1
|
Harbin JP, Shen Y, Lin SY, Kemper K, Haag ES, Schwarz EM, Ellis RE. Robust sex determination in the Caenorhabditis nigoni germ line. Genetics 2025; 229:iyae207. [PMID: 39663849 PMCID: PMC12005254 DOI: 10.1093/genetics/iyae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Sexual characteristics and reproductive systems are dynamic traits in many taxa, but the developmental modifications that allow change and innovation are largely unknown. A leading model for this process is the evolution of self-fertile hermaphrodites from male/female ancestors. However, these studies require direct analysis of sex determination in male/female species, as well as in the hermaphroditic species that are related to them. In Caenorhabditis nematodes, this has only become possible recently, with the discovery of new species. Here, we use gene editing to characterize major sex determination genes in Caenorhabditis nigoni, a sister to the widely studied hermaphroditic species Caenorhabditis briggsae. These 2 species are close enough to mate and form partially fertile hybrids. First, we find that tra-1 functions as the master regulator of sex in C. nigoni, in both the soma and the germ line. Surprisingly, these mutants make only sperm, in contrast to tra-1 mutants in related hermaphroditic species. Moreover, the XX mutants display a unique defect in somatic gonad development that is not seen elsewhere in the genus. Second, the fem-3 gene acts upstream of tra-1 in C. nigoni, and the mutants are females, unlike in the sister species C. briggsae, where they develop as hermaphrodites. This result points to a divergence in the role of fem-3 in the germ line of these species. Third, tra-2 encodes a transmembrane receptor that acts upstream of fem-3 in C. nigoni. Outside of the germ line, tra-2 mutations in all species cause a similar pattern of partial masculinization. However, heterozygosity for tra-2 does not alter germ cell fates in C. nigoni, as it can in sensitized backgrounds of 2 hermaphroditic species of Caenorhabditis. Finally, the epistatic relationships point to a simple, linear germline pathway in which tra-2 regulates fem-3 which regulates tra-1, unlike the more complex relationships seen in hermaphrodite germ cell development. Taking these results together, the regulation of sex determination is more robust and streamlined in the male/female species C. nigoni than in related species that make self-fertile hermaphrodites, a conclusion supported by studies of interspecies hybrids using sex determination mutations. Thus, we infer that the origin of self-fertility not only required mutations that activated the spermatogenesis program in XX germ lines, but prior to these there must have been mutations that decanalized the sex determination process, allowing for subsequent changes to germ cell fates.
Collapse
Affiliation(s)
- Jonathan P Harbin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Yongquan Shen
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Shin-Yi Lin
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
2
|
Baia E, Cardoso AL, de Carvalho LM, do Amarante CB, Amado LL, Venekey V. The importance of using local species in ecotoxicological studies: nematodes of Amazonian occurrence vs. Caenorhabditis elegans in the analysis of lethal and sublethal effects of aluminium. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02867-y. [PMID: 40067426 DOI: 10.1007/s10646-025-02867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/16/2025]
Abstract
It is recognized that in bioassays, especially those conducted for ecotoxicological purposes, preference should be given to the use of species that are adapted to the physical-chemical conditions of the environment to be monitored. However, to establish the use of alternative species instead of the standardized ones, it is recommended to carry out tests to assess/compare their sensitivity to contaminants. This study assessed the lethal and sublethal effects (growth, fertility, and reproduction) of different aluminium concentrations, including environmentally relevant concentrations recorded in the Amazon, on two nematode species (C. tropicalis and C. briggsae) with Amazonian occurrence and C. elegans. The species' responses to aluminium exposure were different. In tests to assess lethal effect, C. elegans was the most sensitive (LC50 = 3.32 ± 1.89 mg/L), while C. tropicalis was the least sensitive (LC50 = 6.98 ± 2.20 mg/L). The LC50 for C. briggsae could not be estimated due to the lack of a concentration-dependent response. On the other hand, when sublethal effects were assessed at low aluminium concentrations (environmentally relevant concentrations), C. tropicalis was the most sensitive with an inhibition rate in both reproduction and growth; C. elegans was the least sensitive, and C. briggsae showed an intermediate response. Therefore, C. tropicalis and C. elegans adopted opposite strategies in response to aluminium exposure. This study reinforces the use of local species in ecotoxicological tests and suggests the use of C. tropicalis as a test organism in future bioassays to evaluate the effects of contaminants, particularly in the tropical/Amazon region.
Collapse
Affiliation(s)
- Erivaldo Baia
- Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brasil.
