1
|
Tang Y, Zhou L, Zhang T, Jiang F, Pu Y, Wang Z, Liu J, Feng L, Zhou T, Wang X. Population transcriptome reveals genetic divergence and expression diversity of medicinally effective ingredients-related genes for Rheum palmatum complex derived from the top-geoherb area. PLANTA 2025; 261:90. [PMID: 40089954 DOI: 10.1007/s00425-025-04643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/11/2025] [Indexed: 03/18/2025]
Abstract
MAIN CONCLUSION The study revealed genetic diversity and moderate differentiation among the R. palmatum complex within the top-geoherb area. RNA-seq-derived SNP datasets hold the potential to trace geographic origins of the core germplasm. The Rheum palmatum complex, the source plant of rhubarb, has been widely used for centuries due to its diverse functions in clinical treatments. However, the wild resources of rhubarb are currently declining and even facing depletion. Therefore, revealing the genetic background of the R. palmatum complex within the top-geoherb area is important for the efficient utilization and conservation of its wild resources. In this study, population transcriptomic analyses were conducted to assess the genetic diversity and gene expression diversity of different populations in the R. palmatum complex within the top-geoherb area. Candidate single nucleotide polymorphisms (SNPs) were identified as specific molecular markers for tracing the origin of the R. palmatum complex from various top-geoherb areas. Based on the reference genome, a total of 30,480 transcripts and 100,966 SNPs were generated across 82 individuals from 17 populations of the R. palmatum complex. Moderate genetic differentiation was detected for the two genetic lineages of the R. palmatum complex derived from the top-geoherb area. Fourteen genes encoding key enzymes were differentially expressed between two genetic lineages. Besides, 26 specific SNPs located on the genes involved in the biosynthesis of the active components were screened out, and these SNPs were highly differentiated between 2 genetic lineages. A large-scale reference-based assembly transcriptome of the R. palmatum complex from the top-geoherb area provided insights into the genetic divergence and expression differentiation of genetic lineages. The results not only help to understand the genetic background of the R. palmatum complex in the top-geoherb area but also contribute to future genetic conservation and directive breeding of rhubarb.
Collapse
Affiliation(s)
- Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fan Jiang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhengyuan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Quintela M, García‐Seoane E, Dahle G, Klevjer TA, Melle W, Lille‐Langøy R, Besnier F, Tsagarakis K, Geoffroy M, Rodríguez‐Ezpeleta N, Jacobsen E, Côté D, Knutar S, Unneland L, Strand E, Glover K. Genetics in the Ocean's Twilight Zone: Population Structure of the Glacier Lanternfish Across Its Distribution Range. Evol Appl 2024; 17:e70032. [PMID: 39513049 PMCID: PMC11540841 DOI: 10.1111/eva.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
The mesopelagic zone represents one of the few habitats that remains relatively untouched from anthropogenic activities. Among the many species inhabiting the north Atlantic mesopelagic zone, glacier lanternfish (Benthosema glaciale) is the most abundant and widely distributed. This species has been regarded as a potential target for a dedicated fishery despite the scarce knowledge of its population genetic structure. Here, we investigated its genetic structure across the North Atlantic and into the Mediterranean Sea using 121 SNPs, which revealed strong differentiation among three main groups: the Mediterranean Sea, oceanic samples, and Norwegian fjords. The Mediterranean samples displayed less than half the genetic variation of the remaining ones. Very weak or nearly absent genetic structure was detected among geographically distinct oceanic samples across the North Atlantic, which contrasts with the low motility of the species. In contrast, a longitudinal gradient of differentiation was observed in the Mediterranean Sea, where genetic connectivity is known to be strongly shaped by oceanographic processes such as current patterns and oceanographic discontinuities. In addition, 12 of the SNPs, in linkage disequilibrium, drove a three clusters' pattern detectable through Principal Component Analysis biplot matching the genetic signatures generally associated with large chromosomal rearrangements, such as inversions. The arrangement of this putative inversion showed frequency differences between open-ocean and more confined water bodies such as the fjords and the Mediterranean, as it was fixed in the latter for the second most common arrangement of the fjord's samples. However, whether genetic differentiation was driven by local adaptation, secondary contact, or a combination of both factors remains undetermined. The major finding of this study is that B. glaciale in the North Atlantic-Mediterranean is divided into three major genetic units, information that should be combined with demographic properties to outline the management of this species prior to any eventual fishery attempt.
