quantitave polymerase chain reaction (qPCR) gold standard, whose LOQ turns out to be at least one order of magnitude higher. Furthermore, the assay selectivity is proven against the Paraburkholderia phytofirmans bacterium (negative-control experiment). The proposed label-free, fast (30 min), and precise (false-negatives, false-positives below 1%) electronic assay, lays the ground for an ultra-high performing immunometric point-of-care platform potentially enabling large-scale screening of asymptomatic plants.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia – Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | | | - Giusy D'Attoma
- Institute for Sustainable Plant Protection CNRBari70125Italy
| | - Paolo Bollella
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Michele Catacchio
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia – Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cinzia Di Franco
- Istituto di Fotonica e Nanotecnologie CNRc/o Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Vito Elicio
- Agritest SrlTecnopolisCasamassimaBA70010Italy
| | - Gaetano Scamarcio
- Istituto di Fotonica e Nanotecnologie CNRc/o Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gerardo Palazzo
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection CNRBari70125Italy
| | | | - Luisa Torsi
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| |
Collapse
|
14
|
Farigoule P, Chartois M, Mesmin X, Lambert M, Rossi JP, Rasplus JY, Cruaud A. Vectors as Sentinels: Rising Temperatures Increase the Risk of Xylella fastidiosa Outbreaks. BIOLOGY 2022; 11:1299. [PMID: 36138778 PMCID: PMC9495951 DOI: 10.3390/biology11091299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Global change is expected to modify the threat posed by pathogens to plants. However, little is known regarding how a changing climate will influence the epidemiology of generalist vector-borne diseases. We developed a high-throughput screening method to test for the presence of a deadly plant pathogen, Xylella fastidiosa, in its insect vectors. Then, using data from a four-year survey in climatically distinct areas of Corsica (France), we demonstrated a positive correlation between the proportion of vectors positive to X. fastidiosa and temperature. Notably, a higher prevalence corresponded with milder winters. Our projections up to 2100 indicate an increased risk of outbreaks. While the proportion of vectors that carry the pathogen should increase, the climate conditions will remain suitable for the bacterium and its main vector, with possible range shifts towards a higher elevation. Besides calling for research efforts to limit the incidence of plant diseases in the temperate zone, this work reveals that recent molecular technologies could and should be used for massive screening of pathogens in vectors to scale-up surveillance and management efforts.
Collapse
Affiliation(s)
- Pauline Farigoule
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AgroParisTech, 91120 Palaiseau, France
| | - Marguerite Chartois
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AGAP Institute, INRAE, CIRAD, Institute Agro, University of Montpellier, 20230 San Giuliano, France
| | - Xavier Mesmin
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
- AGAP Institute, INRAE, CIRAD, Institute Agro, University of Montpellier, 20230 San Giuliano, France
| | - Maxime Lambert
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Jean-Pierre Rossi
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| | - Astrid Cruaud
- CBGP, INRAE, CIRAD, IRD, Institute Agro, University of Montpellier, 34988 Montferrier-sur-Lez, France
| |
Collapse
|
15
|
Anguita-Maeso M, Ares-Yebra A, Haro C, Román-Écija M, Olivares-García C, Costa J, Marco-Noales E, Ferrer A, Navas-Cortés JA, Landa BB. Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Front Microbiol 2022; 13:866085. [PMID: 35910659 PMCID: PMC9330911 DOI: 10.3389/fmicb.2022.866085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Xylella fastidiosa represents a major threat to important crops worldwide including almond, citrus, grapevine, and olives. Nowadays, there are no efficient control measures for X. fastidiosa, and the use of preventive measures and host resistance represent the most practical disease management strategies. Research on vessel-associated microorganisms is gaining special interest as an innate natural defense of plants to cope against infection by xylem-inhabiting pathogens. The objective of this research has been to characterize, by next-generation sequencing (NGS) analysis, the microbial communities residing in the xylem sap of almond trees affected by almond leaf scorch disease (ALSD) in a recent X. fastidiosa outbreak occurring in Alicante province, Spain. We also determined community composition changes and network associations occurring between xylem-inhabiting microbial communities and X. fastidiosa. For that, a total of 91 trees with or without ALSD symptoms were selected from a total of eight representative orchards located in five municipalities within the X. fastidiosa-demarcated area. X. fastidiosa infection in each tree was verified by quantitative polymerase chain reaction (qPCR) analysis, with 54% of the trees being tested X. fastidiosa-positive. Globally, Xylella (27.4%), Sphingomonas (13.9%), and Hymenobacter (12.7%) were the most abundant bacterial genera, whereas Diplodia (30.18%), a member of the family Didymellaceae (10.7%), and Aureobasidium (9.9%) were the most predominant fungal taxa. Furthermore, principal coordinate analysis (PCoA) of Bray–Curtis and weighted UniFrac distances differentiated almond xylem bacterial communities mainly according to X. fastidiosa infection, in contrast to fungal community structure that was not closely related to the presence of the pathogen. Similar results were obtained when X. fastidiosa reads were removed from the bacterial data set although the effect was less pronounced. Co-occurrence network analysis revealed negative associations among four amplicon sequence variants (ASVs) assigned to X. fastidiosa with different bacterial ASVs belonging to 1174-901-12, Abditibacterium, Sphingomonas, Methylobacterium–Methylorubrum, Modestobacter, Xylophilus, and a non-identified member of the family Solirubrobacteraceae. Determination of the close-fitting associations between xylem-inhabiting microorganisms and X. fastidiosa may help to reveal specific microbial players associated with the suppression of ALSD under high X. fastidiosa inoculum pressure. These identified microorganisms would be good candidates to be tested in planta, to produce almond plants more resilient to X. fastidiosa infection when inoculated by endotherapy, contributing to suppress ALSD.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- *Correspondence: Manuel Anguita-Maeso,
| | - Aitana Ares-Yebra
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Miguel Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Concepción Olivares-García
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Amparo Ferrer
- Servicio de Sanidad Vegetal, Generalitat Valenciana, Valencia, Spain
| | - Juan A. Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
- Blanca B. Landa,
| |
Collapse
|
16
|
Catalano A, Ceramella J, Iacopetta D, Mariconda A, Scali E, Bonomo MG, Saturnino C, Longo P, Aquaro S, Sinicropi MS. Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees. Antibiotics (Basel) 2022; 11:947. [PMID: 35884201 PMCID: PMC9312276 DOI: 10.3390/antibiotics11070947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| |
Collapse
|
17
|
Epidemiologically-based strategies for the detection of emerging plant pathogens. Sci Rep 2022; 12:10972. [PMID: 35768558 PMCID: PMC9243127 DOI: 10.1038/s41598-022-13553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging pests and pathogens of plants are a major threat to natural and managed ecosystems worldwide. Whilst it is well accepted that surveillance activities are key to both the early detection of new incursions and the ability to identify pest-free areas, the performance of these activities must be evaluated to ensure they are fit for purpose. This requires consideration of the number of potential hosts inspected or tested as well as the epidemiology of the pathogen and the detection method used. In the case of plant pathogens, one particular concern is whether the visual inspection of plant hosts for signs of disease is able to detect the presence of these pathogens at low prevalences, given that it takes time for these symptoms to develop. One such pathogen is the ST53 strain of the vector-borne bacterial pathogen Xylella fastidiosa in olive hosts, which was first identified in southern Italy in 2013. Additionally, X. fastidiosa ST53 in olive has a rapid rate of spread, which could also have important implications for surveillance. In the current study, we evaluate how well visual surveillance would be expected to perform for this pathogen and investigate whether molecular testing of either tree hosts or insect vectors offer feasible alternatives. Our results identify the main constraints to each of these strategies and can be used to inform and improve both current and future surveillance activities.