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil.
| | - Adauto Lima Cardoso
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, 18618-970, SP, Brazil
| | - Leandro Machado de Carvalho
- Laboratório de Análises Químicas, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristine Bastos do Amarante
- Laboratório de Análises Químicas, Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901. Terra Firme, Belém, PA, Brazil
| | - Lílian Lund Amado
- Grupo de Estudos de Biomarcadores de Poluição Aquática na Amazônia (BioPaq), Laboratório de Ecotoxicologia e Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brazil
| | - Virág Venekey
- Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Av. Augusto Corrêa, 01. Guamá, Belém, PA, Brasil
| |
Collapse
|
3
|
Le Rouzic A, Roumet M, Widmer A, Clo J. Detecting directional epistasis and dominance from cross-line analyses in alpine populations of Arabidopsis thaliana. J Evol Biol 2024; 37:839-847. [PMID: 38712591 DOI: 10.1093/jeb/voae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The contribution of non-additive genetic effects to the genetic architecture of fitness and to the evolutionary potential of populations has been a topic of theoretical and empirical interest for a long time. Yet, the empirical study of these effects in natural populations remains scarce, perhaps because measuring dominance and epistasis relies heavily on experimental line crosses. In this study, we explored the contribution of dominance and epistasis in natural alpine populations of Arabidopsis thaliana for 2 fitness traits, the dry biomass and the estimated number of siliques, measured in a greenhouse. We found that, on average, crosses between inbred lines of A. thaliana led to mid-parent heterosis for dry biomass but outbreeding depression for an estimated number of siliques. While heterosis for dry biomass was due to dominance, we found that outbreeding depression for an estimated number of siliques could be attributed to the breakdown of beneficial epistatic interactions. We simulated and discussed the implication of these results for the adaptive potential of the studied populations, as well as the use of line-cross analyses to detect non-additive genetic effects.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-Sur-Yvette, France
| | - Marie Roumet
- CTU Bern, University of Bern, Bern, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zürich, Switzerland
| | - Josselin Clo
- CNRS, University of Lille, UMR 8198-Evo-Eco-Paleo, Lille, France
| |
Collapse
|
4
|
Keller B, Alther B, Jiménez A, Koutroumpa K, Mora-Carrera E, Conti E. Island plants with newly discovered reproductive traits have higher capacity for uniparental reproduction, supporting Baker's law. Sci Rep 2024; 14:11392. [PMID: 38762587 PMCID: PMC11102434 DOI: 10.1038/s41598-024-62065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| | - Barbara Alther
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Ares Jiménez
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Konstantina Koutroumpa
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Botanischer Garten und Botanisches Museum Berlin (BGBM), Freie Universität Berlin, Berlin, Germany
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Soto TY, Rojas-Gutierrez JD, Oakley CG. Can heterosis and inbreeding depression explain the maintenance of outcrossing in a cleistogamous perennial? AMERICAN JOURNAL OF BOTANY 2023; 110:e16240. [PMID: 37672596 DOI: 10.1002/ajb2.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
PREMISE What maintains mixed mating is an evolutionary enigma. Cleistogamy-the production of both potentially outcrossing chasmogamous and obligately selfing cleistogamous flowers on the same individual plant-is an excellent system to study the costs of selfing. Inbreeding depression can prevent the evolution of greater selfing within populations, and heterosis in crosses between populations may further tip the balance in favor of outcrossing. Few empirical estimates of inbreeding depression and heterosis in the same system exist for cleistogamous species. METHODS We investigate the potential costs of selfing by quantifying inbreeding depression and heterosis in three populations of the cleistogamous perennial Ruellia humilis Nutt (Acanthaceae). We performed three types of hand-pollinations-self, outcross-within, and outcross-between populations-and measured seed number, germination, total flower production, and estimated cumulative fitness for the resulting progeny in a greenhouse experiment. RESULTS We found moderate inbreeding depression for cumulative fitness (<30%) in two populations, but outbreeding depression for crosses within a third population (-26%). For between-population crosses, there was weak to modest heterosis (11-47%) in two of the population combinations, but modest to strong outbreeding depression (-21 to -71%) in the other four combinations. CONCLUSIONS Neither inbreeding depression nor heterosis was of sufficient magnitude to explain the continued production of chasmogamous flowers given the relative energetic advantage of cleistogamous flowers previously estimated for these populations. Outbreeding depression either within or between populations makes the maintenance of chasmogamous flowers even harder to explain. More information is needed on the genetic basis of cleistogamy to resolve this conundrum.