Collapse
Affiliation(s)
- María Quintela
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Eva García‐Seoane
- Plankton GroupInstitute of Marine ResearchBergenNorway
- Sustainable Oceans and CoastsMøreforsking ASÅlesundNorway
| | - Geir Dahle
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Thor A. Klevjer
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Webjørn Melle
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | | | - François Besnier
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersAthensGreece
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
- Faculty of Biosciences, Fisheries and EconomicsUiT the Arctic University of NorwayTromsøNorway
| | | | - Eugenie Jacobsen
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
| | - David Côté
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sCanada
| | - Sofie Knutar
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Laila Unneland
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Espen Strand
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | - Kevin Glover
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| |
Collapse
|
3
|
Jenkins TL, Martinelli M, Ellis CD, Stevens JR. Exploring reported population differences in Norway lobster ( Nephrops norvegicus) in the Pomo Pits region of the Adriatic Sea using genome-wide markers. PeerJ 2024; 12:e17852. [PMID: 39450211 PMCID: PMC11500701 DOI: 10.7717/peerj.17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Norway lobster (Nephrops norvegicus) is one of the most important decapod crustacean seafood species in the Adriatic Sea. Previous research has identified significant differences in growth rates and maturation timing of Nephrops in the Pomo/Jabuka Pits area compared to other subpopulations in Adriatic fishing grounds. Here, we use 1,623 genome-wide single nucleotide polymorphisms (SNPs) to investigate whether the Pomo Pits subpopulation is genetically different from other sites in the Adriatic and neighbouring seas. We found no genetic differentiation among all sampled Adriatic sites, suggesting high gene flow between Pomo Pits Nephrops and those of surrounding areas. We also found genetic homogeneity between the Adriatic sites and single-site samples from the Aegean and Tyrrhenian Seas. However, we detected distinct genetic differentiation between all Mediterranean sites and an Atlantic site in western Scotland, which provides evidence for a phylogenetic break between the Atlantic and the Mediterranean. Our results indicate that Pomo Pits Nephrops are not genetically different from others sampled in the Adriatic and that key biological parameters in Pomo Pits Nephrops could be driven by spatial variation in fishing pressure and/or environmental factors rather than geographic isolation.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Michela Martinelli
- National Research Council, Institute for Marine Biological Resources and Biotechnologies (CNR IRBIM), Ancona, Italy
| | - Charlie D. Ellis
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Jamie R. Stevens
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
4
|
Jenkins TL. mapmixture: An R package and web app for spatial visualisation of admixture and population structure. Mol Ecol Resour 2024; 24:e13943. [PMID: 38390660 DOI: 10.1111/1755-0998.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The mapmixture R package and interactive web app are tools to aid visualisation of admixture and population structure in geographic space. The purpose of mapmixture is to enable and encourage molecular ecologists, and in particular population geneticists and phylogeneticists, to plot their admixture, ancestry or assignment results on a map when location information is available. mapmixture accepts data in the format typically generated by admixture analyses and visualises proportions to each genetic cluster per site as pie charts on a projected (optional) map. Combining this site-based map presentation approach with the routine individual-based presentation of admixture (structure) barplots will enhance interpretation of genetic-geographic patterns. Additionally, in the context of science communication, this enables clearer transfer of spatial genetic information to readers or listeners, and especially to audiences that do not have a background in genetics but who are able to use the genetic information as evidence in conservation management. The latest version of mapmixture is available on GitHub (https://github.com/tom-jenkins/mapmixture), which details installation instructions and examples of how to use the package and interactive web app.
Collapse
Affiliation(s)
- Tom L Jenkins
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Macleod KL, Jenkins TL, Witt MJ, Stevens JR. Rare, long-distance dispersal underpins genetic connectivity in the pink sea fan, Eunicella verrucosa. Evol Appl 2024; 17:e13649. [PMID: 38463749 PMCID: PMC10918604 DOI: 10.1111/eva.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
Characterizing patterns of genetic connectivity in marine species is of critical importance given the anthropogenic pressures placed on the marine environment. For sessile species, population connectivity can be shaped by many processes, such as pelagic larval duration, oceanographic boundaries and currents. This study combines restriction-site associated DNA sequencing (RADseq) and passive particle dispersal modelling to delineate patterns of population connectivity in the pink sea fan, Eunicella verrucosa, a temperate octocoral. Individuals were sampled from 20 sites covering most of the species' northeast Atlantic range, and a site in the northwest Mediterranean Sea to inform on connectivity across the Atlantic-Mediterranean transition. Using 7510 neutral SNPs, a geographic cline of genetic clusters was detected, partitioning into Ireland, Britain, France, Spain (Atlantic), and Portugal and Spain (Mediterranean). Evidence of significant inbreeding was detected at all sites, a finding not detected in a previous study of this species based on microsatellite loci. Genetic connectivity was characterized by an isolation by distance pattern (IBD) (r 2 = 0.78, p < 0.001), which persisted across the Mediterranean-Atlantic boundary. In contrast, exploration of ancestral population assignment using the program ADMIXTURE indicated genetic partitioning across the Bay of Biscay, which we suggest represents a natural break in the species' range, possibly linked to a lack of suitable habitat. As the pelagic larval duration (PLD) is unknown, passive particle dispersal simulations were run for 14 and 21 days. For both modelled PLDs, inter-annual variations in particle trajectories suggested that in a long-lived, sessile species, range-wide IBD is driven by rare, longer dispersal events that act to maintain gene flow. These results suggest that oceanographic patterns may facilitate range-wide stepping-stone genetic connectivity in E. verrucosa and highlight that both oceanography and natural breaks in a species' range should be considered in the designation of ecologically coherent MPA networks.
