1
|
Rosser N, Seixas F, Queste LM, Cama B, Mori-Pezo R, Kryvokhyzha D, Nelson M, Waite-Hudson R, Goringe M, Costa M, Elias M, Mendes Eleres de Figueiredo C, Freitas AVL, Joron M, Kozak K, Lamas G, Martins ARP, McMillan WO, Ready J, Rueda-Muñoz N, Salazar C, Salazar P, Schulz S, Shirai LT, Silva-Brandão KL, Mallet J, Dasmahapatra KK. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 2024; 628:811-817. [PMID: 38632397 PMCID: PMC11041799 DOI: 10.1038/s41586-024-07263-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of York, York, UK.
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Bruna Cama
- Department of Biology, University of York, York, UK
| | - Ronald Mori-Pezo
- URKU Estudios Amazónicos, Tarapoto, Perú
- Universidad Nacional Autónoma de Alto Amazona, Yurimaguas, Perú
| | - Dmytro Kryvokhyzha
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Matt Goringe
- Department of Biology, University of York, York, UK
| | | | - Marianne Elias
- Institut Systématique, Evolution, Biodiversité, UMR 7205 MNHN-CNRS-EPHE-UPMC Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Clarisse Mendes Eleres de Figueiredo
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, Université de Montpellier-Université Paul Valéry Montpellier-EPHE, Montpellier, France
| | - Krzysztof Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Centre for Advanced Studies of Biodiversity (CEABIO), Belém, Brazil
| | - Nicol Rueda-Muñoz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Patricio Salazar
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leila T Shirai
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Karina L Silva-Brandão
- Leibniz Institute for the Analysis of Biodiversity Change, Museum de Natur Hamburg Zoology, Hamburg, Germany
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, UK
| |
Collapse
|
2
|
Page E, Queste LM, Rosser N, Salazar PA, Nadeau NJ, Mallet J, Srygley RB, McMillan WO, Dasmahapatra KK. Pervasive mimicry in flight behavior among aposematic butterflies. Proc Natl Acad Sci U S A 2024; 121:e2300886121. [PMID: 38408213 PMCID: PMC10945825 DOI: 10.1073/pnas.2300886121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Flight was a key innovation in the adaptive radiation of insects. However, it is a complex trait influenced by a large number of interacting biotic and abiotic factors, making it difficult to unravel the evolutionary drivers. We investigate flight patterns in neotropical heliconiine butterflies, well known for mimicry of their aposematic wing color patterns. We quantify the flight patterns (wing beat frequency and wing angles) of 351 individuals representing 29 heliconiine and 9 ithomiine species belonging to ten color pattern mimicry groupings. For wing beat frequency and up wing angles, we show that heliconiine species group by color pattern mimicry affiliation. Convergence of down wing angles to mimicry groupings is less pronounced, indicating that distinct components of flight are under different selection pressures and constraints. The flight characteristics of the Tiger mimicry group are particularly divergent due to convergence with distantly related ithomiine species. Predator-driven selection for mimicry also explained variation in flight among subspecies, indicating that this convergence can occur over relatively short evolutionary timescales. Our results suggest that the flight convergence is driven by aposematic signaling rather than shared habitat between comimics. We demonstrate that behavioral mimicry can occur between lineages that have separated over evolutionary timescales ranging from <0.5 to 70 My.
Collapse
Affiliation(s)
- Edward Page
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
| | - Lucie M. Queste
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried82152, Germany
| | - Neil Rosser
- Department of Biology, University of York, HeslingtonYO10 5DD, United Kingdom
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Patricio A. Salazar
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, SheffieldS10 2TN, United Kingdom
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Nicola J. Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Robert B. Srygley
- Smithsonian Tropical Research Institute, Apartado, Panamá0843-03092, Republic of Panama
- Pest Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Sidney, MT59270
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Apartado, Panamá0843-03092, Republic of Panama
| | | |
Collapse
|
3
|
Mouy H. Colours as aggregation signals in Lepidoptera: Are Heliconius Müllerian mimics? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Hill RI. Convergent flight morphology among Müllerian mimic mutualists. Evolution 2021; 75:2460-2479. [PMID: 34431522 DOI: 10.1111/evo.14331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Müllerian mimicry involves a signal mutualism between prey species, shaped by visually hunting predators, and recent work has emphasized the importance of color pattern. Predators respond to more than color pattern, however, and other traits are much less studied. This article examines the hypothesis of convergent evolution in flight-related morphology among eight mimicry complexes composed of 51 butterfly species (Nymphalidae, Danainae, Ithomiini) from a single community in Ecuador. Phylogenetic comparative analyses of 14 variables indicated strong morphological differences between mimicry complexes belonging to three clusters of morphological space ("large yellow transparent," "tiger," and "transparent"), not the eight predicted based on color pattern alone. Analyses found convergence within mimicry complexes, convergence between mimicry complexes within morphospace clusters, and divergence between mimicry complexes from different morphospace clusters. These three clusters differed in size, and body and wing shape, predicting that flight biomechanics also converge (i.e., locomotor mimicry). Potential constraints on evolution of morphological mimicry related to predator discrimination, and evolutionary rates, likely e xplain why flight-related morphology differences were limited to three clusters of morphological space. Finally, the added complexity that flight-related morphology brings to signals between predator and prey indicates that evolutionary switches in color pattern are not all equally likely, potentially limiting the evolution of color patterns if they do not match morphology.