Collapse
Affiliation(s)
- Tatyana Y Soto
- Department of Botany and Plant Pathology and the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Juan Diego Rojas-Gutierrez
- Department of Botany and Plant Pathology and the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Christopher G Oakley
- Department of Botany and Plant Pathology and the Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Fausett SR, Sandjak A, Billard B, Braendle C. Higher-order epistasis shapes natural variation in germ stem cell niche activity. Nat Commun 2023; 14:2824. [PMID: 37198172 DOI: 10.1038/s41467-023-38527-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase-but instead further reduced-PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.
Collapse
Affiliation(s)
- Sarah R Fausett
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Asma Sandjak
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
9
|
Huang Y, Lo YH, Hsu JC, Le TS, Yang FJ, Chang T, Braendle C, Wang J. Widespread sex ratio polymorphism in Caenorhabditis nematodes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221636. [PMID: 36938539 PMCID: PMC10014251 DOI: 10.1098/rsos.221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Although equal sex ratio is ubiquitous and represents an equilibrium in evolutionary theory, biased sex ratios are predicted for certain local conditions. Cases of sex ratio bias have been mostly reported for single species, but little is known about its evolution above the species level. Here, we surveyed progeny sex ratios in 23 species of the nematode genus Caenorhabditis, including 19 for which we tested multiple strains. For the species with multiple strains, five species had female-biased and two had non-biased sex ratios in all strains, respectively. The other 12 species showed polymorphic sex ratios across strains. Female-biased sex ratios could be due to sperm competition whereby X-bearing sperm outcompete nullo-X sperm during fertilization. In this model, when sperm are limited allowing all sperm to be used, sex ratios are expected to be equal. However, in assays limiting mating to a few hours, most strains showed similarly biased sex ratios compared with unlimited mating experiments, except that one C. becei strain showed significantly reduced female bias compared with unlimited mating. Our study shows frequent polymorphism in sex ratios within Caenorhabditis species and that sperm competition alone cannot explain the sex ratio bias.
Collapse
Affiliation(s)
- Yun Huang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Hua Lo
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jung-Chen Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tho Son Le
- Department of Molecular Genetics and Gene Technology, College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Fang-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tiffany Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
11
|
Malec P, Weber J, Böhmer R, Fiebig M, Meinert D, Rein C, Reinisch R, Henrich M, Polyvas V, Pollmann M, von Berg L, König C, Steidle JLM. The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera? BMC Ecol Evol 2021; 21:204. [PMID: 34781897 PMCID: PMC8591844 DOI: 10.1186/s12862-021-01938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01938-y.
Collapse
Affiliation(s)
- Pawel Malec
- Naturpark Steigerwald E.V., 91443, Scheinfeld, Germany
| | - Justus Weber
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Böhmer
- Natural History Museum Bern, 3005, Bern, Switzerland
| | - Marc Fiebig
- Untere Naturschutzbehörde, Landratsamt Kitzingen, 97318, Kitzingen, Germany
| | | | - Carolin Rein
- Apicultural State Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Ronja Reinisch
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Maik Henrich
- Wildlife Ecology and Management, University of Freiburg, 79106, Freiburg, Germany
| | - Viktoria Polyvas
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marie Pollmann
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lea von Berg
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian König
- Akademie für Natur- und Umweltschutz Baden-Württemberg beim Ministerium für Umwelt, Klima und Energiewirtschaft, 70192, Stuttgart, Germany
| | - Johannes L M Steidle
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
12
|
Clo J, Ronfort J, Gay L. Fitness consequences of hybridization in a predominantly selfing species: insights into the role of dominance and epistatic incompatibilities. Heredity (Edinb) 2021; 127:393-400. [PMID: 34365470 PMCID: PMC8478955 DOI: 10.1038/s41437-021-00465-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Studying the consequences of hybridization on plant performance is insightful to understand the adaptive potential of populations, notably at local scales. Due to reduced effective recombination, predominantly selfing species are organized in highly homozygous multi-locus-genotypes (or lines) that accumulate genetic differentiation both among- and within-populations. This high level of homozygosity facilitates the dissection of the genetic basis of hybrid performance in highly selfing species, which gives insights into the mechanisms of reproductive isolation between lines. Here, we explored the fitness consequences of hybridization events between natural inbred lines of the predominantly selfing species Medicago truncatula, at both within- and among-populations scales. We found that hybridization has opposite effects pending on studied fitness proxies, with dry mass showing heterosis, and seed production showing outbreeding depression. Although we found significant patterns of heterosis and outbreeding depression, they did not differ significantly for within- compared to among-population crosses. Family-based analyses allowed us to determine that hybrid differentiation was mostly due to dominance and epistasis. Dominance and/or dominant epistatic interactions increased dry mass, while decreasing seed production, and recessive epistatic interactions mostly had a positive effect on both fitness proxies. Our results illustrate how genetic incompatibilities can accumulate at a very local scale among multi-locus-genotypes, and how non-additive genetic effects contribute to heterosis and outbreeding depression.
