1
|
Burns MD, Satterfield DR, Peoples N, Chan H, Barley AJ, Yuan ML, Roberts-Hugghis AS, Russell KT, Hess M, Williamson SL, Corn KA, Mihalitsis M, Wainwright DK, Wainwright PC. Complexity and weak integration promote the diversity of reef fish oral jaws. Commun Biol 2024; 7:1433. [PMID: 39496908 PMCID: PMC11535403 DOI: 10.1038/s42003-024-07148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Major trade-offs often manifest as axes of diversity in organismal functional systems. Overarching trade-offs may result in high trait integration and restrict the trajectory of diversification to be along a single axis. Here, we explore the diversification of the feeding mechanism in coral reef fishes to establish the role of trade-offs and complexity in a spectacular ecological radiation. We show that the primary axis of variation in the measured musculo-skeletal traits is aligned with a trade-off between mobility and force transmission, spanning species that capture prey with suction and those that bite attached prey. We found weak or no covariation between about half the traits, reflecting deviations from the trade-off axis. The dramatic trophic range found among reef fishes occurs along the primary trade-off axis, with numerous departures that use a mosaic of trait combinations to adapt the feeding mechanism to diverse challenges. We suggest that morphological evolution both along and independent of a major axis of variation is a widespread mechanism of diversification in complex systems where a global trade-off shapes major patterns of diversity. Significant additional diversity emerges as systems use weak integration and complexity to assemble functional units with many trait combinations that meet varying ecological demands.
Collapse
Affiliation(s)
- M D Burns
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, USA.
- Department of Evolution & Ecology, University of California, Davis, CA, USA.
| | - D R Satterfield
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - N Peoples
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - H Chan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - A J Barley
- School of Mathematical and Natural Sciences, Arizona State University-West Valley Campus, Glendale, AZ, USA
| | - M L Yuan
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - A S Roberts-Hugghis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - K T Russell
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - M Hess
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - S L Williamson
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - K A Corn
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - M Mihalitsis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - D K Wainwright
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - P C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Harrison JS, Patek SN. Developing elastic mechanisms: ultrafast motion and cavitation emerge at the millimeter scale in juvenile snapping shrimp. J Exp Biol 2023; 226:287686. [PMID: 36854255 DOI: 10.1242/jeb.244645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s-1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s-2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms.
Collapse
Affiliation(s)
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Mongle CS, Nesbitt A, Machado FA, Smaers JB, Turner AH, Grine FE, Uyeda JC. A common mechanism drives the alignment between the micro- and macroevolution of primate molars. Evolution 2022; 76:2975-2985. [PMID: 36005286 DOI: 10.1111/evo.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Division of Anthropology, American Museum of Natural History, New York, New York, 10024.,Turkana Basin Institute, Stony Brook University, Stony Brook, New York, 11794
| | - Allison Nesbitt
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - Fabio A Machado
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| |
Collapse
|
4
|
Black CR, Armbruster JW. Evolutionary integration and modularity in the diversity of the suckermouth armoured catfishes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220713. [PMID: 36425524 PMCID: PMC9682303 DOI: 10.1098/rsos.220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The evolution of morphological diversity has held a long-standing fascination among scientists. In particular, do bodies evolve as single, integrated units or do different body parts evolve semi-independently (modules)? Suckermouth armoured catfishes (Loricariidae) have a morphology that lends nicely to evolutionary modularity and integration studies. In addition to a ventrally facing oral jaw that directly contacts surfaces, the neurocranium and pectoral girdle are fused, which limits movement of the anterior part of the body. Functional constraints suggest it is likely the head and post-cranial body act as separate modules that can evolve independently. If true, one would expect to see a two- or three-module system where the head and post-cranial body are morphologically distinct. To test this hypothesis, we quantified shape using geometric morphometric analysis and assessed the degree of modularity across functionally important regions. We found the armoured catfish body is highly modularized, with varying degrees of integration between each module. Within subfamilies, there are different patterns of evolutionary modularity and integration, suggesting that the various patterns may have driven diversification along a single trajectory in each subfamily. This study suggests the evolution of armoured catfish diversification is complex, with morphological evolution influenced by interactions within and between modules.
Collapse
|
5
|
Vujić VD, Ilić BS, Lučić LR, Jovanović ZS, Milovanović JZ, Dudić BD, Stojanović DZ. Presence of morphological integration and modularity of the forcipular apparatus in Lithobius melanops (Chilopoda: Lithobiomorpha: Lithobiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 71:101203. [PMID: 36088838 DOI: 10.1016/j.asd.2022.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of morphological integration and modularity of the forcipular apparatus, despite its evolutionary significance, has not been analyzed in centipedes. This morphological structure has a crucial role in feeding and defense, thanks to its poisonous part (forcipules), which is important for catching the prey. The aims of our study were: i) to test the hypothesis of modularity of the forcipular apparatus in centipede Lithobius melanops; and ii) to investigate the influence of allometry on overall morphological integration in the aforementioned species using a geometric morphometric approach. The presence of fluctuating asymmetry was obtained by Procrustes ANOVA. Allometry was significant only for the symmetric component of the forcipular apparatus. The modularity hypothesis was not accepted, because the covariance coefficients for symmetric and asymmetric components were lower than 89.5% and 72.1% (respectively) of other RV coefficients obtained by a random contiguous partition of the forcipular apparatus. Results of the present study indicate that allometry does increase the level of morphological integration in the forcipular apparatus. According to our results, the forcipular coxosternite and forcipules could not be considered as separate modules; namely, they probably share similar developmental pathways and function in different forms of behavior and survival in L. melanops.
Collapse
Affiliation(s)
- Vukica D Vujić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Bojan S Ilić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Zvezdana S Jovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Jelena Z Milovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Boris D Dudić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Dalibor Z Stojanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
6
|
Artuso S, Gamisch A, Staedler YM, Schönenberger J, Comes HP. Evidence for an evo-devo-derived hypothesis on three-dimensional flower shape modularity in a tropical orchid clade. Evolution 2022; 76:2587-2604. [PMID: 36128635 PMCID: PMC9828045 DOI: 10.1111/evo.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023]
Abstract
Covarying suites of phenotypic traits, or modules, are increasingly recognized to promote morphological evolution. However, information on how modularity influences flower diversity is rare and lacking for Orchidaceae. Here, we combine high-resolution X-ray computed tomography scanning with three-dimensional geometric morphometrics and phylogenetic comparative methods to test various hypotheses about three-dimensional patterns of flower evolutionary modularity in Malagasy Bulbophyllum orchids and examine rates and modes of module evolution. Based on the four evolutionary modules identified (i.e., sepals, lateral petals, labellum + column-foot, and column-part), our data support the hypothesis that both genetic-developmental and functional adaptive factors shaped evolutionary flower trait covariation in these tropical orchids. In line with "evo-devo" studies, we also find that the labellum evolved independently from the rest of the petal whorl. Finally, we show that modules evolved with different rates, and either in a neutral fashion (only column-part) or under selective constraints, as likely imposed by pollinators. Overall, this study supports current views that modular units can enhance the range and rate of morphological evolution.