Collapse
Affiliation(s)
- Kirsty L. Macleod
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Tom L. Jenkins
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Matthew J. Witt
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jamie R. Stevens
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
6
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
7
|
Jansson E, Faust E, Bekkevold D, Quintela M, Durif C, Halvorsen KT, Dahle G, Pampoulie C, Kennedy J, Whittaker B, Unneland L, Post S, André C, Glover KA. Global, regional, and cryptic population structure in a high gene-flow transatlantic fish. PLoS One 2023; 18:e0283351. [PMID: 36940210 PMCID: PMC10027230 DOI: 10.1371/journal.pone.0283351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
Lumpfish (Cyclopterus lumpus) is a transatlantic marine fish displaying large population sizes and a high potential for dispersal and gene-flow. These features are expected to result in weak population structure. Here, we investigated population genetic structure of lumpfish throughout its natural distribution in the North Atlantic using two approaches: I) 4,393 genome wide SNPs and 95 individuals from 10 locations, and II) 139 discriminatory SNPs and 1,669 individuals from 40 locations. Both approaches identified extensive population genetic structuring with a major split between the East and West Atlantic and a distinct Baltic Sea population, as well as further differentiation of lumpfish from the English Channel, Iceland, and Greenland. The discriminatory loci displayed ~2-5 times higher divergence than the genome wide approach, revealing further evidence of local population substructures. Lumpfish from Isfjorden in Svalbard were highly distinct but resembled most fish from Greenland. The Kattegat area in the Baltic transition zone, formed a previously undescribed distinct genetic group. Also, further subdivision was detected within North America, Iceland, West Greenland, Barents Sea, and Norway. Although lumpfish have considerable potential for dispersal and gene-flow, the observed high levels of population structuring throughout the Atlantic suggests that this species may have a natal homing behavior and local populations with adaptive differences. This fine-scale population structure calls for consideration when defining management units for exploitation of lumpfish stocks and in decisions related to sourcing and moving lumpfish for cleaner fish use in salmonid aquaculture.
Collapse
Affiliation(s)
- Eeva Jansson
- Institute of Marine Research, Nordnes, Bergen, Norway
| | - Ellika Faust
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | - Geir Dahle
- Institute of Marine Research, Nordnes, Bergen, Norway
| | | | - James Kennedy
- Marine and Freshwater Research Institute, Hafnarfjörður, Iceland
| | - Benjamin Whittaker
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | | | - Søren Post
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Carl André
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | | |
Collapse
|
8
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
9
|
Lapègue S, Reisser C, Harrang E, Heurtebise S, Bierne N. Genetic parallelism between European flat oyster populations at the edge of their natural range. Evol Appl 2023; 16:393-407. [PMID: 36793680 PMCID: PMC9923475 DOI: 10.1111/eva.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Although all marine ecosystems have experienced global-scale losses, oyster reefs have shown the greatest. Therefore, substantial efforts have been dedicated to restoration of such ecosystems during the last two decades. In Europe, several pilot projects for the restoration of the native European flat oyster, Ostrea edulis, recently begun and recommendations to preserve genetic diversity and to conduct monitoring protocols have been made. In particular, an initial step is to test for genetic differentiation against homogeneity among the oyster populations potentially involved in such programs. Therefore, we conducted a new sampling of wild populations at the European scale and a new genetic analysis with 203 markers to (1) confirm and study in more detail the pattern of genetic differentiation between Atlantic and Mediterranean populations, (2) identify potential translocations that could be due to aquaculture practices and (3) investigate the populations at the fringe of the geographical range, since they seemed related despite their geographic distance. Such information should be useful to enlighten the choice of the animals to be translocated or reproduced in hatcheries for further restocking. After the confirmation of the general geographical pattern of genetic structure and the identification of one potential case of aquaculture transfer at a large scale, we were able to detect genomic islands of differentiation mainly in the form of two groups of linked markers, which could indicate the presence of polymorphic chromosomal rearrangements. Furthermore, we observed a tendency for these two islands and the most differentiated loci to show a parallel pattern of differentiation, grouping the North Sea populations with the Eastern Mediterranean and Black Sea populations, against geography. We discussed the hypothesis that this genetic parallelism could be the sign of a shared evolutionary history of the two groups of populations despite them being at the border of the distribution nowadays.