Collapse
Affiliation(s)
- Ryan I Hill
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720.,Current Address: Department of Biological Sciences, University of the Pacific, Stockton, California, 95211
| |
Collapse
|
5
|
Kelly MB, McLean DJ, Wild ZK, Herberstein ME. Measuring mimicry: methods for quantifying visual similarity. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Montejo-Kovacevich G, Salazar PA, Smith SH, Gavilanes K, Bacquet CN, Chan YF, Jiggins CD, Meier JI, Nadeau NJ. Genomics of altitude-associated wing shape in two tropical butterflies. Mol Ecol 2021; 30:6387-6402. [PMID: 34233044 DOI: 10.1111/mec.16067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
Collapse
Affiliation(s)
| | | | - Sophie H Smith
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, UK.,St John's College, University of Cambridge, Cambridge, UK
| | - Nicola J Nadeau
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Smith DA, Bennie JJ, Gordon IJ, Martin S, Ireri P, Omufwoko KS, Ffrench-Constant RH. Hybrid effects in field populations of the African monarch butterfly, Danaus chrysippus (L.) (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2021; 133:671-684. [PMID: 34539176 PMCID: PMC8444992 DOI: 10.1093/biolinnean/blab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/28/2022]
Abstract
Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.
Collapse
Affiliation(s)
- David As Smith
- Natural History Museum, Eton College, Windsor SL4 6DW, UK
| | - Jon J Bennie
- Department of Geography, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Ian J Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, RN1, Huye Campus, Huye, Rwanda
| | - Simon Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH1 3FL, UK
| | - Piera Ireri
- Department of Zoological Sciences, Kenyatta University, Nairobi, P.O. Box 43844-00100, Kenya
| | - Kennedy S Omufwoko
- Mpala Research Centre (Princeton University), Nanyuki, P.O. Box 555-10400, Kenya
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
8
|
Prusa LA, Hill RI. Umbrella of protection: spatial and temporal dynamics in a temperate butterfly Batesian mimicry system. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Batesian mimicry involves both spatial and temporal interactions between model, mimic and predator. Fundamental predictions in Batesian mimicry involve space, time and abundance; specifically, that the model and mimic are found in sympatry and that protection for the mimic is increased when predators interact with the model first and more frequently. Research has generally confirmed these predictions for Batesian mimicry at large spatial scales, with recent work on two nymphalid butterflies in western North America, the mimic Limenitis lorquini (Boisduval, 1852) and its model Adelpha californica (Butler, 1865) in western North America indicating that the mimic generally has lower abundance and emerges later in the season among widely separated populations in the California Coast Ranges and Sierra Nevada. However, no studies have investigated model–mimic dynamics at small scales in the temperate zone to test whether temporal habitat use and movements conform to predictions. If mimicry is as important a part of the biology of these temperate species as it is for their tropical counterparts, then in addition to emerging later and being less abundant overall, the mimic should be less widespread, should be less abundant in each habitat and should move less among available habitats. Our results using mark–release–recapture methods confirm these predictions and indicate that the mimic, L. lorquini, is enjoying an umbrella of protection against habitat specialist and generalist predators alike.