Collapse
Affiliation(s)
- Silvia Artuso
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| | - Alexander Gamisch
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| | - Yannick M. Staedler
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1030Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaVienna1030Austria
| | - Hans Peter Comes
- Department of Environment and BiodiversityUniversity of SalzburgSalzburg5020Austria
| |
Collapse
|
7
|
van Heteren AH, Friess M, Détroit F, Balzeau A. Covariation of proximal finger and toe phalanges in Homo sapiens: A novel approach to assess covariation of serially corresponding structures. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:471-488. [PMID: 36787692 DOI: 10.1002/ajpa.24439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES As hands and feet are serially repeated corresponding structures in tetrapods, the morphology of fingers and toes is expected to covary due to a shared developmental origin. The present study focuses on the covariation of the shape of proximal finger and toe phalanges of adult Homo sapiens to determine whether covariation is different in the first ray relative to the others, as its morphology is also different. MATERIAL AND METHODS Proximal phalanges of 76 individuals of unknown sex (Muséum national d'Histoire naturelle, Paris, and the Natural History Museum, London) were digitized using a surface scanner. Landmarks were positioned on 3D surface models of the phalanges. Generalized Procrustes analysis and two-block partial least squares (PLS) analyses were conducted. A novel landmark-based geometric morphometric approach focusing on covariation is based on a PCoA of the angles between PLS axes in morphospace. The results can be statistically evaluated. RESULTS The difference in PCo scores between the first and the other rays indicates that the integration between the thumb and the big toe is different from that between the lateral rays of the hand and foot. DISCUSSION We speculate that the results are possibly the evolutionary consequence of differential selection pressure on the big toe relative to the other toes related to the rise of bipedalism, which is proposed to have emerged very early in the hominin clade. In contrast, thumb morphology and its precision grip never ceased undergoing changes, suggesting less acute selection pressures related to the evolution of the precision grip.
Collapse
Affiliation(s)
- Anneke H van Heteren
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Martin Friess
- Éco-Anthropologie, UMR 7206, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Université de Paris, Paris, 75016, France
| | - Florent Détroit
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France
| | - Antoine Balzeau
- PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17, Place du Trocadéro, Paris, 75016, France.,Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium
| |
Collapse
|
8
|
Vujić V, Ilić B, Lučić L, Tomić V, Jovanović Z, Pavković-Lučić S, Makarov S. Morphological integration of the head capsule in the millipede Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida): can different modules be recognized? ZOOLOGY 2021; 149:125970. [PMID: 34628210 DOI: 10.1016/j.zool.2021.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Covariation of multiple morphological traits and modularity have been widely studied in the field of evolutionary developmental biology. Subunits of a morphological structure can evolve separately from each other in a modular fashion. The aims of our study therefore were: i) to test the hypothesis of modularity in the dorsal part of the head capsule and the gnathochilarium separately during late postembryogenesis in the julidan millipede Megaphyllum unilineatum (C. L. Koch, 1838) using geometric morphometrics; and ii) to investigate the influence of allometry on overall morphological integration in the dorsal part of the head capsule and the gnathochilarium in the mentioned species. Individuals from different ontogenetic stadia (stadium VI - stadium XI) were included in the analyses. Significant influence of fluctuating asymmetry on the dorsal part of the head capsule shape was detected by Procrustes ANOVA. Regressions were significant for the symmetric component of both analysed morphological traits, while non-significant regression was detected for the asymmetric component of the head capsule's dorsal part. Hypotheses of modularity for the dorsal part of the head capsule and the gnathochilarium are rejected because our results indicate that a small proportion of alternate partitions has higher covariation between subsets of structure than between the hypothesized modules. Contrary to our expectations, results of the present study show that allometry does not increase the level of morphological integration in the dorsal part of the head capsule and the gnathochilarium in M. unilineatum. Based on the obtained results, we conclude that the dorsal part of the head capsule and the gnathochilarium are not composed of independent modules and that in the case of the capsule's dorsal part, developmental processes affect morphological integration in different ways at different levels of shape variation.
Collapse
Affiliation(s)
- Vukica Vujić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Bojan Ilić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Luka Lučić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Vladimir Tomić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Zvezdana Jovanović
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Sofija Pavković-Lučić
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Slobodan Makarov
- University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Conith AJ, Meagher MA, Dumont ER. The influence of divergent reproductive strategies in shaping modularity and morphological evolution in mammalian jaws. J Evol Biol 2021; 35:164-179. [PMID: 34624153 DOI: 10.1111/jeb.13944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023]
Abstract
Marsupial neonates are born at an earlier developmental stage than placental mammals, but the rapid development of their forelimbs and cranial skeleton allows them to climb to the pouch, begin suckling and complete their development ex utero. The mechanical environment in which marsupial neonates develop is vastly different from that of placental neonates, which exhibit a more protracted development of oral muscles and bones. This difference in reproductive strategy has been theorized to constrain morphological evolution in the oral region of marsupials. Here, we use 3D morphometrics to characterize one of these oral bones, the lower jaw (dentary), and assess modularity (pattern of covariation among traits), morphological disparity and rates of morphological evolution in two clades of carnivorous mammals: the marsupial Dasyuromorphia and placental fissiped Carnivora. We find that dasyuromorph dentaries have fewer modules than carnivorans and exhibit tight covariation between the angular and coronoid processes, the primary attachment sites for jaw-closing muscles. This pattern of modularity may result from the uniform action of muscles on the developing mandible during suckling. Carnivorans are free from this constraint and exhibit a pattern of modularity that more strongly reflects genetic and developmental signals of trait covariation. Alongside differences in modularity, carnivorans exhibit greater disparity and faster rates of morphological evolution compared with dasyuromorphs. Taken together, this suggests dasyuromorphs have retained a signal of trait covariation that reflects the outsized influence of muscular force during early development, a feature that may have impacted the ability of marsupial carnivores to explore specialized regions of morphospace.
Collapse
Affiliation(s)
- Andrew J Conith
- Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Molly A Meagher
- Natural Resources Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth R Dumont
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| |
Collapse
|
10
|
Zelditch ML, Goswami A. What does modularity mean? Evol Dev 2021; 23:377-403. [PMID: 34464501 DOI: 10.1111/ede.12390] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Modularity is now generally recognized as a fundamental feature of organisms, one that may have profound consequences for evolution. Modularity has recently become a major focus of research in organismal biology across multiple disciplines including genetics, developmental biology, functional morphology, population and evolutionary biology. While the wealth of new data, and also new theory, has provided exciting and novel insights, the concept of modularity has become increasingly ambiguous. That ambiguity is underlain by diverse intuitions about what modularity means, and the ambiguity is not merely about the meaning of the word-the metrics of modularity are measuring different properties and the methods for delimiting modules delimit them by different, sometimes conflicting criteria. The many definitions, metrics and methods can lead to substantial confusion not just about what modularity means as a word but also about what it means for evolution. Here we review various concepts, using graphical depictions of modules. We then review some of the metrics and methods for analyzing modularity at different levels. To place these in theoretical context, we briefly review theories about the origins and evolutionary consequences of modularity. Finally, we show how mismatches between concepts, metrics and methods can produce theoretical confusion, and how potentially illogical interpretations can be made sensible by a better match between definitions, metrics, and methods.