Collapse
Affiliation(s)
- Josselin Clo
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France ,grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Joëlle Ronfort
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurène Gay
- grid.463758.b0000 0004 0445 8705AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
13
|
Lim J, Kim J, Lee J. Natural variation in reproductive timing and X-chromosome non-disjunction in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6373895. [PMID: 34550364 PMCID: PMC8664432 DOI: 10.1093/g3journal/jkab327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Caenorhabditis elegans hermaphrodites first produce a limited number of sperm cells, before their germline switches to oogenesis. Production of progeny then ensues until sperm is depleted. Male production in the self-progeny of hermaphrodites occurs following X-chromosome non-disjunction during gametogenesis, and in the reference strain increases with age of the hermaphrodite parent. To enhance our understanding of the reproductive timecourse in Caenorhabditis elegans, we measured and compared progeny production and male proportion during the early and late reproductive periods of hermaphrodites for 96 wild Caenorhabditis elegans strains. We found that the two traits exhibited natural phenotypic variation with few outliers and a similar reproductive timing pattern as previous reports. Progeny number and male proportion were not correlated in the wild isolates, implying that isolates with a large brood size did not produce males at a higher rate. We also identified loci and candidate genetic variants significantly associated with male-production rate in the late and total reproductive periods. Our results provide an insight into life history traits in wild Caenorhabditis elegans strains.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea 08826.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea 08826.,Research Institute of Basic Sciences, Seoul National University, Seoul, Korea 08826
| |
Collapse
|
14
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
15
|
Clo J, Opedal ØH. Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species. Evolution 2021; 75:1920-1935. [PMID: 34219233 DOI: 10.1111/evo.14304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Recurrent self-fertilization is thought to lead to reduced adaptive potential by decreasing the genetic diversity of populations, thus leading selfing lineages down an evolutionary "blind alley." Although well supported theoretically, empirical support for reduced adaptability in selfing species is limited. One limitation of classical theoretical models is that they assume pure additivity of the fitness-related traits that are under stabilizing selection, despite ample evidence that quantitative traits are subject to dominance. Here, we relax this assumption and explore the effect of dominance on a fitness-related trait under stabilizing selection for populations that differ in selfing rates. By decomposing the genetic variance into additional components specific to inbred populations, we show that dominance components can explain a substantial part of the genetic variance of inbred populations. We also show that ignoring these components leads to an upward bias in the predicted response to selection. Finally, we show that when considering the effect of dominance, the short-term evolutionary potential of populations remains comparable across the entire gradient in outcrossing rates, and genetic associations can even make selfing populations more evolvable on the longer term, reconciling theoretical, and empirical results.
Collapse
Affiliation(s)
- Josselin Clo
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France.,Department of Botany, Charles University, Prague, Czechia
| | | |
Collapse
|
16
|
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh LR, Sterken MG, Braendle C, Félix MA, Rockman MV, Andersen EC. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 2021; 5:794-807. [PMID: 33820969 PMCID: PMC8202730 DOI: 10.1038/s41559-021-01435-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Félix MA. Evolution: Drivers in a Traffic Jam. Curr Biol 2021; 31:R257-R260. [PMID: 33689727 DOI: 10.1016/j.cub.2021.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic loci coding for a toxin and its antidote behave like selfish elements. Two new studies find an accumulation of such elements in one species.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France.
| |
Collapse
|
18
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
19
|
Ubiquitous Selfish Toxin-Antidote Elements in Caenorhabditis Species. Curr Biol 2021; 31:990-1001.e5. [PMID: 33417886 DOI: 10.1016/j.cub.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Toxin-antidote elements (TAs) are selfish genetic dyads that spread in populations by selectively killing non-carriers. TAs are common in prokaryotes, but very few examples are known in animals. Here, we report the discovery of maternal-effect TAs in both C. tropicalis and C. briggsae, two distant relatives of C. elegans. In C. tropicalis, multiple TAs combine to cause a striking degree of intraspecific incompatibility: five elements reduce the fitness of >70% of the F2 hybrid progeny of two Caribbean isolates. We identified the genes underlying one of the novel TAs, slow-1/grow-1, and found that its toxin, slow-1, is homologous to nuclear hormone receptors. Remarkably, although previously known TAs act during embryonic development, maternal loading of slow-1 in oocytes specifically slows down larval development, delaying the onset of reproduction by several days. Finally, we found that balancing selection acting on linked, conflicting TAs hampers their ability to spread in populations, leading to more stable genetic incompatibilities. Our findings indicate that TAs are widespread in Caenorhabditis species and target a wide range of developmental processes and that antagonism between them may cause lasting incompatibilities in natural populations. We expect that similar phenomena exist in other animal species.