Collapse
Affiliation(s)
- Sylvie Lapègue
- MARBEC, Univ Montpellier, CNRSIfremer, IRDMontpellierFrance
| | - Céline Reisser
- MARBEC, Univ Montpellier, CNRSIfremer, IRDMontpellierFrance
| | | | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| |
Collapse
|
10
|
Ferrer Obiol J, Herranz JM, Paris JR, Whiting JR, Rozas J, Riutort M, González-Solís J. Species delimitation using genomic data to resolve taxonomic uncertainties in a speciation continuum of pelagic seabirds. Mol Phylogenet Evol 2023; 179:107671. [PMID: 36442764 DOI: 10.1016/j.ympev.2022.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Speciation is a continuous and complex process shaped by the interaction of numerous evolutionary forces. Despite the continuous nature of the speciation process, the implementation of conservation policies relies on the delimitation of species and evolutionary significant units (ESUs). Puffinus shearwaters are globally distributed and threatened pelagic seabirds. Due to remarkable morphological status the group has been under intense taxonomic debate for the past three decades. Here, we use double digest Restriction-Site Associated DNA sequencing (ddRAD-Seq) to genotype species and subspecies of North Atlantic and Mediterranean Puffinus shearwaters across their entire geographical range. We assess the phylogenetic relationships and population structure among and within the group, evaluate species boundaries, and characterise the genomic landscape of divergence. We find that current taxonomies are not supported by genomic data and propose a more accurate taxonomy by integrating genomic information with other sources of evidence. Our results show that several taxon pairs are at different stages of a speciation continuum. Our study emphasises the potential of genomic data to resolve taxonomic uncertainties, which can help to focus management actions on relevant taxa, even if they do not necessarily coincide with the taxonomic rank of species.
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Department of Environmental Science and Policy, University of Milan, Milan, Italy.
| | - Jose M Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Josephine R Paris
- Department of Health, Life and Environmental Sciences, University of l'Aquila, Coppito, Italy; Department of Biosciences, University of Exeter, Exeter, UK
| | - James R Whiting
- Department of Biosciences, University of Exeter, Exeter, UK; Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Canada
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Biello R, Zampiglia M, Fuselli S, Fabbri G, Bisconti R, Chiocchio A, Mazzotti S, Trucchi E, Canestrelli D, Bertorelle G. From STRs to SNPs via ddRAD-seq: Geographic assignment of confiscated tortoises at reduced costs. Evol Appl 2022; 15:1344-1359. [PMID: 36187190 PMCID: PMC9488678 DOI: 10.1111/eva.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Assigning individuals to their source populations is crucial for conservation research, especially for endangered species threatened by illegal trade and translocations. Genetic assignment can be achieved with different types of molecular markers, but technical advantages and cost saving are recently promoting the shift from short tandem repeats (STRs) to single nucleotide polymorphisms (SNPs). Here, we designed, developed, and tested a small panel of SNPs for cost-effective geographic assignment of individuals with unknown origin of the endangered Mediterranean tortoise Testudo hermanni. We started by performing a ddRAD-seq experiment on 70 wild individuals of T. hermanni from 38 locations. Results obtained using 3182 SNPs are comparable to those previously obtained using STR markers in terms of genetic structure and power to identify the macro-area of origin. However, our SNPs revealed further insights into the substructure in Western populations, especially in Southern Italy. A small panel of highly informative SNPs was then selected and tested by genotyping 190 individuals using the KASP genotyping chemistry. All the samples from wild populations of known geographic origin were genetically re-assigned with high accuracy to the original population. This reduced SNPs panel represents an efficient molecular tool that enables individuals to be genotyped at low cost (less than €15 per sample) for geographical assignment and identification of hybrids. This information is crucial for the management in-situ of confiscated animals and their possible re-allocation in the wild. Our methodological pipeline can easily be extended to other species.