Collapse
Affiliation(s)
- Miriam L Zelditch
- Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
11
|
The evolution of siphonophore tentilla for specialized prey capture in the open ocean. Proc Natl Acad Sci U S A 2021; 118:2005063118. [PMID: 33593896 PMCID: PMC7923536 DOI: 10.1073/pnas.2005063118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Predatory specialization is often associated with the evolution of modifications in the morphology of the prey-capture apparatus. Specialization has been considered an evolutionary “dead end” due to the constraints associated with these morphological changes. However, in predators like siphonophores, armed with modular structures used exclusively for prey capture, this assumption is challenged. Our results show that siphonophores can evolve generalism and new prey-type specializations by modifying the morphological states, modes of evolution, and evolutionary correlations between the parts of their prey-capture apparatus. These findings demonstrate how studying open-ocean nonbilaterian predators can reveal novel patterns and mechanisms in the evolution of specialization. Understanding these evolutionary processes is fundamental to the study of food web structure and complexity. Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.
Collapse
|
12
|
Cruz FB, Moreno Azocar DL, Vanhooydonck B, Schulte JA, Abdala CS, Herrel A. Drivers and patterns of bite force evolution in liolaemid lizards. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Phenotypic variation is the result of selection on traits that are relevant in a given ecological context. Phylogenetic history, genetic drift, and any developmental or structural constraints may, however, limit variation in trait expression. It has been proposed that organismal performance traits take up a pivotal role in driving variation in morphology due to their central role in survival and reproductive success. However, how strong the links are between morphology and performance, and how the strength of this relationship impacts the rate of evolution of form and function need to be studied across a wider variety of systems to better understand the origin and evolution of biodiversity. Here we used data on the jaw system (muscle architecture and head dimensions) of liolaemid lizards to investigate the drivers of in vivo bite force variation and test for differences in evolutionary rates in morphology and performance. Our results show high rates of evolution for performance traits compared to morphological traits such as external head dimensions. Many-to-one mapping of morphology to performance, that is the possibility that different anatomical trait combinations lead to similar levels of performance, appears to be common in the jaw system of these lizards. Finally, traits showing greater mechanical sensitivity (muscle cross-sectional areas) showed higher rates of evolution compared to traits involved in other functions and that are probably subject to trade-offs (e.g. head width).
Collapse
Affiliation(s)
- Félix B Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) CONICET-UNCOMA, Quintral, Bariloche, Argentina
| | - Débora Lina Moreno Azocar
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) CONICET-UNCOMA, Quintral, Bariloche, Argentina
| | - Bieke Vanhooydonck
- Department of Biology, University of Antwerp, Universiteitsplein 1, Antwerpen,Belgium
| | - James A Schulte
- Division of Amphibians and Reptiles, National Museum of Natural History, Washington, DC, USA
| | - Cristian S Abdala
- Unidad Ejecutora Lillo (UEL)- CONICET and Facultad de Cs. Naturales e IML, UNT. Miguel Lillo, Tucumán, Argentina
| | - Anthony Herrel
- Department of Biology, University of Antwerp, Universiteitsplein 1, Antwerpen,Belgium
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, Paris, France
| |
Collapse
|
13
|
deVries MS, Lowder KB, Taylor JRA. From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests. Integr Comp Biol 2021; 61:643-654. [PMID: 33974067 DOI: 10.1093/icb/icab064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the spirit of this symposium on the physical mechanisms of behavior, we review mantis shrimp ritualized fighting, from the telson to the attack, as an inspiring example of how the integration of biomechanics and behavioral research can yield a penetrating narrative for how animals accomplish important activities, including agonistic actions. Resolving conflicts with conspecifics over valuable resources is an essential task for animals, and this takes an unusual form in mantis shrimp due to their powerful raptorial appendages. Decades of field and laboratory research have provided key insights into the natural agonistic interactions of diverse mantis shrimp species, including how they use their raptorial weapons against one another in telson sparring matches over cavities. These insights provided the foundation for functional morphologists, biomechanists, and engineers to work through different levels of organization: from the kinematics of how the appendages move to the elastic mechanisms that power the strike, and down to the structure, composition, and material properties that transmit and protect against high-impact forces. Completing this narrative are studies on the defensive telson and how this structure is biomechanically matched to the weapon and the role it plays in ritualized fighting. The biomechanical understanding of the weapon and defense in mantis shrimp has, in turn, enabled a better understanding of whether mantis shrimp assess one another during contests and encouraged questions of evolutionary drivers on both the arsenal and behavior. Altogether, the body of research focused on mantis shrimp has presented perhaps the most comprehensive understanding of fighting, weapons, and defenses among crustaceans, from morphology and biomechanics to behavior and evolution. While this multi-level analysis of ritualized fighting in mantis shrimp is comprehensive, we implore the need to include additional levels of analysis to obtain a truly holistic understanding of this and other crustacean agonistic interactions. Specifically, both molting and environmental conditions are often missing from the narrative, yet they greatly affect crustacean weapons, defenses, and behavior. Applying this approach more broadly would generate a similarly profound understanding of how crustaceans carry out a variety of important tasks in diverse habitats.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | | | - Jennifer R A Taylor
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Harrison JS, Porter ML, McHenry MJ, Robinson HE, Patek SN. Scaling and development of elastic mechanisms: the tiny strikes of larval mantis shrimp. J Exp Biol 2021; 224:258491. [PMID: 33914038 DOI: 10.1242/jeb.235465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s-2, 292.7 rad s-1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults - even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s-1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms.
Collapse
Affiliation(s)
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H Eve Robinson
- Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Varón-González C, Whelan S, Klingenberg CP. Estimating Phylogenies from Shape and Similar Multidimensional Data: Why It Is Not Reliable. Syst Biol 2021; 69:863-883. [PMID: 31985800 DOI: 10.1093/sysbio/syaa003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, there has been controversy whether multidimensional data such as geometric morphometric data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution in multidimensional phenotype spaces to address this question and to identify specific factors that are important for answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods, squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion, phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions, the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change parsimony; phylogeny; shape; stabilizing selection.].