Collapse
|
20
|
Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. THE NEW PHYTOLOGIST 2019; 224:1080-1094. [PMID: 31336389 DOI: 10.1111/nph.16075] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 05/23/2023]
Abstract
The evolution of predominant self-fertilisation frequently coincides with the evolution of a collection of phenotypes that comprise the 'selfing syndrome', in both plants and animals. Genomic features also display a selfing syndrome. Selfing syndrome traits often involve changes to male and female reproductive characters that were subject to sexual selection and sexual conflict in the obligatorily outcrossing ancestor, including the gametic phase for both plants and animals. Rapid evolution of reproductive traits, due to both relaxed selection and directional selection under the new status of predominant selfing, lays the genetic groundwork for reproductive isolation. Consequently, shifts in sexual selection pressures coupled to transitions to selfing provide a powerful paradigm for investigating the speciation process. Plant and animal studies, however, emphasise distinct selective forces influencing reproductive-mode transitions: genetic transmission advantage to selfing or reproductive assurance outweighing the costs of inbreeding depression vs the costs of males and meiosis. Here, I synthesise links between sexual selection, evolution of selfing and speciation, with particular focus on identifying commonalities and differences between plant and animal systems and pointing to areas warranting further synergy.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
21
|
Bernstein MR, Zdraljevic S, Andersen EC, Rockman MV. Tightly linked antagonistic-effect loci underlie polygenic phenotypic variation in C. elegans. Evol Lett 2019; 3:462-473. [PMID: 31636939 PMCID: PMC6791183 DOI: 10.1002/evl3.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Recent work has provided strong empirical support for the classic polygenic model for trait variation. Population-based findings suggest that most regions of genome harbor variation affecting most traits. Here, we use the approach of experimental genetics to show that, indeed, most genomic regions carry variants with detectable effects on growth and reproduction in Caenorhabditis elegans populations sensitized by nickel stress. Nine of 15 adjacent intervals on the X chromosome, each encompassing ∼0.001 of the genome, have significant effects when tested individually in near-isogenic lines (NILs). These intervals have effects that are similar in magnitude to those of genome-wide significant loci that we mapped in a panel of recombinant inbred advanced intercross lines (RIAILs). If NIL-like effects were randomly distributed across the genome, the RIAILs would exhibit phenotypic variance that far exceeds the observed variance. However, the NIL intervals are arranged in a pattern that significantly reduces phenotypic variance relative to a random arrangement; adjacent intervals antagonize one another, cancelling each other's effects. Contrary to the expectation of small additive effects, our findings point to large-effect variants whose effects are masked by epistasis or linkage disequilibrium between alleles of opposing effect.
Collapse
Affiliation(s)
- Max R. Bernstein
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York10003
| | - Stefan Zdraljevic
- Molecular Biosciences and Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinois60208
| | - Erik C. Andersen
- Molecular Biosciences and Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinois60208
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York10003
| |
Collapse
|
22
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
23
|
Abstract
Several species of Caenorhabditis nematodes, including Caenorhabditis elegans, have recently evolved self-fertile hermaphrodites from female/male ancestors. These hermaphrodites can either self-fertilize or mate with males, and the extent of outcrossing determines subsequent male frequency. Using experimental evolution, the authors show that a gene family with a historical role in sperm competition plays a large role in regulating male frequency after self-fertility evolves. By reducing, but not completely eliminating outcrossing, loss of the mss genes contributes to adaptive tuning of the sex ratio in a newly self-fertile species. The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.