Collapse
Affiliation(s)
- Roberto Biello
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Crop Genetics, John Innes CentreNorwich Research ParkNorwichUK
| | - Mauro Zampiglia
- Department of Ecological and Biological ScienceTuscia UniversityViterboItaly
- Central Laboratory for the National DNA Database, Prison Administration DepartmentMinistry of JusticeRomeItaly
| | - Silvia Fuselli
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Giulia Fabbri
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | - Roberta Bisconti
- Department of Ecological and Biological ScienceTuscia UniversityViterboItaly
| | - Andrea Chiocchio
- Department of Ecological and Biological ScienceTuscia UniversityViterboItaly
| | | | - Emiliano Trucchi
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Life and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Daniele Canestrelli
- Department of Ecological and Biological ScienceTuscia UniversityViterboItaly
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| |
Collapse
|
12
|
Andrews AJ, Puncher GN, Bernal-Casasola D, Di Natale A, Massari F, Onar V, Toker NY, Hanke A, Pavey SA, Savojardo C, Martelli PL, Casadio R, Cilli E, Morales-Muñiz A, Mantovani B, Tinti F, Cariani A. Ancient DNA SNP-panel data suggests stability in bluefin tuna genetic diversity despite centuries of fluctuating catches in the eastern Atlantic and Mediterranean. Sci Rep 2021; 11:20744. [PMID: 34671077 PMCID: PMC8528830 DOI: 10.1038/s41598-021-99708-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
Atlantic bluefin tuna (Thunnus thynnus; BFT) abundance was depleted in the late 20th and early 21st century due to overfishing. Historical catch records further indicate that the abundance of BFT in the Mediterranean has been fluctuating since at least the 16th century. Here we build upon previous work on ancient DNA of BFT in the Mediterranean by comparing contemporary (2009–2012) specimens with archival (1911–1926) and archaeological (2nd century BCE–15th century CE) specimens that represent population states prior to these two major periods of exploitation, respectively. We successfully genotyped and analysed 259 contemporary and 123 historical (91 archival and 32 archaeological) specimens at 92 SNP loci that were selected for their ability to differentiate contemporary populations or their association with core biological functions. We found no evidence of genetic bottlenecks, inbreeding or population restructuring between temporal sample groups that might explain what has driven catch fluctuations since the 16th century. We also detected a putative adaptive response, involving the cytoskeletal protein synemin which may be related to muscle stress. However, these results require further investigation with more extensive genome-wide data to rule out demographic changes due to overfishing, and other natural and anthropogenic factors, in addition to elucidating the adaptive drivers related to these.
Collapse
Affiliation(s)
- Adam J Andrews
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy. .,Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
| | - Gregory N Puncher
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy. .,Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada.
| | - Darío Bernal-Casasola
- Department of History, Geography and Philosophy, Faculty of Philosophy and Letters, University of Cádiz, Cádiz, Spain
| | | | - Francesco Massari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Vedat Onar
- Osteoarcheology Practice and Research Centre and Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Nezir Yaşar Toker
- Osteoarcheology Practice and Research Centre and Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcılar, Istanbul, Turkey
| | - Alex Hanke
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB, Canada
| | - Scott A Pavey
- Department of Biological Sciences, Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | | | | | - Rita Casadio
- Biocomputing Group, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | | | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
13
|
D'Aloia CC, Bogdanowicz SM, Andrés JA, Buston PM. Population assignment tests uncover rare long-distance marine larval dispersal events. Ecology 2021; 103:e03559. [PMID: 34653260 DOI: 10.1002/ecy.3559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Long-distance dispersal (LDD) is consequential to metapopulation ecology and evolution. In systems where dispersal is undertaken by small propagules, such as larvae in the ocean, documenting LDD is especially challenging. Genetic parentage analysis has gained traction as a method for measuring larval dispersal, but such studies are generally spatially limited, leaving LDD understudied in marine species. We addressed this knowledge gap by uncovering LDD with population assignment tests in the coral reef fish Elacatinus lori, a species whose short-distance dispersal has been well-characterized by parentage analysis. When adults (n = 931) collected throughout the species' range were categorized into three source populations, assignment accuracy exceeded 99%, demonstrating low rates of gene flow between populations in the adult generation. After establishing high assignment confidence, we assigned settlers (n = 3,828) to source populations. Within the settler cohort, <0.1% of individuals were identified as long-distance dispersers from other populations. These results demonstrate an exceptionally low level of connectivity between E. lori populations, despite the potential for ocean currents to facilitate LDD. More broadly, these findings illustrate the value of combining genetic parentage analysis and population assignment tests to uncover short- and long-distance dispersal, respectively.