Collapse
Affiliation(s)
- Ceferino Varón-González
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Whelan
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.,Department of Evolutionary Biology, EBC, Uppsala University, Norbyägen 18D, 75236 Uppsala, Sweden
| | - Christian Peter Klingenberg
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
16
|
Pérez F, Lavandero N, Ossa CG, Hinojosa LF, Jara-Arancio P, Arroyo MTK. Divergence in Plant Traits and Increased Modularity Underlie Repeated Transitions Between Low and High Elevations in the Andean Genus Leucheria. FRONTIERS IN PLANT SCIENCE 2020; 11:714. [PMID: 32582248 PMCID: PMC7287153 DOI: 10.3389/fpls.2020.00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Understanding why some plant lineages move from one climatic region to another is a mayor goal of evolutionary biology. In the southern Andes plant lineages that have migrated along mountain ranges tracking cold-humid climates coexist with lineages that have shifted repeatedly between warm-arid at low elevations and cold habitats at high elevations. Transitions between habitats might be facilitated by the acquisition of common traits favoring a resource-conservative strategy that copes with drought resulting from either low precipitation or extreme cold. Alternatively, transitions might be accompanied by phenotypic divergence and accelerated evolution of plant traits, which in turn may depend on the level of coordination among them. Reduced integration and evolution of traits in modules are expected to increase evolutionary rates of traits, allowing diversification in contrasting climates. To examine these hypotheses, we conducted a comparative study in the herbaceous genus Leucheria. We reconstructed ancestral habitat states using Maximum Likelihood and a previously published phylogeny. We performed a Phylogenetic Principal Components Analysis on traits, and then we tested the relationship between PC axes, habitat and climate using Phylogenetic Generalized Least Squares (PGLS). Finally, we compared the evolutionary rates of traits, and the levels of modularity among the three main Clades of Leucheria. Our results suggest that the genus originated at high elevations and later repeatedly colonized arid-semiarid shrublands and humid-forest at lower elevations. PGLS analysis suggested that transitions between habitats were accompanied by shifts in plant strategies: cold habitats at high elevations favored the evolution of traits related to a conservative-resource strategy (thicker and dissected leaves, with high mass per area, and high biomass allocation to roots), whereas warm-arid habitats at lower elevations favored traits related to an acquisitive-resource strategy. As expected, we detected higher levels of modularity in the clades that switched repeatedly between habitats, but higher modularity was not associated with accelerated rates of trait evolution.
Collapse
Affiliation(s)
- Fernanda Pérez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás Lavandero
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carmen Gloria Ossa
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Santiago, Chile
| | - Luis Felipe Hinojosa
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paola Jara-Arancio
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Biológicas y Departamento de Ecología y Biodiversidad, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mary T. Kalin Arroyo
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bardua C, Fabre A, Bon M, Das K, Stanley EL, Blackburn DC, Goswami A. Evolutionary integration of the frog cranium. Evolution 2020; 74:1200-1215. [DOI: 10.1111/evo.13984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Carla Bardua
- Department of Genetics, Evolution, and EnvironmentUniversity College London London WC1E 6BT United Kingdom
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Anne‐Claire Fabre
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Margot Bon
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Kalpana Das
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und Biodiversitätsforschung Berlin 10115 Germany
| | - Edward L. Stanley
- Department of HerpetologyFlorida Museum of Natural History, University of Florida Gainesville Florida 32610
| | - David C. Blackburn
- Department of Natural HistoryFlorida Museum of Natural History, University of Florida Gainesville Florida 32611
| | - Anjali Goswami
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| |
Collapse
|
18
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Abstract
Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form-function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution-evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
20
|
Perrard A. Wasp Waist and Flight: Convergent Evolution in Wasps Reveals a Link between Wings and Body Shapes. Am Nat 2020; 195:181-191. [PMID: 32017631 DOI: 10.1086/706914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Insect flight is made possible by different morphological structures: wings produce the lift, the thorax drives the wings' movements, and the abdomen serves as a secondary control device. As such, the covariation of these structures could reflect functional constraints related to flight performances. This study examines evolutionary convergences in wasp body shapes to provide the first evidence for morphological integration among insect wings, thorax, and abdomen. The shapes of the forewings and hind wings, thorax, and petiole (connecting abdomen and thorax) of 22 Vespidae species were analyzed using computerized tomography and geometric morphometrics. Results show a clear relationship between petiole and wings or thorax shapes but not between wings and thorax. Wasps with elongated bodies have pointed wings, both features thought to improve flight maneuverability. In contrast, stouter species have rounded wings, which may allow for higher flight speeds. These integration patterns suggest that multiple selective regimes on flight performance, some of them biased toward maneuverability or maximal speed, drove the morphological diversity in Vespidae. The results also suggest that wing shapes evolved under constraints related to the body type they have to lift. The abdomen morphology is thus another factor to take into account to understand the flight performance of insects.
Collapse
|
21
|
Eliason CM, Maia R, Parra JL, Shawkey MD. Signal evolution and morphological complexity in hummingbirds (Aves:
Trochilidae
). Evolution 2020; 74:447-458. [DOI: 10.1111/evo.13893] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Chad M. Eliason
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Rafael Maia
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología Universidad de Antioquia Medellín Colombia
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology University of Ghent 9000 Ghent Belgium
| |
Collapse
|
22
|
Farina SC, Kane EA, Hernandez LP. Multifunctional Structures and Multistructural Functions: Integration in the Evolution of Biomechanical Systems. Integr Comp Biol 2019; 59:338-345. [PMID: 31168594 DOI: 10.1093/icb/icz095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integration is an essential feature of complex biomechanical systems, with coordination and covariation occurring among and within structural components at time scales that vary from microseconds to deep evolutionary time. Integration has been suggested to both promote and constrain morphological evolution, and the effects of integration on the evolution of structure likely vary by system, clade, historical contingency, and time scale. In this introduction to the 2019 symposium "Multifunctional Structures and Multistructural Functions," we discuss the role of integration among structures in the context of functional integration and multifunctionality. We highlight articles from this issue of Integrative and Comparative Biology that explore integration within and among kinematics, sensory and motor systems, physiological systems, developmental processes, morphometric dimensions, and biomechanical functions. From these myriad examples it is clear that integration can exist at multiple levels of organization that can interact with adjacent levels to result in complex patterns of structural and functional phenotypes. We conclude with a synthesis of major themes and potential future directions, particularly with respect to using multifunctionality, itself, as a trait in evolutionary analyses.
Collapse
Affiliation(s)
- S C Farina
- Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - E A Kane
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA 30458, USA
| | - L P Hernandez
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA
| |
Collapse
|
23
|
Modularity increases rate of floral evolution and adaptive success for functionally specialized pollination systems. Commun Biol 2019; 2:453. [PMID: 31872071 PMCID: PMC6895197 DOI: 10.1038/s42003-019-0697-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Angiosperm flowers have diversified in adaptation to pollinators, but are also shaped by developmental and genetic histories. The relative importance of these factors in structuring floral diversity remains unknown. We assess the effects of development, function and evolutionary history by testing competing hypotheses on floral modularity and shape evolution in Merianieae (Melastomataceae). Merianieae are characterized by different pollinator selection regimes and a developmental constraint: tubular anthers adapted to specialized buzz-pollination. Our analyses of tomography-based 3-dimensional flower models show that pollinators selected for functional modules across developmental units and that patterns of floral modularity changed during pollinator shifts. Further, we show that modularity was crucial for Merianieae to overcome the constraint of their tubular anthers through increased rates of evolution in other flower parts. We conclude that modularity may be key to the adaptive success of functionally specialized pollination systems by making flowers flexible (evolvable) for adaptation to changing selection regimes. Dellinger et al. report the characterization of different pollinator selection regimes on 3D flower models. They show that pollinators selected for functional floral modules, and that this modularity allowed certain species to overcome morphological constraints by increased evolutionary rates in other flower parts.