Collapse
Affiliation(s)
- Louis A Prusa
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
9
|
Molecular and morphometric divergence of four species of butterflies (Nymphalidae and Pieridae) from the Western Himalaya, India. Mol Biol Rep 2020; 47:8687-8699. [PMID: 33070284 DOI: 10.1007/s11033-020-05913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Morphometric and molecular divergence among four butterfly species of the families Nymphalidae and Pieridae from the western Himalaya region were investigated using molecular tools, traditional morphometric measures and a truss network system. The considered species were Danaus chrysippus, Vanessa cardui, Pieris brassicae and Pieris canidia. Traditional taxonomy is sometimes unable to discriminate cryptic species or species that have close morphological features. Although taxonomists carefully examine external body features to differentiate the species; however, there is a risk for misidentification during a visual assessment of cryptic species. Therefore, we aimed to use the truss network system of 14 morphological landmarks interconnected to yield 90 variables about molecular taxonomy. Principal component analysis (PCA), discriminant function analysis (DFA) and cluster analysis (CA) were employed to determine morphometric variations. In the traditional analysis, 79, 68, 16 and 5 characters out of 90 were found significant (p < 0.05) for D. chrysippus, V. cardui, P. brassicae and P. canidia, respectively. One to seven principal components were extracted through PCA; they explained 87.5-100% of the total variance in samples. Notably, DFA correctly classified 100% of the original grouped cases and 100% of the cross-validated grouped cases. However, the variations were not the same for the two different methods (truss and traditional) employed for the analysis. We correctly identified all the species; the interspecies sequence divergence was between 0.1034 and 0.1398, and the intra-species sequence divergence range was 0.0001 to 0.0128 using the Cytochrome c oxidase subunit-I (COI) gene. The present study provides useful information about the application and complementary role of traditional with truss morphometric analysis for the precise identification and classification of the selected species.
Collapse
|
10
|
Mérot C, Debat V, Le Poul Y, Merrill RM, Naisbit RE, Tholance A, Jiggins CD, Joron M. Hybridization and transgressive exploration of colour pattern and wing morphology in Heliconius butterflies. J Evol Biol 2020; 33:942-956. [PMID: 32255231 DOI: 10.1111/jeb.13626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first- and second-generation hybrids produced by controlled crosses between either two co-mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major-effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,IBIS, Université Laval, Québec, QC, Canada
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yann Le Poul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany
| | - Richard M Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany.,Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Russell E Naisbit
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Adélie Tholance
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Mathieu Joron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,UMR 5175, CNRS-Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| |
Collapse
|
11
|
Montejo‐Kovacevich G, Smith JE, Meier JI, Bacquet CN, Whiltshire‐Romero E, Nadeau NJ, Jiggins CD. Altitude and life-history shape the evolution of Heliconius wings. Evolution 2019; 73:2436-2450. [PMID: 31631338 PMCID: PMC6916360 DOI: 10.1111/evo.13865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal-mating clade are smaller than those in the adult-mating clade. Interestingly, we find that high-altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high-altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.
Collapse
Affiliation(s)
| | | | - Joana I. Meier
- St John's CollegeUniversity of CambridgeCambridgeCB2 1TP
| | | | | | - Nicola J. Nadeau
- Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | | |
Collapse
|
12
|
Le Roy C, Debat V, Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biol Rev Camb Philos Soc 2019; 94:1261-1281. [PMID: 30793489 DOI: 10.1111/brv.12500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/07/2023]
Abstract
Butterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho-functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro- and micro-evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro-evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness-related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex-specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co-evolution between morphology and flight behaviour.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| |
Collapse
|
13
|
Zhang W, Westerman E, Nitzany E, Palmer S, Kronforst MR. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun 2017; 8:1269. [PMID: 29116078 PMCID: PMC5677128 DOI: 10.1038/s41467-017-01370-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Supergene mimicry is a striking phenomenon but we know little about the evolution of this trait in any species. Here, by studying genomes of butterflies from a recent radiation in which supergene mimicry has been isolated to the gene doublesex, we show that sexually dimorphic mimicry and female-limited polymorphism are evolutionarily related as a result of ancient balancing selection combined with independent origins of similar morphs in different lineages and secondary loss of polymorphism in other lineages. Evolutionary loss of polymorphism appears to have resulted from an interaction between natural selection and genetic drift. Furthermore, molecular evolution of the supergene is dominated not by adaptive protein evolution or balancing selection, but by extensive hitchhiking of linked variants on the mimetic dsx haplotype that occurred at the origin of mimicry. Our results suggest that chance events have played important and possibly opposing roles throughout the history of this classic example of adaptation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Westerman
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eyal Nitzany
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Taylor CH, Warrin J, Gilbert F, Reader T. Which traits do observers use to distinguish Batesian mimics from their models? Behav Ecol 2016. [DOI: 10.1093/beheco/arw166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Outomuro D, Ángel-Giraldo P, Corral-Lopez A, Realpe E. Multitrait aposematic signal in Batesian mimicry. Evolution 2016; 70:1596-608. [PMID: 27241010 DOI: 10.1111/evo.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022]
Abstract
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS-birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS-birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS-birds than for UVS-birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing-beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.
