1
|
Oriowo TO, Chrysostomakis I, Martin S, Kukowka S, Brown T, Winkler S, Myers EW, Böhne A, Stange M. A chromosome-level, haplotype-resolved genome assembly and annotation for the Eurasian minnow (Leuciscidae: Phoxinus phoxinus) provide evidence of haplotype diversity. Gigascience 2025; 14:giae116. [PMID: 39877992 PMCID: PMC11775470 DOI: 10.1093/gigascience/giae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C). RESULTS We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.4 Mb and 36.6 Mb and BUSCO scores of 96.9% and 97.2%, respectively, indicating a highly complete genome assembly. We detected notable heterozygosity (1.43%) and a high repeat content (approximately 54%), primarily consisting of DNA transposons, which contribute to genome rearrangements and variations. We found substantial structural variations within the genome, including insertions, deletions, inversions, and translocations. These variations affect genes enriched in functions such as dephosphorylation, developmental pigmentation, phagocytosis, immunity, and stress response. In the annotation of protein-coding genes, 30,980 messenger RNAs and 23,497 protein-coding genes were identified with a high completeness score, which further underpins the high contiguity of our genome assemblies. We performed a gene family evolution analysis by comparing our proteome to 10 other teleost species, which identified immune system gene families that prioritize histone-based disease prevention over NB-LRR-related-based immune responses. Additionally, demographic analysis indicates historical fluctuations in the effective population size of P. phoxinus, likely correlating with past climatic changes. CONCLUSIONS This annotated, phased reference genome provides a crucial resource for resolving the taxonomic complexity within the genus Phoxinus and highlights the importance of haplotype-phased assemblies in understanding haplotype diversity in species characterized by high heterozygosity.
Collapse
Affiliation(s)
- Temitope Opeyemi Oriowo
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Ioannis Chrysostomakis
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sandra Kukowka
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Sequencing and Genotyping, 01307 Dresden, Germany
- Okinawa Institute of Science and Technology, Algorithms for Ecological and Evolutionary Genomics, Okinawa 904-0412, Japan
| | - Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Madlen Stange
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany
| |
Collapse
|
2
|
Carley LN, Mitchell-Olds T, Morris WF. Increasing Aridity May Threaten the Maintenance of a Plant Defence Polymorphism. Ecol Lett 2025; 28:e70039. [PMID: 39737722 DOI: 10.1111/ele.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 01/01/2025]
Abstract
It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, λ) using demographic models. Drought and herbivory interacted to shape vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or frequency of drought under climate change may erode genetic variation for defence chemistry in B. stricta.
Collapse
Affiliation(s)
- Lauren N Carley
- University Program in Ecology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
- Ecology & Evolution Department, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
3
|
de la Mata R, Mollá-Morales A, Méndez-Vigo B, Torres-Pérez R, Oliveros JC, Gómez R, Marcer A, Castilla AR, Nordborg M, Alonso-Blanco C, Picó FX. Variation and plasticity in life-history traits and fitness of wild Arabidopsis thaliana populations are not related to their genotypic and ecological diversity. BMC Ecol Evol 2024; 24:56. [PMID: 38702598 PMCID: PMC11067129 DOI: 10.1186/s12862-024-02246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.
Collapse
Affiliation(s)
- Raul de la Mata
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
- Faculty of Forestry, Institute of Dehesa Research (INDEHESA), Universidad de Extremadura, 10600, Plasencia, Spain
| | | | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rocío Gómez
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
| | - Arnald Marcer
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| | - Antonio R Castilla
- Department of Plant Biology, Ecology, and Evolution, College of Arts and Sciences, Oklahoma State University, Stillwater, OK, 74078-3031, USA
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain.
| |
Collapse
|
4
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Mathur S, Mason AJ, Bradburd GS, Gibbs HL. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proc Natl Acad Sci U S A 2023; 120:e2303043120. [PMID: 37844221 PMCID: PMC10614936 DOI: 10.1073/pnas.2303043120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Andrew J. Mason
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Gideon S. Bradburd
- Evolution and Behavior Program, Department of Integrative Biology, Ecology, Michigan State University, East Lansing, MI48824
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| |
Collapse
|
6
|
Hoy SR, Hedrick PW, Peterson RO, Vucetich LM, Brzeski KE, Vucetich JA. The far-reaching effects of genetic process in a keystone predator species, grey wolves. SCIENCE ADVANCES 2023; 9:eadc8724. [PMID: 37611108 PMCID: PMC10446474 DOI: 10.1126/sciadv.adc8724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Although detrimental genetic processes are known to adversely affect the viability of populations, little is known about how detrimental genetic processes in a keystone species can affect the functioning of ecosystems. Here, we assessed how changes in the genetic characteristics of a keystone predator, grey wolves, affected the ecosystem of Isle Royale National Park over two decades. Changes in the genetic characteristic of the wolf population associated with a genetic rescue event, followed by high levels of inbreeding, led to a rise and then fall in predation rates on moose, the primary prey of wolves and dominant mammalian herbivore in this system. Those changes in predation rate led to large fluctuations in moose abundance, which in turn affected browse rates on balsam fir, the dominant forage for moose during winter and an important boreal forest species. Thus, forest dynamics can be traced back to changes in the genetic characteristics of a predator population.
Collapse
Affiliation(s)
- Sarah R. Hoy
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931
| | | | - Rolf O. Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931
| | - Leah M. Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931
| | - John A. Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
7
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
8
|
Wootton E, Robert C, Taillon J, Côté SD, Shafer ABA. Genomic health is dependent on long-term population demographic history. Mol Ecol 2023; 32:1943-1954. [PMID: 36704858 DOI: 10.1111/mec.16863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Current genetic methods of population assessment in conservation biology have been challenged by genome-scale analyses due to their quantitatively novel insights. These analyses include assessments of runs-of-homozygosity (ROH), genomic evolutionary rate profiling (GERP), and mutational load. Here, we aim to elucidate the relationships between these measures using three divergent ungulates: white-tailed deer, caribou, and mountain goat. The white-tailed deer is currently expanding, while caribou are in the midst of a significant decline. Mountain goats remain stable, having suffered a large historical bottleneck. We assessed genome-wide signatures of inbreeding using the inbreeding coefficient F and %ROH (FROH ) and identified evolutionarily constrained regions with GERP. Mutational load was estimated by identifying mutations in highly constrained elements (CEs) and sorting intolerant from tolerant (SIFT) mutations. Our results showed that F and FROH are higher in mountain goats than in caribou and white-tailed deer. Given the extended bottleneck and low Ne of the mountain goat, this supports the idea that the genome-wide effects of demographic change take time to accrue. Similarly, we found that mountain goats possess more highly constrained CEs and the lowest dN/dS values, both of which are indicative of greater purifying selection; this is also reflected by fewer mutations in CEs and deleterious mutations identified by SIFT. In contrast, white-tailed deer presented the highest mutational load with both metrics, in addition to dN/dS, while caribou were intermediate. Our results demonstrate that extended bottlenecks may lead to reduced diversity and increased FROH in ungulates, but not necessarily an increase in mutational load, probably due to the purging of deleterious alleles in small populations.
Collapse
Affiliation(s)
- Eric Wootton
- Biochemistry and Molecular Biology, Trent University, Peterborough, Ontario, Canada
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| | - Joëlle Taillon
- Direction de l'Expertise sur la Faune Terrestre, l'Herpétofaune et l'Avifaune, Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec, Québec, Québec, Canada
| | - Steeve D Côté
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, Québec, Québec, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Programme, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
9
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|