Collapse
|
24
|
Caetano DS, Harmon LJ. Estimating Correlated Rates of Trait Evolution with Uncertainty. Syst Biol 2019; 68:412-429. [PMID: 30329124 DOI: 10.1093/sysbio/syy067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 11/14/2022] Open
Abstract
Correlated evolution among traits, which can happen due to genetic constraints, ontogeny, and selection, can have an important impact on the trajectory of phenotypic evolution. For example, shifts in the pattern of evolutionary integration may allow the exploration of novel regions of the morphospace by lineages. Here, we use phylogenetic trees to study the pace of evolution of several traits and their pattern of evolutionary correlation across clades and over time. We use regimes mapped to the branches of the phylogeny to test for shifts in evolutionary integration while incorporating the uncertainty related to trait evolution and ancestral regimes with joint estimation of all parameters of the model using Bayesian Markov chain Monte Carlo. We implemented the use of summary statistics to test for regime shifts based on a series of attributes of the model that can be directly relevant to biological hypotheses. In addition, we extend Felsenstein's pruning algorithm to the case of multivariate Brownian motion models with multiple rate regimes. We performed extensive simulations to explore the performance of the method under a series of scenarios. Finally, we provide two test cases; the evolution of a novel buccal morphology in fishes of the family Centrarchidae and a shift in the trajectory of evolution of traits during the radiation of anole lizards to and from the Caribbean islands. [Anolis; Centrarchidae; comparative methods; evolutionary integration; evolutionary rates; modularity; pruning algorithm.].
Collapse
Affiliation(s)
- D S Caetano
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - L J Harmon
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
25
|
Farina SC, Knope ML, Corn KA, Summers AP, Bemis WE. Functional coupling in the evolution of suction feeding and gill ventilation of sculpins (Perciformes: Cottoidei). Integr Comp Biol 2019; 59:394-409. [DOI: 10.1093/icb/icz022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroup taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.
Collapse
Affiliation(s)
- S C Farina
- Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - M L Knope
- Department of Biology, University of Hawaii, Hilo, 200 West Kawili Street, Hilo, HI 96720, USA
| | - K A Corn
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - A P Summers
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - W E Bemis
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Bardua C, Wilkinson M, Gower DJ, Sherratt E, Goswami A. Morphological evolution and modularity of the caecilian skull. BMC Evol Biol 2019; 19:30. [PMID: 30669965 PMCID: PMC6343317 DOI: 10.1186/s12862-018-1342-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. RESULTS We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult = 0.87, p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 = 0.16, p < 0.01), but stronger posteriorly. Reproductive strategy and degree of fossoriality were small but significant influences on cranial morphology (R2 = 0.03-0.05), after phylogenetic (p < 0.03) and multiple-test (p < 0.05) corrections. The quadrate-squamosal 'cheek' module was the fastest evolving module, perhaps due to its pivotal role in the unique dual jaw-closing mechanism of caecilians. Highly integrated modules exhibited both high and low disparities, and no relationship was evident between integration and evolutionary rate. CONCLUSIONS Our high-dimensional approach robustly characterises caecilian cranial evolution and demonstrates that caecilian crania are highly modular and that cranial modules are shaped by differential phylogenetic, allometric, and ecological effects. More broadly, and in contrast to recent studies, this work suggests that there is no simple relationship between integration and evolutionary rate or disparity.
Collapse
Affiliation(s)
- Carla Bardua
- Department of Life Sciences, Natural History Museum, London, UK. .,Department of Genetics, Evolution and Environment, UCL, London, UK.
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London, UK
| | - Emma Sherratt
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Genetics, Evolution and Environment, UCL, London, UK
| |
Collapse
|
27
|
Delgado MN, Pérez-Pérez A, Galbany J. Morphological variation and covariation in mandibular molars of platyrrhine primates. J Morphol 2018; 280:20-34. [PMID: 30556948 DOI: 10.1002/jmor.20907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/08/2018] [Accepted: 09/23/2018] [Indexed: 11/07/2022]
Abstract
Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Jordi Galbany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.,Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Wagner PJ. Early bursts of disparity and the reorganization of character integration. Proc Biol Sci 2018; 285:20181604. [PMID: 30429302 PMCID: PMC6253373 DOI: 10.1098/rspb.2018.1604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
'Early bursts' of morphological disparity (i.e. diversity of anatomical types) are common in the fossil record. We typically model such bursts as elevated early rates of independent character change. Developmental theory predicts that modules of linked characters can change together, which would mimic the effects of elevated independent rates on disparity. However, correlated change introducing suboptimal states should encourage breakup (parcellation) of character suites allowing new (or primitive) states to evolve until new suites arise (relinkage). Thus, correlated change-breakup-relinkage presents mechanisms for early bursts followed by constrained evolution. Here, I analyse disparity in 257 published character matrices of fossil taxa. For each clade, I use inverse-modelling to infer most probably rates of independent change given both time-homogeneous and separate 'early versus late' rates. These rates are used to estimate expected disparity given both independent change models. The correlated change-breakup-relinkage model also predicts elevated frequencies of compatible character state-pairs appearing out of order in the fossil record (e.g. 01 appearing after 00 and 11; = low stratigraphic compatibility), as one solution to suboptimal states induced by correlated change is a return to states held before that change. As predicted by the correlated change-breakup-relinkage model, early disparity in the majority of clades both exceeds the expectations of either independent change model and excess early disparity correlates with low stratigraphic compatibility among character-pairs. Although it is possible that other mechanisms for linking characters contribute to these patterns, these results corroborate the idea that reorganization of developmental linkages is often associated with the origin of groups that biologists recognize as new higher taxa and that such reorganization offers a source of new disparity throughout the Phanerozoic.
Collapse
Affiliation(s)
- Peter J Wagner
- Department of Earth and Atmospheric Sciences, and School of Biological Sciences, University of Nebraska, Lincoln, NE 20560, USA
| |
Collapse
|
29
|
Felice RN, Randau M, Goswami A. A fly in a tube: Macroevolutionary expectations for integrated phenotypes. Evolution 2018; 72:2580-2594. [PMID: 30246245 PMCID: PMC6585935 DOI: 10.1111/evo.13608] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/03/2023]
Abstract
Phenotypic integration and modularity are ubiquitous features of complex organisms, describing the magnitude and pattern of relationships among biological traits. A key prediction is that these relationships, reflecting genetic, developmental, and functional interactions, shape evolutionary processes by governing evolvability and constraint. Over the last 60 years, a rich literature of research has quantified patterns of integration and modularity across a variety of clades and systems. Only recently has it become possible to contextualize these findings in a phylogenetic framework to understand how trait integration interacts with evolutionary tempo and mode. Here, we review the state of macroevolutionary studies of integration and modularity, synthesizing empirical and theoretical work into a conceptual framework for predicting the effects of integration on evolutionary rate and disparity: a fly in a tube. While magnitude of integration is expected to influence the potential for phenotypic variation to be produced and maintained, thus defining the shape and size of a tube in morphospace, evolutionary rate, or the speed at which a fly moves around the tube, is not necessarily controlled by trait interactions. Finally, we demonstrate this reduced disparity relative to the Brownian expectation for a given rate of evolution with an empirical example: the avian cranium.