Collapse
|
18
|
Velasco-Amo MP, Arias-Giraldo LF, Olivares-García C, Denancé N, Jacques MA, Landa BB. Use of traC Gene to Type the Incidence and Distribution of pXFAS_5235 Plasmid-Bearing Strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1562. [PMID: 35736713 PMCID: PMC9228473 DOI: 10.3390/plants11121562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Xylella fastidiosa (Xf) is a phytopathogenic bacterium with a repertoire of self-replicating genetic elements, including plasmids, pathogenicity islands, and prophages. These elements provide potential avenues for horizontal gene transfer both within and between species and have the ability to confer new virulence traits, including the ability to colonize new host plants. However, they can also serve as a 'footprint' to type plasmid-bearing strains. Genome sequencing of several strains of Xf subsp. fastidiosa sequence type (ST) 1 from Mallorca Island, Spain, revealed the presence of a 38 kb plasmid (pXFAS_5235). In this study, we developed a PCR-based typing approach using primers targeting the traC gene to determine the presence of pXFAS_5235 plasmid or other plasmids carrying this gene in a world-wide collection of 65 strains X. fastidiosa from different subspecies and STs or in 226 plant samples naturally infected by the bacterium obtained from the different outbreaks of Xf in Spain. The traC gene was amplified only in the plant samples obtained from Mallorca Island infected by Xf subsp. fastidiosa ST1 and from all Spanish strains belonging to this ST. Maximum-likelihood phylogenetic tree of traC revealed a close relatedness among Spanish and Californian strains carrying similar plasmids. Our results confirm previous studies, which suggested that a single introduction event of Xf subsp. fastidiosa ST1 occurred in the Balearic Islands. Further studies on the presence and role of plasmids in Xf strains belonging to the same or different subspecies and STs can provide important information in studies of epidemiology, ecology, and evolution of this plant pathogen.
Collapse
Affiliation(s)
- María Pilar Velasco-Amo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Luis F. Arias-Giraldo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Nicolás Denancé
- Groupe d’Étude et de controle des Variétes Et des Semences GEVES, CEDEX, F-49071 Beaucouzé, France;
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Marie-Agnès Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Blanca B. Landa
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| |
Collapse
|
19
|
Cendoya M, Hubel A, Conesa D, Vicent A. Modeling the Spatial Distribution of Xylella fastidiosa: A Nonstationary Approach with Dispersal Barriers. PHYTOPATHOLOGY 2022; 112:1036-1045. [PMID: 34732079 DOI: 10.1094/phyto-05-21-0218-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spatial species distribution models often assume isotropy and stationarity, implying that spatial dependence is direction-invariant and uniform throughout the study area. However, these assumptions are violated when dispersal barriers are present. Despite this, the issue of nonstationarity has been little explored in the context of plant health. The objective of this study was to evaluate the influence of barriers in the distribution of Xylella fastidiosa in the demarcated area in Alicante, Spain. Occurrence data from 2018 were analyzed through spatial Bayesian hierarchical models. The stationary model, illustrating a scenario without control interventions or geographical features, was compared with three nonstationary models: a model with mountains as physical barriers, and two models with a continuous and discontinuous perimeter barrier representing hypothetical control interventions. In the stationary model, the posterior mean of the spatial range, as the distance where two observations are uncorrelated, was 4,030 m 95% credible interval (2,907 to 5,564). This distance can be used to define the buffer zone in the demarcated area. The predicted probability of X. fastidiosa presence in the area outside the barrier was 0.46 with the stationary model, whereas it was reduced to 0.29 and 0.36 with the continuous and discontinuous barrier models, respectively. Differences between the discontinuous and continuous barrier models showed that breaks, where no control interventions were implemented, resulted in a higher predicted probability of X. fastidiosa presence in the areas with low sampling intensity. These results may help authorities prioritize the areas for surveillance and disease control.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Martina Cendoya
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d'Investigacions Agràries, 46113 Moncada, Spain
| | - Ana Hubel
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d'Investigacions Agràries, 46113 Moncada, Spain
| | - David Conesa
- Valencia Bayesian Research Group, Departament d'Estadística i Investigació Operativa, Universitat de València, 46100 València, Spain
| | - Antonio Vicent
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d'Investigacions Agràries, 46113 Moncada, Spain
| |
Collapse
|
20
|
Marcolungo L, Passera A, Maestri S, Segala E, Alfano M, Gaffuri F, Marturano G, Casati P, Bianco PA, Delledonne M. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens 2022; 11:pathogens11020199. [PMID: 35215142 PMCID: PMC8876587 DOI: 10.3390/pathogens11020199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.