Collapse
|
24
|
Oakley CG, Lundemo S, Ågren J, Schemske DW. Heterosis is common and inbreeding depression absent in natural populations of
Arabidopsis thaliana. J Evol Biol 2019; 32:592-603. [DOI: 10.1111/jeb.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Sverre Lundemo
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Jon Ågren
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Douglas W. Schemske
- Department of Plant Biology W. K. Kellogg Biological Station Michigan State University East Lansing Michigan
| |
Collapse
|
25
|
Turko AJ, Tatarenkov A, Currie S, Earley RL, Platek A, Taylor DS, Wright PA. Emersion behaviour underlies variation in gill morphology and aquatic respiratory function in the amphibious fish Kryptolebias marmoratus. ACTA ACUST UNITED AC 2018; 221:jeb.168039. [PMID: 29511069 DOI: 10.1242/jeb.168039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Fishes acclimated to hypoxic environments often increase gill surface area to improve O2 uptake. In some species, surface area is increased via reduction of an interlamellar cell mass (ILCM) that fills water channels between gill lamellae. Amphibious fishes, however, may not increase gill surface area in hypoxic water because these species can, instead, leave water and breathe air. To differentiate between these possibilities, we compared wild amphibious mangrove rivulus Kryptolebias marmoratus from two habitats that varied in O2 availability - a hypoxic freshwater pool versus nearly anoxic crab burrows. Fish captured from crab burrows had less gill surface area (as ILCMs were enlarged by ∼32%), increased rates of normoxic O2 consumption and increased critical O2 tension compared with fish from the freshwater pool. Thus, wild mangrove rivulus do not respond to near-anoxic water by decreasing metabolism or increasing O2 extraction. Instead, fish from the crab burrow habitat spent three times longer out of water, which probably caused the observed changes in gill morphology and respiratory phenotype. We also tested whether critical O2 tension is influenced by genetic heterozygosity, as K. marmoratus is one of only two hermaphroditic vertebrate species that can produce both self-fertilized (inbred) or out-crossed (more heterozygous) offspring. We found no evidence for inbreeding depression, suggesting that self-fertilization does not impair respiratory function. Overall, our results demonstrate that amphibious fishes that inhabit hypoxic aquatic habitats can use a fundamentally different strategy from that used by fully aquatic water-breathing fishes, relying on escape behaviour rather than metabolic depression or increased O2 extraction ability.
Collapse
Affiliation(s)
- A J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - A Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - S Currie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E2
| | - R L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - A Platek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - D S Taylor
- Brevard County Environmentally Endangered Lands Program, Melbourne, FL 32904, USA
| | - P A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
26
|
Abu Awad D, Roze D. Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection. Evolution 2018; 72:751-769. [DOI: 10.1111/evo.13449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Denis Roze
- CNRS; UMI 3614 Evolutionary Biology and Ecology of Algae,; 29688 Roscoff France
- Sorbonne Universités; UPMC Université Paris VI,; 29688 Roscoff France
| |
Collapse
|
27
|
Ferrari C, Salle R, Callemeyn-Torre N, Jovelin R, Cutter AD, Braendle C. Ephemeral-habitat colonization and neotropical species richness of Caenorhabditis nematodes. BMC Ecol 2017; 17:43. [PMID: 29258487 PMCID: PMC5738176 DOI: 10.1186/s12898-017-0150-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Background The drivers of species co-existence in local communities are especially enigmatic for assemblages of morphologically cryptic species. Here we characterize the colonization dynamics and abundance of nine species of Caenorhabditis nematodes in neotropical French Guiana, the most speciose known assemblage of this genus, with resource use overlap and notoriously similar external morphology despite deep genomic divergence. Methods To characterize the dynamics and specificity of colonization and exploitation of ephemeral resource patches, we conducted manipulative field experiments and the largest sampling effort to date for Caenorhabditis outside of Europe. This effort provides the first in-depth quantitative analysis of substrate specificity for Caenorhabditis in natural, unperturbed habitats. Results We amassed a total of 626 strain isolates from nine species of Caenorhabditis among 2865 substrate samples. With the two new species described here (C. astrocarya and C. dolens), we estimate that our sampling procedures will discover few additional species of these microbivorous animals in this tropical rainforest system. We demonstrate experimentally that the two most prevalent species (C. nouraguensis and C. tropicalis) rapidly colonize fresh resource patches, whereas at least one rarer species shows specialist micro-habitat fidelity. Conclusion Despite the potential to colonize rapidly, these ephemeral patchy resources of rotting fruits and flowers are likely to often remain uncolonized by Caenorhabditis prior to their complete decay, implying dispersal-limited resource exploitation. We hypothesize that a combination of rapid colonization, high ephemerality of resource patches, and species heterogeneity in degree of specialization on micro-habitats and life histories enables a dynamic co-existence of so many morphologically cryptic species of Caenorhabditis. Electronic supplementary material The online version of this article (10.1186/s12898-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Romain Salle