Collapse
Affiliation(s)
- Ryan N Felice
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Marcela Randau
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, The Natural History Museum, London SW7 5DB, United Kingdom.,Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Roberts AS, Farina SC, Goforth RR, Gidmark NJ. Evolution of skeletal and muscular morphology within the functionally integrated lower jaw adduction system of sculpins and relatives (Cottoidei). ZOOLOGY 2018; 129:59-65. [PMID: 30170749 DOI: 10.1016/j.zool.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/05/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Vertebrate lever mechanics are defined by the morphology of skeletal elements and the properties of their muscular actuators; these metrics characterize functional diversity. The components of lever systems work in coordination ("functional integration") and may show strong covariation across evolutionary history ("evolutionary integration"), both of which have been hypothesized to constrain phenotypic diversity. We quantified evolutionary integration in a functionally integrated system - the lower jaw of sculpins and relatives (Actinopterygii: Cottoidei). Sculpins primarily rely on suction feeding for prey capture, but there is considerable variation in evasiveness of their prey, resulting in variation in anatomy of the lower jaw-closing mechanism. We used functionally-relevant linear measurements to characterize skeletal and muscular components of this system among 25 cottoid species and two outgroup Hexagrammoidei (greenling) species. We quantified evolutionary covariation and correlation of jaw-closing mechanical advantage (i.e., skeletal leverage) and muscle architecture (i.e., gearing) by correlating phylogenetically independent contrasts and fitting phylogenetically corrected generalized least squares models. We found no evidence of evolutionary covariation in muscle architecture and skeletal leverage. While we found a positive evolutionary correlation between out-lever length and adductor muscle fiber length, there was no significant evolutionary correlation between in-lever length and adductor muscle fiber length. We also found a positive evolutionary correlation between in- and out-lever lengths. These results suggest that skeletal morphology and muscle morphology contribute independently to biomechanical diversity among closely related species, indicating the importance of considering both skeletal and muscular variation in studies of ecomorphological diversification.
Collapse
Affiliation(s)
- Alexus S Roberts
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA.
| | - Stacy C Farina
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Reuben R Goforth
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas J Gidmark
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA; Department of Biology, Knox College, Galesburg, IL 61401, USA
| |
Collapse
|
31
|
Ilton M, Bhamla MS, Ma X, Cox SM, Fitchett LL, Kim Y, Koh JS, Krishnamurthy D, Kuo CY, Temel FZ, Crosby AJ, Prakash M, Sutton GP, Wood RJ, Azizi E, Bergbreiter S, Patek SN. The principles of cascading power limits in small, fast biological and engineered systems. Science 2018; 360:360/6387/eaao1082. [PMID: 29700237 DOI: 10.1126/science.aao1082] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/07/2018] [Indexed: 01/24/2023]
Abstract
Mechanical power limitations emerge from the physical trade-off between force and velocity. Many biological systems incorporate power-enhancing mechanisms enabling extraordinary accelerations at small sizes. We establish how power enhancement emerges through the dynamic coupling of motors, springs, and latches and reveal how each displays its own force-velocity behavior. We mathematically demonstrate a tunable performance space for spring-actuated movement that is applicable to biological and synthetic systems. Incorporating nonideal spring behavior and parameterizing latch dynamics allows the identification of critical transitions in mass and trade-offs in spring scaling, both of which offer explanations for long-observed scaling patterns in biological systems. This analysis defines the cascading challenges of power enhancement, explores their emergent effects in biological and engineered systems, and charts a pathway for higher-level analysis and synthesis of power-amplified systems.
Collapse
Affiliation(s)
- Mark Ilton
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M Saad Bhamla
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaotian Ma
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - Suzanne M Cox
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Leah L Fitchett
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yongjin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Je-Sung Koh
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | | | - Chi-Yun Kuo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fatma Zeynep Temel
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Gregory P Sutton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Robert J Wood
- School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Emanuel Azizi
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, College Park, MD 20742, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Modularity promotes morphological divergence in ray-finned fishes. Sci Rep 2018; 8:7278. [PMID: 29740131 PMCID: PMC5940925 DOI: 10.1038/s41598-018-25715-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
Modularity is considered a prerequisite for the evolvability of biological systems. This is because in theory, individual modules can follow quasi-independent evolutionary trajectories or evolve at different rates compared to other aspects of the organism. This may influence the potential of some modules to diverge, leading to differences in disparity. Here, we investigated this relationship between modularity, rates of morphological evolution and disparity using a phylogenetically diverse sample of ray-finned fishes. We compared the support for multiple hypotheses of evolutionary modularity and asked if the partitions delimited by the best-fitting models were also characterized by the highest evolutionary rate differentials. We found that an evolutionary module incorporating the dorsal, anal and paired fins was well supported by the data, and that this module evolves more rapidly and consequently generates more disparity than other modules. This suggests that modularity may indeed promote morphological disparity through differences in evolutionary rates across modules.
Collapse
|
33
|
Grunenfelder LK, Milliron G, Herrera S, Gallana I, Yaraghi N, Hughes N, Evans-Lutterodt K, Zavattieri P, Kisailus D. Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29336499 DOI: 10.1002/adma.201705295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Ecological pressures and varied feeding behaviors in a multitude of organisms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include "spearers," who ambush and snare soft bodied prey, and "smashers," who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architecture (common to arthropods), and a unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a raptorial feeding appendage as a biological hammer. Moreover, given the need to accelerate underwater and "grab" or "smash" their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.