Collapse
Affiliation(s)
- David Outomuro
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia. .,Current address: Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D 75236, Uppsala, Sweden.
| | - Pedro Ángel-Giraldo
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Alberto Corral-Lopez
- Department of Ethology/Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Emilio Realpe
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
16
|
Outomuro D, Söderquist L, Nilsson-Örtman V, Cortázar-Chinarro M, Lundgren C, Johansson F. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. Evolution 2016; 70:1582-95. [PMID: 27173835 DOI: 10.1111/evo.12951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/16/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022]
Abstract
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow-based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade-off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species' mating systems and mating behaviors.
Collapse
Affiliation(s)
- David Outomuro
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE752-36, Uppsala, Sweden.
| | - Linus Söderquist
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE752-36, Uppsala, Sweden
| | - Viktor Nilsson-Örtman
- Department of Ecology and Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada.,Evolutionary Ecology Unit, Biology Department, Lund University, SE223-62 Lund, Sweden
| | - María Cortázar-Chinarro
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE752-36, Uppsala, Sweden
| | - Cecilia Lundgren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE752-36, Uppsala, Sweden
| | - Frank Johansson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE752-36, Uppsala, Sweden
| |
Collapse
|
17
|
Mérot C, Le Poul Y, Théry M, Joron M. Refining mimicry: phenotypic variation tracks the local optimum. J Anim Ecol 2016; 85:1056-69. [PMID: 27003742 DOI: 10.1111/1365-2656.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/08/2016] [Indexed: 11/26/2022]
Abstract
Müllerian mimicry between chemically defended preys is a textbook example of natural selection favouring phenotypic convergence onto a shared warning signal. Studies of mimicry have concentrated on deciphering the ecological and genetic underpinnings of dramatic switches in mimicry association, producing a well-known mosaic distribution of mimicry patterns across geography. However, little is known about the accuracy of resemblance between natural comimics when the local phenotypic optimum varies. In this study, using analyses of wing shape, pattern and hue, we quantify multimodal phenotypic similarity between butterfly comimics sharing the so-called postman pattern in different localities with varying species composition. We show that subtle but consistent variation between populations of the localized species, Heliconius timareta thelxinoe, enhance resemblance to the abundant comimics which drive the mimicry in each locality. Those results suggest that rarer comimics track the changes in the phenotypic optimum caused by gradual changes in the composition of the mimicry community, providing insights into the process by which intraspecific diversity of mimetic pattern may arise. Furthermore, our results suggest a multimodal evolution of similarity, with coordinated convergence in different features of the phenotype such as wing outline, pattern and hue. Finally, multilocus genotyping allows estimating local hybridization rates between H. timareta and comimic H. melpomene in different populations, raising the hypothesis that mimicry refinement between closely related comimics may be enhanced by adaptive introgression at loci modifying the accuracy of resemblance.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France
| | - Yann Le Poul
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France
| | - Marc Théry
- Mécanismes Adaptatifs et Evolution, UMR 7179 CNRS, Museum National d'Histoire Naturelle, 1 avenue du petit château, 91800, Brunoy, France
| | - Mathieu Joron
- Institut de Systématique Evolution et Biodiversité, UMR 7205 CNRS - MNHN - UPMC - EPHE, Muséum National d'Histoire Naturelle, 45 rue Buffon, 75005, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier 5, France
| |
Collapse
|
18
|
|
19
|
Kitamura T, Imafuku M. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes. Proc Biol Sci 2016; 282:20150483. [PMID: 26041360 DOI: 10.1098/rspb.2015.0483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly.
Collapse
Affiliation(s)
- Tasuku Kitamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Michio Imafuku
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V, Martin SH, Montgomery SH, Morris J, Nadeau NJ, Pinharanda AL, Rosser N, Thompson MJ, Vanjari S, Wallbank RWR, Yu Q. The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 2015; 28:1417-38. [PMID: 26079599 DOI: 10.1111/jeb.12672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/27/2022]
Abstract
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.