Collapse
Affiliation(s)
- C C D'Aloia
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - S M Bogdanowicz
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - J A Andrés
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - P M Buston
- Department of Biology & Marine Program, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
14
|
De Wit P, Svanberg L, Casties I, Eriksson SP, Sundell K, André C. Single nucleotide polymorphisms are suitable for assessing the success of restocking efforts of the European lobster (Homarus gammarus, L.). CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe European lobster (Homarus gammarus) forms the base of an important fishery along the coasts of Europe. However, stocks have been in decline for many years, prompting new regulations in the fishery and also restocking efforts. An important feature of any restocking effort is the assessment of success in the number of released juveniles that stay and become adult over time. Here, we tested the power of a single nucleotide polymorphism (SNP) DNA marker panel developed for population assignment to correctly infer parentage on the maternal side of lobster larvae, in the absence of known fathers, using lobsters included in a current restocking effort on the Swedish west coast. We also examined the power to reconstruct the unknown paternal genotypes, and examined the number of fathers for each larval clutch. We found that the 96-SNP panel, despite only containing 78 informative markers, allowed us to assign all larvae to the correct mother. Furthermore, with ten genotyped larvae or more, confident paternal genotypes could be reconstructed. We also found that 15 out of 17 clutches were full siblings, whereas two clutches had two fathers. To our knowledge, this is the first time a SNP panel of this size has been used to assess parentage in a crustacean restocking effort. Our conclusion is that the panel works well, and that it could be an important tool for the assessment of restocking success of H. gammarus in the future.
Collapse
|
15
|
Jenkins TL, Guillemin M, Simon‐Nutbrown C, Burdett HL, Stevens JR, Peña V. Whole genome genotyping reveals discrete genetic diversity in north-east Atlantic maerl beds. Evol Appl 2021; 14:1558-1571. [PMID: 34178104 PMCID: PMC8210795 DOI: 10.1111/eva.13219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
Maerl beds are vital habitats for a diverse array of marine species across trophic levels, but they are increasingly threatened by human activities and climate change. Furthermore, little is known about the genetic diversity of maerl-forming species and the population structure of maerl beds, both of which are important for understanding the ability of these species to adapt to changing environments and for informing marine reserve planning. In this study, we used a whole genome genotyping approach to explore the population genomics of Phymatolithon calcareum, a maerl-forming red algal species, whose geographical distribution spans the north-east Atlantic, from Norway to Portugal. Our results, using 14,150 genome-wide SNPs (single nucleotide polymorphisms), showed that P. calcareum maerl beds across the north-east Atlantic are generally structured geographically, a pattern likely explained by low dispersal potential and limited connectivity between regions. Additionally, we found that P. calcareum from the Fal Estuary, south-west England, is genetically distinct from all other P. calcareum sampled, even from The Manacles, a site located only 13 km away. Further analysis revealed that this finding is not the result of introgression from two closely related species, Phymatolithon purpureum or Lithothamnion corallioides. Instead, this unique diversity may have been shaped over time by geographical isolation of the Fal Estuary maerl bed and a lack of gene flow with other P. calcareum populations. The genomic data presented in this study suggest that P. calcareum genetic diversity has accumulated over large temporal and spatial scales, the preservation of which will be important for maximizing the resilience of this species to changes in climate and the environment. Moreover, our findings underline the importance of managing the conservation of maerl beds across western Europe as distinct units, at a site-by-site level.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Marie‐Laure Guillemin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
- IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Cornelia Simon‐Nutbrown
- Lyell Centre for Earth and Marine Science and TechnologyEdinburghUK
- School of Energy, Geoscience, Infrastructure and SocietyHeriot‐Watt UniversityEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Heidi L. Burdett
- Lyell Centre for Earth and Marine Science and TechnologyEdinburghUK
- School of Energy, Geoscience, Infrastructure and SocietyHeriot‐Watt UniversityEdinburghUK
| | - Jamie R. Stevens
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Viviana Peña
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA)Universidade da Coruña, A CoruñaSpain
| |
Collapse
|
16
|
Population Characteristics of the European Lobster, Homarus gammarus in the Adriatic Sea: Implications for Sustainable Fisheries Management. WATER 2021. [DOI: 10.3390/w13081072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The European lobster, Homarus gammarus, was sampled from September 2016 to August 2017, using pots and gillnets in the Eastern Adriatic Sea. Official landings were also analyzed (2008–2020). The majority of landings were from the Northern Adriatic and showed an increase of 18.5% over the study period. Results revealed an extremely low catch rate that fluctuated significantly by season. Dominance by specimens in the size classes of 90–110 mm carapace length (CL) was observed. Experimental design revealed spatial heterogeneity, with larger individuals caught further from the coast (>3 nm) and undersized specimens caught near the coast (<3 nm). With increasing CL and total length (TL), an increase in weight was higher in males than females. TL and abdomen width (AW) increased linearly with CL and were more pronounced in females. At 80 mm CL, females started to develop secondary sex characteristics with wider AW than males. The results suggest that the modern legal framework is appropriate for lobster fisheries and a longer fishing season is not advisable, despite a positive catch trend in the northern part of the sea. Additional efforts are desirable to reduce fishing pressure in the coastal part. The morphometric relationships could reveal population characteristics required as inputs in stock assessment analysis for effective management.