Collapse
Affiliation(s)
- Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Elena Segala
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Francesca Gaffuri
- Servizio Fitosanitario Regione Lombardia Laboratorio Fitopatologico c/o Fondazione Minoprio, 22100 Minoprio, Italy;
| | - Giovanni Marturano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Paola Casati
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce, 73, 10135 Turin, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
- Genartis S.r.l., Via P. Mascagni 98, 37060 Castel D’Azzano, Italy
- Correspondence: ; Tel.: +39-045-802-7962
| |
Collapse
|
21
|
De Pascali M, Vergine M, Negro C, Greco D, Vita F, Sabella E, De Bellis L, Luvisi A. Xylella fastidiosa and Drought Stress in Olive Trees: A Complex Relationship Mediated by Soluble Sugars. BIOLOGY 2022; 11:biology11010112. [PMID: 35053110 PMCID: PMC8773346 DOI: 10.3390/biology11010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Carbohydrates play important roles in tolerance to both biotic and abiotic stressors. Xylella fastidiosa, the causal agent of “Olive Quick Decline Syndrome”, is a quarantine pathogen that induces drought stress in the host, aggravated by eventual water shortage, which is a frequent environmental condition in Mediterranean olive groves. At present, the resistance mechanisms shown by few resistant olive cultivars (e.g., cv Leccino) are not completely known; therefore, the aim of this research is to understand whether sugar metabolism is involved in the cross-talk mechanisms of biotic and abiotic responses. The results show that drought stress response induces effects beneficial to resistance of Xylella fastidiosa in cv Leccino. In the current context of global climate change, this study supports the importance of investigating the complex drought–disease interaction to detect resistance traits and thus find ways to counter the threat of this pathogen in the future. Abstract Xylella fastidiosa (Xf) subsp. pauca “De Donno” is the etiological agent of “Olive Quick Decline Syndrome” (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (−27.0% and −25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (−20.1%) and combined stresses (−11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
- Correspondence:
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| |
Collapse
|
22
|
Brunetti A, Matere A, Lumia V, Pasciuta V, Fusco V, Sansone D, Marangi P, Cristella N, Faggioli F, Scortichini M, Pilotti M. Neofusicoccum mediterraneum Is Involved in a Twig and Branch Dieback of Olive Trees Observed in Salento (Apulia, Italy). Pathogens 2022; 11:53. [PMID: 35056001 PMCID: PMC8780778 DOI: 10.3390/pathogens11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
Olive trees are infected and damaged by Botryosphaeriaceae fungi in various countries. The botryosphaeriaceous fungus Neofusicoccum mediterraneum is highly aggressive and is a major concern for olive groves in Spain and California (USA), where it causes 'branch and twig dieback' characterized by wood discoloration, bark canker, and canopy blight. During surveys of olive groves in Apulia (southern Italy), we noticed that-in some areas-trees were heavily affected by severe branch and twig dieback. In addition, chlorosis and the appearance of red-bronze patches on the leaf preceded the wilting of the foliage, with necrotic leaves persisting on the twigs. Given the severity of the manifestation in zones also subject to olive quick decline syndrome (OQDS) caused by Xylella fastidiosa subsp. pauca, we investigated the etiology and provide indications for differentiating the symptoms from OQDS. Isolation from diseased wood samples revealed a mycete, which was morphologically and molecularly identified as N. mediterraneum. The pathogenicity tests clearly showed that this fungus is able to cause the natural symptoms. Therefore, also considering the low number of tested samples, N. mediterraneum is a potential causal agent of the observed disease. Specifically, inoculation of the twigs caused complete wilting in two to three weeks, while inoculation at the base of the stem caused severe girdling wedge-shaped cankers. The growth rate of the fungus in in vitro tests was progressively higher from 10 to 30 °C, failing to grow at higher temperatures, but keeping its viability even after prolonged exposure at 50 °C. The capacity of the isolate to produce catenulate chlamydospores, which is novel for the species, highlights the possibility of a new morphological strain within N. mediterraneum. Further investigations are ongoing to verify whether additional fungal species are involved in this symptomatology.
Collapse
Affiliation(s)
- Angela Brunetti
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Antonio Matere
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Valentina Lumia
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Vittorio Pasciuta
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Valeria Fusco
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Domenico Sansone
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Paolo Marangi
- Terranostra S.r.l.s., Via Monte Grappa, 48, 72021 Francavilla Fontana, Italy; (P.M.); (N.C.)
| | - Nicola Cristella
- Terranostra S.r.l.s., Via Monte Grappa, 48, 72021 Francavilla Fontana, Italy; (P.M.); (N.C.)
| | - Francesco Faggioli
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit Trees and Citrus Crops (CREA-OFA), Via di Fioranello, 52, 00134 Roma, Italy;
| | - Massimo Pilotti
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero, 22, 00156 Roma, Italy; (A.B.); (A.M.); (V.L.); (V.P.); (V.F.); (D.S.); (F.F.)
| |
Collapse
|
23
|
Hodgetts J. A Panel of Real-Time PCR Assays for the Direct Detection of All of the Xylella fastidiosa Subspecies. Methods Mol Biol 2022; 2536:201-230. [PMID: 35819607 DOI: 10.1007/978-1-0716-2517-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bacterial plant pathogen Xylella fastidiosa causes disease in hundreds of plant species worldwide including many crops, and as such accurate determination of the subspecies of the bacteria is vital to control, containment, and eradication measures. Conventional methods to determine the subspecies of X. fastidiosa rely on time consuming multilocus sequence typing (MLST), a laborious multistage process. This chapter provides a rapid alternative to MLST utilizing real-time PCR assays to provide highly specific and sensitive detection of the pathogen subspecies. Here we describe the methodology for sampling plant material, performing the DNA extraction and undertaking the real-time PCR assays. This method allows straightforward, robust, reliable, high-throughput, and rapid determination of the X. fastidiosa subspecies.