- CNRS, IBV, Inserm, Université Côte d'Azur, Nice, France
| | | | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | | |
Collapse
|
28
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
30
|
Stacy EA, Paritosh B, Johnson MA, Price DK. Incipient ecological speciation between successional varieties of a dominant tree involves intrinsic postzygotic isolating barriers. Ecol Evol 2017; 7:2501-2512. [PMID: 28428842 PMCID: PMC5395442 DOI: 10.1002/ece3.2867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/18/2023] Open
Abstract
Whereas disruptive selection imposed by heterogeneous environments can lead to the evolution of extrinsic isolating barriers between diverging populations, the evolution of intrinsic postzygotic barriers through divergent selection is less certain. Long-lived species such as trees may be especially slow to evolve intrinsic isolating barriers. We examined postpollination reproductive isolating barriers below the species boundary, in an ephemeral hybrid zone between two successional varieties of the landscape-dominant Hawaiian tree, Metrosideros polymorpha, on volcanically active Hawai'i Island. These archipelago-wide sympatric varieties show the weakest neutral genetic divergence of any taxon pair on Hawai'i Island but significant morphological and ecological differentiation consistent with adaptation to new and old lava flows. Cross-fertility between varieties was high and included heterosis of F1 hybrids at the seed germination stage, consistent with a substantial genetic load apparent within varieties through low self-fertility and a lack of self-pollen discrimination. However, a partial, but significant, barrier was observed in the form of reduced female and male fertility of hybrids, especially backcross hybrids, consistent with the accumulation of genetic incompatibilities between varieties. These results suggest that partial intrinsic postzygotic barriers can arise through disruptive selection acting on large, hybridizing populations of a long-lived species.
Collapse
Affiliation(s)
- Elizabeth A. Stacy
- Department of BiologyUniversity of Hawai'i HiloHiloHIUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawai'i HiloHiloHIUSA
- Present address: School of Life SciencesUniversity of Nevada, Las Vegas4505 S Maryland PkwyLas VegasNV89154USA
| | - Bhama Paritosh
- Department of BiologyUniversity of Hawai'i HiloHiloHIUSA
| | - Melissa A. Johnson
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawai'i HiloHiloHIUSA
- Present address: Department of BotanyClaremont Graduate University, Rancho Santa Ana Botanic Garden1500 N. College Ave.ClaremontCA91711USA
| | - Donald K. Price
- Department of BiologyUniversity of Hawai'i HiloHiloHIUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawai'i HiloHiloHIUSA
- Present address: School of Life SciencesUniversity of Nevada, Las Vegas4505 S Maryland PkwyLas VegasNV89154USA
| |
Collapse
|
31
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
32
|
Poullet N, Vielle A, Gimond C, Carvalho S, Teotónio H, Braendle C. Complex heterochrony underlies the evolution of Caenorhabditis elegans
hermaphrodite sex allocation. Evolution 2016; 70:2357-2369. [DOI: 10.1111/evo.13032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nausicaa Poullet
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Anne Vielle
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Clotilde Gimond
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência; Apartado 14 P-2781-901 Oeiras Portugal
| | - Henrique Teotónio
- Institut de Biologie; École Normale Supérieure; CNRS UMR 8197, INSERM U1024 F-75005 Paris France
| | - Christian Braendle
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| |
Collapse
|
33
|
Abstract
Wild populations of the model organism C. elegans allow characterization of natural genetic variation underlying diverse phenotypic traits. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes and/or mating tests. This protocol uses standard laboratory equipment and requires no prior knowledge of C. elegans biology.
Collapse
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, Cedex 02, 06108, France.,INSERM U1091, Nice, Cedex 02, 06108, France.,Université Nice Sophia Antipolis, UFR Sciences, Nice, Cedex 02, 06108, France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, Cedex 02, 06108, France. .,INSERM U1091, Nice, Cedex 02, 06108, France. .,Université Nice Sophia Antipolis, UFR Sciences, Nice, Cedex 02, 06108, France.
| |
Collapse
|
34
|
Poullet N, Vielle A, Gimond C, Ferrari C, Braendle C. Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditicCaenorhabditisnematodes. Evol Dev 2015; 17:380-97. [DOI: 10.1111/ede.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Anne Vielle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Clotilde Gimond
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
35
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Abstract
The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.