Collapse
Affiliation(s)
- Lessa Kay Grunenfelder
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Bldg. Room 343, UC Riverside, Riverside, CA, 92521, USA
| | - Garrett Milliron
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Bldg. Room 343, UC Riverside, Riverside, CA, 92521, USA
| | - Steven Herrera
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Bldg. Room 343, UC Riverside, Riverside, CA, 92521, USA
| | - Isaias Gallana
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Departamento de Aeronautica, Universidad Nacional de La Plata, Buenos Aires, 1900, Argentina
| | - Nicholas Yaraghi
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Bldg. Room 343, UC Riverside, Riverside, CA, 92521, USA
| | - Nigel Hughes
- Department of Earth Sciences, UC Riverside, Riverside, CA, 92521, USA
| | | | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Bldg. Room 343, UC Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
34
|
Muñoz MM, Anderson PSL, Patek SN. Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems. Proc Biol Sci 2018; 284:rspb.2016.2325. [PMID: 28100817 DOI: 10.1098/rspb.2016.2325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/16/2016] [Indexed: 11/12/2022] Open
Abstract
The influence of biophysical relationships on rates of morphological evolution is a cornerstone of evolutionary theory. Mechanical sensitivity-the correlation strength between mechanical output and the system's underlying morphological components-is thought to impact the evolutionary dynamics of form-function relationships, yet has rarely been examined. Here, we compare the evolutionary rates of the mechanical components of the four-bar linkage system in the raptorial appendage of mantis shrimp (Order Stomatopoda). This system's mechanical output (kinematic transmission (KT)) is highly sensitive to variation in its output link, and less sensitive to its input and coupler links. We found that differential mechanical sensitivity is associated with variation in evolutionary rate: KT and the output link exhibit faster rates of evolution than the input and coupler links to which KT is less sensitive. Furthermore, for KT and, to a lesser extent, the output link, rates of evolution were faster in 'spearing' stomatopods than 'smashers', indicating that mechanical sensitivity may influence trait-dependent diversification. Our results suggest that mechanical sensitivity can impact morphological evolution and guide the process of phenotypic diversification. The connection between mechanical sensitivity and evolutionary rates provides a window into the interaction between physical rules and the evolutionary dynamics of morphological diversification.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip S L Anderson
- Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
35
|
Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops. BMC Evol Biol 2017; 17:248. [PMID: 29216839 PMCID: PMC5721563 DOI: 10.1186/s12862-017-1098-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Background Rates of morphological evolution vary across different taxonomic groups, and this has been proposed as one of the main drivers for the great diversity of organisms on Earth. Of the extrinsic factors pertaining to this variation, ecological hypotheses feature prominently in observed differences in phenotypic evolutionary rates across lineages. But complex organisms are inherently modular, comprising distinct body parts that can be differentially affected by external selective pressures. Thus, the evolution of trait covariation and integration in modular systems may also play a prominent role in shaping patterns of phenotypic diversity. Here we investigate the role ecological diversity plays in morphological integration, and the tempo of shell shape evolution and of directional asymmetry in bivalved scallops. Results Overall, the shape of both valves and the magnitude of asymmetry of the whole shell (difference in shape between valves) are traits that are evolving fast in ecomorphs under strong selective pressures (gliders, recessers and nestling), compared to low rates observed in other ecomorphs (byssal-attaching, free-living and cementing). Given that different parts of an organism can be under different selective pressures from the environment, we also examined the degree of evolutionary integration between the valves as it relates to ecological shifts. We find that evolutionary morphological integration is consistent and surprisingly high across species, indicating that while the left and right valves of a scallop shell are diversifying in accordance with ecomorphology, they are doing so in a concerted fashion. Conclusions Our study on scallops adds another strong piece of evidence that ecological shifts play an important role in the tempo and mode of morphological evolution. Strong selective pressures from the environment, inferred from the repeated evolution of distinct ecomorphs, have influenced the rate of morphological evolution in valve shape and the magnitude of asymmetry between valves. Our observation that morphological integration of the valves making up the shell is consistently strong suggests tight developmental pathways are responsible for the concerted evolution of these structures while environmental pressures are driving whole shell shape. Finally, our study shows that directional asymmetry in shell shape among species is an important aspect of scallop macroevolution. Electronic supplementary material The online version of this article (10.1186/s12862-017-1098-5) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Ornelas-García CP, Bautista A, Herder F, Doadrio I. Functional modularity in lake-dwelling characin fishes of Mexico. PeerJ 2017; 5:e3851. [PMID: 28951817 PMCID: PMC5611896 DOI: 10.7717/peerj.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023] Open
Abstract
Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi, which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi). Skull shape showed significant differences among species and sex (P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi.
Collapse
Affiliation(s)
- Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Fabian Herder
- Sektion Ichthyologie, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid, Spain
| |
Collapse
|
37
|
McHenry MJ, Anderson PSL, Van Wassenbergh S, Matthews DG, Summers AP, Patek SN. The comparative hydrodynamics of rapid rotation by predatory appendages. ACTA ACUST UNITED AC 2017; 219:3399-3411. [PMID: 27807217 DOI: 10.1242/jeb.140590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022]
Abstract
Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages.
Collapse
Affiliation(s)
- M J McHenry
- Department of Ecology & Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - P S L Anderson
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S Van Wassenbergh
- Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, Antwerpen 2610, Belgium.,Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 CNRS/MNHN, 57 rue Cuvier, Case Postale 55, Paris Cedex 05 75231, France
| | - D G Matthews
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - A P Summers
- Friday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA 98250, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
38
|
Martinez CM, Sparks JS. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology. Evolution 2017. [DOI: 10.1111/evo.13298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher M. Martinez
- Department of Ichthyology, Division of Vertebrate Zoology American Museum of Natural History New York 10024
- Current address: Department of Evolution and Ecology University of California Davis California 95616
| | - John S. Sparks
- Department of Ichthyology, Division of Vertebrate Zoology American Museum of Natural History New York 10024
| |
Collapse
|
39
|
Abstract
Comparative data on the developing gastropod foregut suggest that this multicomponent feeding complex consists of two developmental modules. Modularity is revealed by delayed development of the buccal cavity and radular sac (“ventral module”) relative to the dorsal food channel (“dorsal module”) in gastropods with feeding larvae compared with those that may have never had a feeding larval stage. If nonfeeding larvae like those of extant patellogastropods and vetigastropods are ancestral for gastropods, then the uncoupling and heterochronic offset of dorsal and ventral foregut modules allowed the post-metamorphic dorsal food channel to be co-opted as a simple but functional esophagus for feeding larvae. Furthermore, by reducing energy cost per ovum, the heterochronic offset may have given mothers the evolutionary option of increasing fecundity or investing in protective egg encapsulation material. A second developmental innovation was spatial separation of the dorsal and ventral foregut modules, as illustrated by distal foregut development in buccinid neogastropods and venom gland development in cone snails. Spatial uncoupling may have enhanced the evolvability of gastropod foreguts by allowing phenotypic variants of ventral module components to be selected within post-metamorphic ecological settings, without needing to be first tested for compatibility with larval feeding. Finally, we describe a case in which foregut modularity has helped facilitate a highly derived life history in which encapsulated embryos ingest nurse eggs.