Collapse
|
24
|
Fusco V, Pasciuta V, Lumia V, Matere A, Battaglia V, Bertinelli G, Sansone D, Brunetti A, Pilotti M. Root and stem rot, and wilting of olive tree caused by Dematophora necatrix and associated with Emmia lacerata in Central Italy. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2022; 163:71-96. [PMID: 35095205 PMCID: PMC8783780 DOI: 10.1007/s10658-022-02458-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED Lethal wilting was observed on young olive trees cv Favolosa in a grove in central Italy. White mycelial strands wrapped the basal portion of the stems that had been buried during planting. The bark was rotted and the xylem was discoloured. A fungal morphotype was strictly associated with symptomatic plants and identified as Dematophora (ex Rosellinia) necatrix. Pathogenicity tests on cvs Favolosa, Leccino and Ogliarola demonstrated that D. necatrix was the causal agent of the disease. Our investigations revealed that infections occurring during autumn and winter greatly favour the disease. By applying a marcottage to the inoculation point, we accelerated the course of the disease and mimicked the lethal outcome observed in the field. In in vitro tests, seven systemic (potential) fungicides strongly inhibited D. necatrix. Dentamet, Al-phosphite and Thiophanate methyl were selected to be tested in planta with a curative and preventive modality. Only Thiophanate methyl, in preventive modality, fully protected the plants from disease progression throughout the observation period. An additional fungal species was strictly associated with both diseased and apparently healthy plants. Morphological and molecular features identified the fungus as Emmia lacerata, a polypore species within the Irpicaceae, which is the agent of white rot on dead woody substrates. To our knowledge, this is the first time that E. lacerata has been reported in Italy and worldwide on olive trees. Inoculation of ‛Favolosa' trees revealed that it colonizes the xylem without causing visible alterations. The possible role of E. lacerata in the olive tree-D. necatrix pathosystem is discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10658-022-02458-1.
Collapse
Affiliation(s)
- Valeria Fusco
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Vittorio Pasciuta
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Valentina Lumia
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Antonio Matere
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Valerio Battaglia
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Giorgia Bertinelli
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Domenico Sansone
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Angela Brunetti
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| | - Massimo Pilotti
- Research Center for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, Via C. G. Bertero 22, 00156 Rome, Italy
| |
Collapse
|
25
|
Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Front Microbiol 2021; 12:753874. [PMID: 34819923 PMCID: PMC8606745 DOI: 10.3389/fmicb.2021.753874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
26
|
Baró A, Montesinos L, Badosa E, Montesinos E. Aggressiveness of Spanish Isolates of Xylella fastidiosa to Almond Plants of Different Cultivars Under Greenhouse Conditions. PHYTOPATHOLOGY 2021; 111:1994-2001. [PMID: 33749331 DOI: 10.1094/phyto-02-21-0049-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggressiveness of Spanish isolates of Xylella fastidiosa, representing different sequence types, were studied in almond plants of several cultivars by means of the dynamics of the population levels and symptoms, colonization and spread, and dose-effect relationships. Pathogen dynamics in almond plants under greenhouse conditions showed doubling times of 2.1 to 2.5 days during the exponential growth phase, with a maximum population size of about 35 days postinoculation (dpi). Differences in patterns in population dynamics were observed between sap and xylem tissue after the exponential growth, as population levels in the xylem tissue remained stable while viable cells in sap decreased. Population levels were higher in two upward zones than in the downward zone with respect to the inoculation area. The first symptoms were observed between 20 and 60 dpi, and disease severity increased over time at doubling times of 30 days, with a maximum observed at 120 dpi. Strains tested showed differences in population levels in the cultivars studied and were able to spread with different intensity from contaminated plant parts to new growing shoots after pruning. Two almond isolates showed different performance in dose-effect relationships when inoculated in cultivar Avijor. Whereas IVIA 5387.2 reached high population levels but showed high median effective dose (ED50) and minimal infective dose (MID) values, IVIA 5901.2 showed low population levels and low ED50 and MID values. This study has implications for the epidemiology of X. fastidiosa in almond crops, estimating doubling times of the pathogen in planta and of symptom development and showing differences in aggressiveness between strains.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, 17003 Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, 17003 Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, 17003 Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, 17003 Girona, Spain
| |
Collapse
|
27
|
Marco-Noales E, Barbé S, Monterde A, Navarro-Herrero I, Ferrer A, Dalmau V, Aure CM, Domingo-Calap ML, Landa BB, Roselló M. Evidence that Xylella fastidiosa is the Causal Agent of Almond Leaf Scorch Disease in Alicante, Mainland Spain (Iberian Peninsula). PLANT DISEASE 2021; 105:3349-3352. [PMID: 33973814 DOI: 10.1094/pdis-03-21-0625-sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In 2017, Xylella fastidiosa, a quarantine plant-pathogenic bacterium in Europe, was detected in almond trees associated with leaf scorch symptoms in Alicante, a Mediterranean area in southeastern mainland Spain. The bacterium was detected by serological and molecular techniques, isolated in axenic culture from diseased almond trees, and identified as X. fastidiosa subsp. multiplex sequence type (ST) 6. Inoculation experiments on almond plants in greenhouse trials with a characterized strain of X. fastidiosa subsp. multiplex ST6 isolated in the outbreak area have proved that it was able to multiply and systemically colonize inoculated plants. Disease symptoms characteristic of leaf scorch like those observed in the field were observed in the inoculated almond trees after 1 year. Furthermore, the pathogen was reisolated and identified by molecular tests. With the fulfillment of Koch's postulates, we have demonstrated that X. fastidiosa is the causal agent of the almond leaf scorch disease in the Alicante outbreak.