Collapse
|
17
|
Goodall J, Westfall KM, Magnúsdóttir H, Pálsson S, Örnólfsdóttir EB, Jónsson ZO. RAD sequencing of common whelk, Buccinum undatum, reveals fine-scale population structuring in Europe and cryptic speciation within the North Atlantic. Ecol Evol 2021; 11:2616-2629. [PMID: 33767824 PMCID: PMC7981227 DOI: 10.1002/ece3.7219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation-by-distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome-wide association studies.
Collapse
Affiliation(s)
- Jake Goodall
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
| | - Kristen Marie Westfall
- Vör – Marine Research Center in BreiðafjörðurÓlafsvíkIceland
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Hildur Magnúsdóttir
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | | | | |
Collapse
|
18
|
Silva CNS, Young EF, Murphy NP, Bell JJ, Green BS, Morley SA, Duhamel G, Cockcroft AC, Strugnell JM. Climatic change drives dynamic source-sink relationships in marine species with high dispersal potential. Ecol Evol 2021; 11:2535-2550. [PMID: 33767820 PMCID: PMC7981208 DOI: 10.1002/ece3.7204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
While there is now strong evidence that many factors can shape dispersal, the mechanisms influencing connectivity patterns are species-specific and remain largely unknown for many species with a high dispersal potential. The rock lobsters Jasus tristani and Jasus paulensis have a long pelagic larval duration (up to 20 months) and inhabit seamounts and islands in the southern Atlantic and Indian Oceans, respectively. We used a multidisciplinary approach to assess the genetic relationships between J. tristani and J. paulensis, investigate historic and contemporary gene flow, and inform fisheries management. Using 17,256 neutral single nucleotide polymorphisms we found low but significant genetic differentiation. We show that patterns of connectivity changed over time in accordance with climatic fluctuations. Historic migration estimates showed stronger connectivity from the Indian to the Atlantic Ocean (influenced by the Agulhas Leakage). In contrast, the individual-based model coupled with contemporary migration estimates inferred from genetic data showed stronger inter-ocean connectivity in the opposite direction from the Atlantic to the Indian Ocean driven by the Subtropical Front. We suggest that the J. tristani and J. paulensis historical distribution might have extended further north (when water temperatures were lower) resulting in larval dispersal between the ocean basis being more influenced by the Agulhas Leakage than the Subtropical Front. As water temperatures in the region increase in accordance with anthropogenic climate change, a southern shift in the distribution range of J. tristani and J. paulensis could further reduce larval transport from the Indian to the Atlantic Ocean, adding complexity to fisheries management.
Collapse
Affiliation(s)
- Catarina N. S. Silva
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
| | | | | | - James J. Bell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Bridget S. Green
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Guy Duhamel
- Département Adaptations du VivantBOREAMNHNParisFrance
| | - Andrew C. Cockcroft
- Department of Agriculture, Forestry and FisheriesSouth African GovernmentCape TownSouth Africa
| | - Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
- Department of EcologyLa Trobe UniversityMelbourneVic.Australia
| |
Collapse
|
19
|
Popa-Báez ÁD, Lee SF, Yeap HL, Westmore G, Crisp P, Li D, Catullo R, Cameron EC, Edwards OR, Taylor PW, Oakeshott JG. Tracing the origins of recent Queensland fruit fly incursions into South Australia, Tasmania and New Zealand. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Pavičić M, Žužul I, Matić-Skoko S, Triantafyllidis A, Grati F, Durieux EDH, Celić I, Šegvić-Bubić T. Population Genetic Structure and Connectivity of the European Lobster Homarus gammarus in the Adriatic and Mediterranean Seas. Front Genet 2020; 11:576023. [PMID: 33365046 PMCID: PMC7750201 DOI: 10.3389/fgene.2020.576023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Highly selective fishing has the potential to permanently change the characteristics within a population and could drive the decline of genetic diversity. European lobster is an intensively fished crustacean species in the Adriatic Sea which reaches high market value. Since knowledge of population structure and dynamics is important for effective fisheries management, in this study, we used 14 neutral microsatellites loci and partial mitochondrial COI region sequencing to explore population connectivity and genetic structure by comparing samples from the Adriatic Sea and the adjacent basins of the Mediterranean Sea. The obtained results suggest that neutral genetic diversity has not been significantly affected by decrease in population size due to overfishing, habitat degradation and other anthropogenic activities. Global genetic differentiation across all populations was low (F ST = 0.0062). Populations from the Adriatic Sea were panmictic, while genetic differentiation was found among populations from different Mediterranean basins. Observed gene flow for European lobster suggest that populations in the north eastern Adriatic act as a source for surrounding areas, emphasizing the need to protect these populations by establishing interconnected MPAs that will be beneficial for both fisheries and conservation management.