Collapse
Affiliation(s)
- Louise R. Page
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Brenda Hookham
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
40
|
Goswami A, Randau M, Polly PD, Weisbecker V, Bennett CV, Hautier L, Sánchez-Villagra MR. Do Developmental Constraints and High Integration Limit the Evolution of the Marsupial Oral Apparatus? Integr Comp Biol 2016; 56:404-15. [PMID: 27260858 PMCID: PMC4990707 DOI: 10.1093/icb/icw039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental constraints can have significant influence on the magnitude and direction of evolutionary change, and many studies have demonstrated that these effects are manifested on macroevolutionary scales. Phenotypic integration, or the strong interactions among traits, has been similarly invoked as a major influence on morphological variation, and many studies have demonstrated that trait integration changes through ontogeny, in many cases decreasing with age. Here, we unify these perspectives in a case study of the ontogeny of the mammalian cranium, focusing on a comparison between marsupials and placentals. Marsupials are born at an extremely altricial state, requiring, in most cases, the use of the forelimbs to climb to the pouch, and, in all cases, an extended period of continuous suckling, during which most of their development occurs. Previous work has shown that marsupials are less disparate in adult cranial form than are placentals, particularly in the oral apparatus, and in forelimb ontogeny and adult morphology, presumably due to functional selection pressures on these two systems during early postnatal development. Using phenotypic trajectory analysis to quantify prenatal and early postnatal cranial ontogeny in 10 species of therian mammals, we demonstrate that this pattern of limited variation is also apparent in the development of the oral apparatus of marsupials, relative to placentals, but not in the skull more generally. Combined with the observation that marsupials show extremely high integration of the oral apparatus in early postnatal ontogeny, while other cranial regions show similar levels of integration to that observed in placentals, we suggest that high integration may compound the effects of the functional constraints for continuous suckling to ultimately limit the ontogenetic and adult disparity of the marsupial oral apparatus throughout their evolutionary history.
Collapse
Affiliation(s)
- Anjali Goswami
- *Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcela Randau
- *Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - P David Polly
- Department of Geological Sciences, 1001 E. 10th Street, Indiana University, Bloomington, IN, 47405, USA
| | - Vera Weisbecker
- School of Biological Sciences, Goddard Building 8, University of Queensland, St. Lucia 4072, Australia
| | - C Verity Bennett
- *Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lionel Hautier
- Laboratoire de Paléontologie, Institut des Sciences de l'Èvolution de Montpellier (CNRS, UM, IRD, EPHE), c.c. 064, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, Cedex 5 , France
| | - Marcelo R Sánchez-Villagra
- Palaeontological Institute and Museum, University of Zürich, Karl-Schmid-Strasse 4, CH-8006, Zürich, Switzerland
| |
Collapse
|
41
|
Esteve-Altava B. In search of morphological modules: a systematic review. Biol Rev Camb Philos Soc 2016; 92:1332-1347. [DOI: 10.1111/brv.12284] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Borja Esteve-Altava
- Department of Comparative Biomedical Sciences; Royal Veterinary College; Hawkshead Lane, North Mymms Hatfield Hertfordshire AL9 7TA UK
- Department of Anatomy; College of Medicine, Howard University; 520 W Street, NW, Numa Adams Building Washington DC 20059 USA
| |
Collapse
|
42
|
Anderson PSL, Smith DC, Patek SN. Competing influences on morphological modularity in biomechanical systems: a case study in mantis shrimp. Evol Dev 2016; 18:171-81. [DOI: 10.1111/ede.12190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - S. N. Patek
- Department of BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
43
|
Catalano SA, Torres A. Phylogenetic inference based on landmark data in 41 empirical data sets. ZOOL SCR 2016. [DOI: 10.1111/zsc.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Santiago A. Catalano
- Consejo Nacional de Investigaciones Científicas y Técnicas; Unidad Ejecutora Lillo (UEL); FML-CONICET; Miguel Lillo 251, 4000 San Miguel de Tucumán Tucumán Argentina
| | - Ambrosio Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas; Unidad Ejecutora Lillo (UEL); FML-CONICET; Miguel Lillo 251, 4000 San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
44
|
Abstract
Differences among clades in their diversification patterns result from a combination of extrinsic and intrinsic factors. In this study, I examined the role of intrinsic factors in the morphological diversification of ruminants, in general, and in the differences between bovids and cervids, in particular. Using skull morphology, which embodies many of the adaptations that distinguish bovids and cervids, I examined 132 of the 200 extant ruminant species. As a proxy for intrinsic constraints, I quantified different aspects of the phenotypic covariation structure within species and compared them with the among-species divergence patterns, using phylogenetic comparative methods. My results show that for most species, divergence is well aligned with their phenotypic covariance matrix and that those that are better aligned have diverged further away from their ancestor. Bovids have dispersed into a wider range of directions in morphospace than cervids, and their overall disparity is higher. This difference is best explained by the lower eccentricity of bovids' within-species covariance matrices. These results are consistent with the role of intrinsic constraints in determining amount, range, and direction of dispersion and demonstrate that intrinsic constraints can influence macroevolutionary patterns even as the covariance structure evolves.
Collapse
|
45
|
Kagaya K, Patek SN. Feed-forward motor control of ultrafast, ballistic movements. ACTA ACUST UNITED AC 2015; 219:319-33. [PMID: 26643091 DOI: 10.1242/jeb.130518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals.
Collapse
Affiliation(s)
- K Kagaya
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - S N Patek
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
46
|
Anderson PSL, Patek SN. Mechanical sensitivity reveals evolutionary dynamics of mechanical systems. Proc Biol Sci 2015; 282:20143088. [PMID: 25716791 DOI: 10.1098/rspb.2014.3088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A classic question in evolutionary biology is how form-function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity-the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form-function systems.
Collapse
Affiliation(s)
- P S L Anderson
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - S N Patek
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
47
|
Denton JSS, Adams DC. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution 2015; 69:2425-40. [DOI: 10.1111/evo.12743] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023]
Affiliation(s)
- John S. S. Denton
- Department of Ichthyology and Richard Gilder Graduate School; American Museum of Natural History, New York; New York 10024
- Current Address: Department of Vertebrate Paleontology; American Museum of Natural History, New York; New York 10024
| | - Dean C. Adams
- Department of Ecology; Evolution, and Organismal Biology, Iowa State University, Ames; Iowa 50011
| |
Collapse
|
48
|
Delgado MN, Galbany J, Górka K, Pérez-Pérez A. Taxonomic Implications of Molar Morphology Variability in Capuchins. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9850-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Proc Natl Acad Sci U S A 2015; 112:4891-6. [PMID: 25901310 DOI: 10.1073/pnas.1403667112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.
Collapse
|
50
|
Klingenberg CP. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130249. [PMID: 25002695 DOI: 10.1098/rstb.2013.0249] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although most studies on integration and modularity have focused on variation among individuals within populations or species, this is not the only level of variation for which integration and modularity exist. Multiple levels of biological variation originate from distinct sources: genetic variation, phenotypic plasticity resulting from environmental heterogeneity, fluctuating asymmetry from random developmental variation and, at the interpopulation or interspecific levels, evolutionary change. The processes that produce variation at all these levels can impart integration or modularity on the covariance structure among morphological traits. In turn, studies of the patterns of integration and modularity can inform about the underlying processes. In particular, the methods of geometric morphometrics offer many advantages for such studies because they can characterize the patterns of morphological variation in great detail and maintain the anatomical context of the structures under study. This paper reviews biological concepts and analytical methods for characterizing patterns of variation and for comparing across levels. Because research comparing patterns across level has only just begun, there are relatively few results, generalizations are difficult and many biological and statistical questions remain unanswered. Nevertheless, it is clear that research using this approach can take advantage of an abundance of new possibilities that are so far largely unexplored.
Collapse
Affiliation(s)
- Christian Peter Klingenberg
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|