Collapse
Affiliation(s)
- E Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - S Barbé
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - A Monterde
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - I Navarro-Herrero
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - A Ferrer
- Servicio de Sanidad Vegetal, Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural, Generalitat Valenciana, 46460 Silla (Valencia), Spain
| | - V Dalmau
- Servicio de Sanidad Vegetal, Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural, Generalitat Valenciana, 46460 Silla (Valencia), Spain
| | - C M Aure
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - M L Domingo-Calap
- Empresa de Transformación Agraria (Tragsa), Delegación de Valencia, 46010 Valencia, Spain
| | - B B Landa
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), 14004 Córdoba, Spain
| | - M Roselló
- Laboratorio de Diagnóstico Fitopatológico, Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural, Generalitat Valenciana, 46460 Silla (Valencia), Spain
| |
Collapse
|
28
|
Román-Reyna V, Dupas E, Cesbron S, Marchi G, Campigli S, Hansen MA, Bush E, Prarat M, Shiplett K, Ivey MLL, Pierzynski J, Miller SA, Peduto Hand F, Jacques MA, Jacobs JM. Metagenomic Sequencing for Identification of Xylella fastidiosa from Leaf Samples. mSystems 2021; 6:e0059121. [PMID: 34698548 PMCID: PMC8547472 DOI: 10.1128/msystems.00591-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa (Xf) is a globally distributed plant-pathogenic bacterium. The primary control strategy for Xf diseases is eradicating infected plants; therefore, timely and accurate detection is necessary to prevent crop losses and further pathogen dispersal. Conventional Xf diagnostics primarily relies on quantitative PCR (qPCR) assays. However, these methods do not consider new or emerging variants due to pathogen genetic recombination and sensitivity limitations. We developed and tested a metagenomics pipeline using in-house short-read sequencing as a complementary approach for affordable, fast, and highly accurate Xf detection. We used metagenomics to identify Xf to the strain level in single- and mixed-infected plant samples at concentrations as low as 1 pg of bacterial DNA per gram of tissue. We also tested naturally infected samples from various plant species originating from Europe and the United States. We identified Xf subspecies in samples previously considered inconclusive with real-time PCR (quantification cycle [Cq], >35). Overall, we showed the versatility of the pipeline by using different plant hosts and DNA extraction methods. Our pipeline provides taxonomic and functional information for Xf diagnostics without extensive knowledge of the disease. This pipeline demonstrates that metagenomics can be used for early detection of Xf and incorporated as a tool to inform disease management strategies. IMPORTANCE Destructive Xylella fastidiosa (Xf) outbreaks in Europe highlight this pathogen's capacity to expand its host range and geographical distribution. The current disease diagnostic approaches are limited by a multiple-step process, biases to known sequences, and detection limits. We developed a low-cost, user-friendly metagenomic sequencing tool for Xf detection. In less than 3 days, we were able to identify Xf subspecies and strains in field-collected samples. Overall, our pipeline is a diagnostics tool that could be easily extended to other plant-pathogen interactions and implemented for emerging plant threat surveillance.
Collapse
Affiliation(s)
- Verónica Román-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Enora Dupas
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- French Agency for Food, Environmental, and Occupational Health & Safety, Plant Health Laboratory, Angers, France
| | - Sophie Cesbron
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Guido Marchi
- Department of Agriculture, Food, Environment, and Forestry, University of Florence, Florence, Italy
| | - Sara Campigli
- Department of Agriculture, Food, Environment, and Forestry, University of Florence, Florence, Italy
| | - Mary Ann Hansen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Elizabeth Bush
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Melanie Prarat
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | - Katherine Shiplett
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | | | - Joy Pierzynski
- C. Wayne Ellett Plant and Pest Diagnostic Clinic, Department of Plant Pathology, The Ohio State University, Reynoldsburg, Ohio, USA
| | - Sally A. Miller
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | | | - Marie-Agnes Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Two new superior primer pairs for universal detection of Xylella spp. in conventional PCR and TaqMan quantitative real-time PCR. J Microbiol Methods 2021; 189:106321. [PMID: 34487776 DOI: 10.1016/j.mimet.2021.106321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Xylella fastidiosa causes many economically important plant diseases such as Pierce's disease of grapevine, citrus variegated chlorosis disease, and olive quick decline syndrome. Another species in the same genus, Xylella taiwanensis, causes pear leaf scorch. Here, to enable an initial screening of plants suspected of being infected with Xylella spp. by conventional polymerase chain reaction (cPCR), new primer pairs-X67S1/XL2r and XrDf1/XLr4-were designed to target the 16S ribosomal DNA (rDNA) of not only X. fastidosa but also X. taiwanensis. In cPCR to detect both species, X67S1/XL2r showed features superior to those of other primer pairs, such as fewer false negatives and false positives, whereas XrDf1/XLr4 seemed to be unsuitable because of abundant non-specific amplification. However, when XrDf1/XLr4 was combined with a probe in a TaqMan quantitative real-time PCR (qPCR), the assay detected no false positives and was more useful in the universal detection of Xylella spp. than TaqMan qPCR assays reported previously.