Collapse
Affiliation(s)
- Mišo Pavičić
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Iva Žužul
- Institute of Oceanography and Fisheries, Split, Croatia
| | | | | | - Fabio Grati
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Ancona, Italy
| | - Eric D. H. Durieux
- UMR CNRS 6134 Sciences Pour l’Environnement, Università di Corsica Pasquale Paoli, Corte, France
- UMS CNRS 3514 STELLA MARE, Università di Corsica Pasquale Paoli, Biguglia, France
| | - Igor Celić
- National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
| | | |
Collapse
|
21
|
Papa Y, Oosting T, Valenza-Troubat N, Wellenreuther M, Ritchie PA. Genetic stock structure of New Zealand fish and the use of genomics in fisheries management: an overview and outlook. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1788612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yvan Papa
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Tom Oosting
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Noemie Valenza-Troubat
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Maren Wellenreuther
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter A. Ritchie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
22
|
Jenkins TL, Ellis CD, Durieux EDH, Filippi J, Bracconi J, Stevens JR. Historical translocations and stocking alter the genetic structure of a Mediterranean lobster fishery. Ecol Evol 2020; 10:5631-5636. [PMID: 32607179 PMCID: PMC7319110 DOI: 10.1002/ece3.6304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/06/2022] Open
Abstract
Stocking is often used to supplement wild populations that are overexploited or have collapsed, yet it is unclear how this affects the genetic diversity of marine invertebrate populations. During the 1970s, a lobster stock enhancement program was carried out around the island of Corsica in the Mediterranean using individuals translocated from the Atlantic coast of France. This included the release of thousands of hatchery-reared postlarval lobsters and several adult individuals, but no monitoring plan was established to assess whether these animals survived and recruited to the population. In this study, we sampled European lobster (Homarus gammarus) individuals caught around Corsica and tested whether they showed Atlantic ancestry. Due to a natural marked phylogeographic break between Atlantic and Mediterranean lobsters, we hypothesized that lobsters with dominant (>0.50) Atlantic ancestry were descended from historical stocking releases. Twenty Corsican lobsters were genotyped at 79 single nucleotide polymorphisms, and assignment analysis showed that the majority (13) had dominant Atlantic ancestry. This suggests that the hatchery stocking program carried out in Corsica during the 1970s, using individuals translocated from the Atlantic coast of France, has likely augmented local recruitment but at a cost of altering the genetic structure of the Corsican lobster population.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Molecular Ecology and Evolution GroupDepartment of BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Charlie D. Ellis
- Molecular Ecology and Evolution GroupDepartment of BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Eric D. H. Durieux
- UMR CNRS 6134 Sciences Pour l’EnvironnementUniversità di Corsica Pasquale PaoliCorteFrance
- UMS CNRS 3514 STELLA MAREUniversità di Corsica Pasquale PaoliBigugliaFrance
| | - Jean‐José Filippi
- UMS CNRS 3514 STELLA MAREUniversità di Corsica Pasquale PaoliBigugliaFrance
| | - Jérémy Bracconi
- UMS CNRS 3514 STELLA MAREUniversità di Corsica Pasquale PaoliBigugliaFrance
| | - Jamie R. Stevens
- Molecular Ecology and Evolution GroupDepartment of BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| |
Collapse
|
23
|
Crossing the pond: genetic assignment detects lobster hybridisation. Sci Rep 2020; 10:7781. [PMID: 32385382 PMCID: PMC7210874 DOI: 10.1038/s41598-020-64692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
American lobsters (Homarus americanus) imported live into Europe as a seafood commodity have occasionally been released or escaped into the wild, within the range of an allopatric congener, the European lobster (H. gammarus). In addition to disease and competition, introduced lobsters threaten native populations through hybridisation, but morphological discriminants used for species identification are unable to discern hybrids, so molecular methods are required. We tested an array of 79 single nucleotide polymorphisms (SNPs) for their utility to distinguish 1,308 H. gammarus from 38 H. americanus and 30 hybrid offspring from an American female captured in Sweden. These loci provide powerful species assignment in Homarus, enabling the robust identification of hybrid and American individuals among a survey of European stock. Moreover, a subset panel of the 12 most powerful SNPs is sufficient to separate the two pure species, even when tissues have been cooked, and can detect the introduced component of hybrids. We conclude that these SNP loci can unambiguously identify hybrid lobsters that may be undetectable via basic morphology, and offer a valuable tool to investigate the prevalence of cryptic hybridisation in the wild. Such investigations are required to properly evaluate the potential for introgression of alien genes into European lobster populations.
Collapse
|