Collapse
Affiliation(s)
- R M Merrill
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - J W Davey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - D D Dell'Aglio
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - J J Hanly
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - B Huber
- Department of Biology, University of York, York, UK.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - M Joron
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier 5, France
| | - K M Kozak
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - V Llaurens
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - S H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - S H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - J Morris
- Department of Biology, University of York, York, UK
| | - N J Nadeau
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A L Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - N Rosser
- Department of Biology, University of York, York, UK
| | - M J Thompson
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - S Vanjari
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - R W R Wallbank
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Q Yu
- Department of Zoology, University of Cambridge, Cambridge, UK.,School of Life Sciences, Chongqing University, Shapingba District, Chongqing, China
| |
Collapse
|
21
|
Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Syst Biol 2015; 64:505-24. [PMID: 25634098 PMCID: PMC4395847 DOI: 10.1093/sysbio/syv007] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
Müllerian mimicry among Neotropical Heliconiini butterflies is an excellent example of natural selection, associated with the diversification of a large continental-scale radiation. Some of the processes driving the evolution of mimicry rings are likely to generate incongruent phylogenetic signals across the assemblage, and thus pose a challenge for systematics. We use a data set of 22 mitochondrial and nuclear markers from 92% of species in the tribe, obtained by Sanger sequencing and de novo assembly of short read data, to re-examine the phylogeny of Heliconiini with both supermatrix and multispecies coalescent approaches, characterize the patterns of conflicting signal, and compare the performance of various methodological approaches to reflect the heterogeneity across the data. Despite the large extent of reticulate signal and strong conflict between markers, nearly identical topologies are consistently recovered by most of the analyses, although the supermatrix approach failed to reflect the underlying variation in the history of individual loci. However, the supermatrix represents a useful approximation where multiple rare species represented by short sequences can be incorporated easily. The first comprehensive, time-calibrated phylogeny of this group is used to test the hypotheses of a diversification rate increase driven by the dramatic environmental changes in the Neotropics over the past 23 myr, or changes caused by diversity-dependent effects on the rate of diversification. We find that the rate of diversification has increased on the branch leading to the presently most species-rich genus Heliconius, but the change occurred gradually and cannot be unequivocally attributed to a specific environmental driver. Our study provides comprehensive comparison of philosophically distinct species tree reconstruction methods and provides insights into the diversification of an important insect radiation in the most biodiverse region of the planet.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Niklas Wahlberg
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew F E Neild
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kanchon K Dasmahapatra
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James Mallet
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chris D Jiggins
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK; Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Entomology, The Natural History Museum, London SW7 5BD, UK; Department of Biology, University of York, YO10 5DD Heslington, York, UK; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
22
|
Rodriguez J, Pitts JP, von Dohlen CD, Wilson JS. Müllerian mimicry as a result of codivergence between velvet ants and spider wasps. PLoS One 2014; 9:e112942. [PMID: 25396424 PMCID: PMC4232588 DOI: 10.1371/journal.pone.0112942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have delineated a large Nearctic Müllerian mimicry complex in Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry complex is found and are phenotypically similar to Dasymutilla. We tested the idea that Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that they codiverged with Dasymutilla. We performed morphometric analyses and human perception tests, and tabulated distributional records to determine the fit of Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using nuclear molecular markers (28S, elongation factor 1-alpha, long-wavelength rhodopsin and wingless) for Psorthaspis species and compared it to a dated phylogeny of Dasymutilla. We tested for codivergence between the two groups using two statistical analyses. Our results show that Psorthaspis spider wasps are morphologically similar to the Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and Dasymutilla codiverged to produce similar color patterns. This study expands the breadth of the Dasymutilla Müllerian mimicry complex and provides insights about how codivergence influenced the evolution of mimicry in these groups.
Collapse
Affiliation(s)
- Juanita Rodriguez
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - James P. Pitts
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Carol D. von Dohlen
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Joseph S. Wilson
- Department of Biology, Utah State University - Tooele, Tooele, Utah, United States of America
| |
Collapse
|
23
|
Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, Joron M. Genetic differentiation without mimicry shift in a pair of hybridizingHeliconiusspecies (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Claire Mérot
- UMR CNRS 7205; Muséum National d'Histoire Naturelle; 45 rue Buffon; 75005; Paris; France
| | | | | | | | | | - Gerardo Lamas
- Museo de Historia Natural; Universidad Nacional Mayor San Marcos; Av. Arenales, 1256; Apartado 14-0434; Lima; 14; Peru
| | - Mathieu Joron
- UMR CNRS 7205; Muséum National d'Histoire Naturelle; 45 rue Buffon; 75005; Paris; France
| |
Collapse
|