Collapse
|
30
|
Petit G, Bleve G, Gallo A, Mita G, Montanaro G, Nuzzo V, Zambonini D, Pitacco A. Susceptibility to Xylella fastidiosa and functional xylem anatomy in Olea europaea: revisiting a tale of plant-pathogen interaction. AOB PLANTS 2021; 13:plab027. [PMID: 34316336 PMCID: PMC8300559 DOI: 10.1093/aobpla/plab027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/09/2023]
Abstract
Xylella fastidiosa is a xylem-limited bacterium causing the Olive Quick Decline Syndrome, which is currently devastating the agricultural landscape of Southern Italy. The bacterium is injected into the xylem vessels of leaf petioles after the penetration of the insect vector's stylet. From here, it is supposed to colonize the xylem vasculature moving against water flow inside conductive vessels. Widespread vessel clogging following the bacterial infection and causing the failure of water transport seemed not to fully supported by the recent empirical xylem anatomical observations in infected olive trees. We tested the hypothesis that the higher susceptibility to the X. fastidiosa's infection in Cellina di Nardò compared with Leccino is associated to the higher vulnerability to air embolism of its larger vessels. Such hypothesis is motivated by the recognized ability of X. fastidiosa in degrading pit membranes and also because air embolism would possibly provide microenvironmental conditions more favourable to its more efficient aerobic metabolism. We revised the relevant literature on bacterium growth and xylem physiology, and carried out empirical field, mid-summer measurements of xylem anatomy and native embolism in olive cultivars with high (Cellina di Nardò) and low susceptibility (Leccino) to the infection by X. fastidiosa. Both cultivars had similar shoot mass traits and vessel length (~80 cm), but the highly susceptible one had larger vessels and a lower number of vessels supplying a given leaf mass. Native air embolism reduced mean xylem hydraulic conductance by ~58 % (Cellina di Nardò) and ~38 % (Leccino). The higher air-embolism vulnerability of the larger vessels in Cellina di Nardò possibly facilitates the X. fastidiosa's infection compared to Leccino. Some important characteristics of the vector-pathogen-plant interactions still require deep investigations acknowledging both the pathogen metabolic pathways and the biophysical principles of xylem hydraulics.
Collapse
Affiliation(s)
- Giai Petit
- Department of Land, Environment, Agriculture and Forestry (LEAF/TESAF), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| | - Gianluca Bleve
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production, National research Council (ISPA-CNR), via Provinciale Lecce-Monteroni 73100 Lecce, Italy
| | - Giuseppe Montanaro
- Department of European and Mediterranean Culture (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy
| | - Vitale Nuzzo
- Department of European and Mediterranean Culture (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy
| | - Dario Zambonini
- Department of Land, Environment, Agriculture and Forestry (LEAF/TESAF), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| | - Andrea Pitacco
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
31
|
Surface Plasmon Resonance Assay for Label‐Free and Selective Detection of
Xylella Fastidiosa. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Assessment of Ionomic, Phenolic and Flavonoid Compounds for a Sustainable Management of Xylella fastidiosa in Morocco. SUSTAINABILITY 2021. [DOI: 10.3390/su13147818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morocco belongs to the countries ranked at a high-risk level for entry, establishment, and spread of Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance causing olive quick decline syndrome (OQDS). Symptomatic infection by X. fastidiosa leads to devastating diseases and important economic losses. To prevent such losses and damages, countries without current outbreaks like Morocco need to first understand their host plant responses to X. fastidiosa. The assessment of the macro and micro-elements content (ionome) in leaves can give basic and useful information along with being a powerful tool for the sustainable management of diseases caused by this devastating pathogen. Herein, we compare the leaf ionome of four important autochthonous Moroccan olive cultivars (‘Picholine Marocaine’, ‘Haouzia’, ‘Menara’, and ‘Meslalla’), and eight Mediterranean varieties introduced in Morocco (‘Arbequina’, ‘Arbosana’, ‘Leccino’, ‘Ogliarola salentina’, ‘Cellina di Nardo’, ‘Frantoio’, ‘Leucocarpa’, and ‘Picholine de Languedoc’), to develop hypotheses related to the resistance or susceptibility of the Moroccan olive trees to X. fastidiosa infection. Leaf ionomes, mainly Ca, Cu, Fe, Mg, Mn, Na, Zn, and P, were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). These varieties were also screened for their total phenolics and flavonoids content. Data were then involved in a comparative scheme to determine the plasticity of the pathogen. Our results showed that the varieties ‘Leccino’, ’Arbosana’, ‘Arbequina’ consistently contained higher Mn, Cu, and Zn and lower Ca and Na levels compared with the higher pathogen-sensitive ‘Ogliarola salentina’ and ‘Cellina di Nardò’. Our findings suggest that ‘Arbozana’, ‘Arbiquina’, ‘Menara’, and ‘Haouzia’ may tolerate the infection by X. fastidiosa to varying degrees, provides additional support for ‘Leccino’ having resistance to X. fastidiosa, and suggests that both ‘Ogliarola salentina’ and ‘Cellina di Nardö’ are likely sensitive to X. fastidiosa infection.
Collapse
|
33
|
Lombardo L, Rizzo P, Novellis C, Vizzarri V. Preliminary Molecular Survey of the Possible Presence of Xylella fastidiosa in the Upper Ionian Coasts of Calabria, Italy, through the Capture and Analysis of Its Main Vector Insects. INSECTS 2021; 12:446. [PMID: 34068247 PMCID: PMC8153157 DOI: 10.3390/insects12050446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Xylella fastidiosa subsp. pauca, strain CoDiRO is the bacterium responsible for the onset of the disease known as the olive quick decline syndrome, which has been causing a phytosanitary and economic emergency in the Apulia region since 2013. To date, three insect species have been identified as pathogenic carriers of X. fastidiosa. With the advancement of the infection front, and the possibility of pathogenic insects being "hitchhiked" over long distances, the monitoring of the vectors of X. fastidiosa in the Italian regions bordering Apulia is an increasingly contingent issue for the rapid containment of the bacterium and the protection of the olive-growing heritage. Accordingly, the present research concerned the capture and recognition of the vector insects of X. fastidiosa in the upper Ionian coasts of Calabria (Italy) to evaluate the possible presence of the bacterium through molecular diagnostic techniques. The sampling allowed us to ascertain the presence of Philaenus spumarius and Neophilaenus campestris and their preferential distribution in olive groves and meadows, whereas all the 563 individuals tested negative for the pathogen.
Collapse
Affiliation(s)
- Luca Lombardo
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Pierluigi Rizzo
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| | - Carmine Novellis
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| | - Veronica Vizzarri
- CREA Research Centre for Olive, Citrus and Tree Fruit, 87036 Rende, Italy; (P.R.); (C.N.); (V.V.)
| |
Collapse
|
34
|
In situ electrochemical investigation of the interaction between bacteria Xylella fastidiosa DNA and copper(II) using DNA-electrochemical biosensors. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
35
|
Kapantaidaki DE, Antonatos S, Evangelou V, Papachristos DP, Milonas P. Genetic and endosymbiotic diversity of Greek populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, vectors of Xylella fastidiosa. Sci Rep 2021; 11:3752. [PMID: 33580178 PMCID: PMC7881138 DOI: 10.1038/s41598-021-83109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
The plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.
Collapse
Affiliation(s)
- Despoina Ev Kapantaidaki
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece.
| | - Spyridon Antonatos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Vasiliki Evangelou
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Panagiotis Milonas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| |
Collapse
|
36
|
Tatulli G, Modesti V, Pucci N, Scala V, L’Aurora A, Lucchesi S, Salustri M, Scortichini M, Loreti S. Further In Vitro Assessment and Mid-Term Evaluation of Control Strategy of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021; 10:85. [PMID: 33478174 PMCID: PMC7835972 DOI: 10.3390/pathogens10010085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called "infected" zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the "infected" area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Vanessa Modesti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Alessia L’Aurora
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Simone Lucchesi
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, 00185 Roma, Italy;
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, 00134 Roma, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (G.T.); (V.M.); (N.P.); (V.S.); (A.L.); (S.L.)
| |
Collapse
|
37
|
Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci Rep 2021; 11:1061. [PMID: 33441697 PMCID: PMC7806996 DOI: 10.1038/s41598-020-79279-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
In 2013, Xylella fastidiosa spp. pauca was first reported in Puglia, Italy, causing the olive quick decline syndrome (OQDS). Since then the disease has spread, prompting the initiation of management measures to contain the outbreak. Estimates of the shape of the disease front and the rate of area expansion are needed to inform management, e.g. the delineation of buffer zones. However, empirical estimates of the invasion front and the rate of spread of OQDS are not available. Here, we analysed the hundreds of thousands of records of monitoring data on disease occurrence in Puglia to estimate the shape of the invasion front and the rate of movement of the front. The robustness of estimation was checked using simulation. The shape of the front was best fitted by a logistic function while using a beta-binomial error distribution to model variability around the expected proportion of infected trees. The estimated rate of movement of the front was 10.0 km per year (95% confidence interval: 7.5-12.5 km per year). This rate of movement is at the upper limit of previous expert judgements. The shape of the front was flatter than expected. The fitted model indicates that the disease spread started approximately in 2008. This analysis underpins projections of further disease spread and the need for preparedness in areas that are still disease free.
Collapse
|
38
|
Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020; 9:pathogens9090723. [PMID: 32887278 PMCID: PMC7558191 DOI: 10.3390/pathogens9090723] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
The dynamics of Xylella fastidiosa infections in the context of the endophytic microbiome was studied in field-grown plants of the susceptible and resistant olive cultivars Kalamata and FS17. Whole metagenome shotgun sequencing (WMSS) coupled with 16S/ITS rRNA gene sequencing was carried out on the same trees at two different stages of the infections: In Spring 2017 when plants were almost symptomless and in Autumn 2018 when the trees of the susceptible cultivar clearly showed desiccations. The progression of the infections detected in both cultivars clearly unraveled that Xylella tends to occupy the whole ecological niche and suppresses the diversity of the endophytic microbiome. However, this trend was mitigated in the resistant cultivar FS17, harboring lower population sizes and therefore lower Xylella average abundance ratio over total bacteria, and a higher α-diversity. Host cultivar had a negligible effect on the community composition and no clear associations of a single taxon or microbial consortia with the resistance cultivar were found with both sequencing approaches, suggesting that the mechanisms of resistance likely reside on factors that are independent of the microbiome structure. Overall, Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes dominated the bacterial microbiome while Ascomycota and Basidiomycota those of Fungi.
Collapse
Affiliation(s)
- Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Teresa Lino Neto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Daniela Costa
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (T.L.N.); (D.C.)
| | - Giusy D’Attoma
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Raied Abou Kubaa
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Giuseppe Altamura
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - Maria Saponari
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.B.); (C.C.); (J.A.P.)
| | - Pasquale Saldarelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70126 Bari, Italy; (M.M.); (G.D.); (R.A.K.); (G.A.); (M.S.)
- Correspondence: ; Tel.: +39-0805443065
| |
Collapse
|
39
|
Cendoya M, Martínez-Minaya J, Dalmau V, Ferrer A, Saponari M, Conesa D, López-Quílez A, Vicent A. Spatial Bayesian Modeling Applied to the Surveys of Xylella fastidiosa in Alicante (Spain) and Apulia (Italy). FRONTIERS IN PLANT SCIENCE 2020; 11:1204. [PMID: 32922416 PMCID: PMC7456931 DOI: 10.3389/fpls.2020.01204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/24/2020] [Indexed: 05/20/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa was first reported in Europe in 2013, in the province of Lecce, Italy, where extensive areas were affected by the olive quick decline syndrome, caused by the subsp. pauca. In Alicante, Spain, almond leaf scorch, caused by X. fastidiosa subsp. multiplex, was detected in 2017. The effects of climatic and spatial factors on the geographic distribution of X. fastidiosa in these two infested regions in Europe were studied. The presence/absence data of X. fastidiosa in the official surveys were analyzed using Bayesian hierarchical models through the integrated nested Laplace approximation (INLA) methodology. Climatic covariates were obtained from the WorldClim v.2 database. A categorical variable was also included according to Purcell's minimum winter temperature thresholds for the risk of occurrence of Pierce's disease of grapevine, caused by X. fastidiosa subsp. fastidiosa. In Alicante, data were presented aggregated on a 1 km grid (lattice data), where the spatial effect was included in the model through a conditional autoregressive structure. In Lecce, data were observed at continuous locations occurring within a defined spatial domain (geostatistical data). Therefore, the spatial effect was included via the stochastic partial differential equation approach. In Alicante, the pathogen was detected in all four of Purcell's categories, illustrating the environmental plasticity of the subsp. multiplex. Here, none of the climatic covariates were retained in the selected model. Only two of Purcell's categories were represented in Lecce. The mean diurnal range (bio2) and the mean temperature of the wettest quarter (bio8) were retained in the selected model, with a negative relationship with the presence of the pathogen. However, this may be due to the heterogeneous sampling distribution having a confounding effect with the climatic covariates. In both regions, the spatial structure had a strong influence on the models, but not the climatic covariates. Therefore, pathogen distribution was largely defined by the spatial relationship between geographic locations. This substantial contribution of the spatial effect in the models might indicate that the current extent of X. fastidiosa in the study regions had arisen from a single focus or from several foci, which have been coalesced.
Collapse
Affiliation(s)
- Martina Cendoya
- Centre de Protecció Vegetai i Biotecnología, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| | | | - Vicente Dalmau
- Servei de Sanitat Vegetal, Conselleria d’Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecológica, Silla, Spain
| | - Amparo Ferrer
- Servei de Sanitat Vegetal, Conselleria d’Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecológica, Silla, Spain
| | - Maria Saponari
- Instituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - David Conesa
- Departament d’Estadística i Investigació Operativa, Universitat de València, Burjassot, Spain
| | - Antonio López-Quílez
- Departament d’Estadística i Investigació Operativa, Universitat de València, Burjassot, Spain
| | - Antonio Vicent
- Centre de Protecció Vegetai i Biotecnología, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| |
Collapse
|
40
|
Mazzaglia A, Rahi YJ, Taratufolo MC, Tatì M, Turco S, Ciarroni S, Tagliavento V, Valentini F, D'Onghia AM, Balestra GM. A new inclusive MLVA assay to investigate genetic variability of Xylella fastidiosa with a specific focus on the Apulian outbreak in Italy. Sci Rep 2020; 10:10856. [PMID: 32616824 PMCID: PMC7331650 DOI: 10.1038/s41598-020-68072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
The Olive Quick Decline Syndrome by Xylella fastidiosa subspecies pauca is among the most severe phytopathological emergencies nowadays. In few years, the outbreak devastated olive groves in Apulia (Italy), potentially endangering the entire Mediterranean basin. This research aimed to develop a multiple locus VNTR analysis assay, a molecular tool to differentiate between populations of the pathogen. It has already been successfully applied to different X. fastidiosa subspecies from various plant hosts. The previously published TR loci, together with a set of new design, have been tested in silico on the genome of the Apulian De Donno strain. The resulting selection of 37 TR loci was amplified on the genomic DNAs of the Apulian strains AND from representatives of X. fastidiosa subspecies, and directly on DNA extracted from infected plants. The assay clearly discerned among subspecies or even sequence types (ST), but also pointed out variants within the same ST so as to provide more detailed information on the dynamics and pathogen diffusion pathways. Its effective application even on total DNAs extracted from infected tissues of different host plants makes it particularly useful for large-scale screening of infection and for the strengthening of containment measures.
Collapse
Affiliation(s)
- Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy.
| | - Yaseen Jundi Rahi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Maria Claudia Taratufolo
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | - Marta Tatì
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | - Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
| | | | | | - Franco Valentini
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Anna Maria D'Onghia
- CIHEAM-Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Giorgio Mariano Balestra
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università della Tuscia, 01100, Viterbo, Italy
- Phytoparasite Diagnostics s.r.l., 01100, Viterbo, Italy
| |
Collapse
|
41
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|
42
|
Scala V, Pucci N, Salustri M, Modesti V, L’Aurora A, Scortichini M, Zaccaria M, Momeni B, Reverberi M, Loreti S. Xylella fastidiosa subsp. pauca and olive produced lipids moderate the switch adhesive versus non-adhesive state and viceversa. PLoS One 2020; 15:e0233013. [PMID: 32413086 PMCID: PMC7228078 DOI: 10.1371/journal.pone.0233013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids-diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Nicoletta Pucci
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Manuel Salustri
- Dept. of Environmental Biology, Sapienza University, Roma, Italy
| | - Vanessa Modesti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Alessia L’Aurora
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Marco Scortichini
- Council for Agricultural research and Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Roma, Italy
| | - Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | | | - Stefania Loreti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| |
Collapse
|
43
|
Zicca S, De Bellis P, Masiello M, Saponari M, Saldarelli P, Boscia D, Sisto A. Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiol Res 2020; 236:126467. [PMID: 32248049 DOI: 10.1016/j.micres.2020.126467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
Abstract
Strains of Xylella fastidiosa subsp. pauca characterized by a specific genotype, the so called sequence type "ST53", have been associated with a severe disease named Olive Quick Decline Syndrome (OQDS). Despite the relevant research efforts devoted to control the disease caused by X. fastidiosa, so far there are no therapeutic means able to cure the infected host plants. As such, the aim of this study was the identification of antagonistic bacteria potentially deployable as bio-control agents against X. fastidiosa. To this end, two approaches were used, i.e. the evaluation of the antagonistic activity of: i) endophytic bacteria isolated from olive trees located in an infected area but showing mild or no symptoms, and ii) Bacillus strains, as they are already known as bio-control agents. Characterization of endophytic bacterial isolates revealed that the majority belonged to different species of the genera Sphingomonas, Methylobacterium, Micrococcus and Curtobacterium. However, when they were tested in vitro against X. fastidiosa ST53 none of them showed antagonistic activity. On the contrary, when strains belonging to different species of the genus Bacillus were included in these tests, remarkable antagonistic activities were recorded. Some B. velezensis strains also produced culture filtrates with inhibitory activity against X. fastidiosa ST53. Taking also into account that two of these B. velezensis strains (namely strains D747 and QST713) are already registered and commercially available as bio-control agents, our results pave the way for further studies aimed at the development of a sustainable bio-control strategy of the OQDS.
Collapse
Affiliation(s)
- Stefania Zicca
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Palmira De Bellis
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola 122/D, 70126 Bari, Italy
| | - Angelo Sisto
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|