Collapse
Affiliation(s)
- Lise Frézal
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Anne Félix
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
37
|
Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Heredity (Edinb) 2015; 115:73-82. [PMID: 26059971 DOI: 10.1038/hdy.2015.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding the causes and architecture of genetic differentiation between natural populations is of central importance in evolutionary biology. Crosses between natural populations can result in heterosis if recessive or nearly recessive deleterious mutations have become fixed within populations because of genetic drift. Divergence between populations can also result in outbreeding depression because of genetic incompatibilities. The net fitness consequences of between-population crosses will be a balance between heterosis and outbreeding depression. We estimated the magnitude of heterosis and outbreeding depression in the highly selfing model plant Arabidopsis thaliana, by crossing replicate line pairs from two sets of natural populations (C↔R, B↔S) separated by similar geographic distances (Italy↔Sweden). We examined the contribution of different modes of gene action to overall differences in estimates of lifetime fitness and fitness components using joint scaling tests with parental, reciprocal F1 and F2, and backcross lines. One of these population pairs (C↔R) was previously demonstrated to be locally adapted, but locally maladaptive quantitative trait loci were also found, suggesting a role for genetic drift in shaping adaptive variation. We found markedly different genetic architectures for fitness and fitness components in the two sets of populations. In one (C↔R), there were consistently positive effects of dominance, indicating the masking of recessive or nearly recessive deleterious mutations that had become fixed by genetic drift. The other set (B↔S) exhibited outbreeding depression because of negative dominance effects. Additional studies are needed to explore the molecular genetic basis of heterosis and outbreeding depression, and how their magnitudes vary across environments.
Collapse
|
38
|
Clément-Ziza M, Marsellach FX, Codlin S, Papadakis MA, Reinhardt S, Rodríguez-López M, Martin S, Marguerat S, Schmidt A, Lee E, Workman CT, Bähler J, Beyer A. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast. Mol Syst Biol 2014; 10:764. [PMID: 25432776 PMCID: PMC4299605 DOI: 10.15252/msb.20145123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our current understanding of how natural genetic variation affects gene expression beyond
well-annotated coding genes is still limited. The use of deep sequencing technologies for the study
of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we
generated the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL
study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal
effects (trans-eQTLs) greatly exceeds the number of local effects
(cis-eQTLs) and that non-coding RNAs are as likely to be affected by eQTLs as
protein-coding RNAs. We identified a genetic variation of swc5 that modifies the
levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this
effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains,
methods, and datasets generated here provide a rich resource for future studies.
Collapse
Affiliation(s)
- Mathieu Clément-Ziza
- Biotechnology Centre, Technische Universität Dresden, Dresden, Germany Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Francesc X Marsellach
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Manos A Papadakis
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Susanne Reinhardt
- Biotechnology Centre, Technische Universität Dresden, Dresden, Germany
| | - María Rodríguez-López
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Stuart Martin
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Samuel Marguerat
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | | | - Eunhye Lee
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Genetics Institute, University College London, London, UK
| | - Andreas Beyer
- Biotechnology Centre, Technische Universität Dresden, Dresden, Germany Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG, Kammenga JE, Harvey SC. Widespread genomic incompatibilities in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1813-23. [PMID: 25128438 PMCID: PMC4199689 DOI: 10.1534/g3.114.013151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 01/18/2023]
Abstract
In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nematode Caenorhabditis elegans by looking for genomic regions that disrupt egg laying; a complex, highly regulated, and coordinated phenotype. Investigation of introgression lines and recombinant inbred lines derived from the isolates CB4856 and N2 uncovered multiple incompatibility quantitative trait loci (QTL). These QTL produce a synthetic egg-laying defective phenotype not seen in CB4856 and N2 nor in other wild isolates. For two of the QTL regions, results are inconsistent with a model of pairwise interaction between two loci, suggesting that the incompatibilities are a consequence of complex interactions between multiple loci. Analysis of additional life history traits indicates that the QTL regions identified in these screens are associated with effects on other traits such as lifespan and reproduction, suggesting that the incompatibilities are likely to be deleterious. Taken together, these results indicate that numerous BDM incompatibilities that could contribute to reproductive isolation can be detected and mapped within C. elegans.
Collapse
Affiliation(s)
- L Basten Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Helen E Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Aafke Aartse
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| |
Collapse
|
40
|
Félix MA, Braendle C, Cutter AD. A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS One 2014; 9:e94723. [PMID: 24727800 PMCID: PMC3984244 DOI: 10.1371/journal.pone.0094723] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022] Open
Abstract
The rapid pace of species discovery outstrips the rate of species description in many taxa. This problem is especially acute for Caenorhabditis nematodes, where the naming of distinct species would greatly improve their visibility and usage for biological research, given the thousands of scientists studying Caenorhabditis. Species description and naming has been hampered in Caenorhabditis, in part due to the presence of morphologically cryptic species despite complete biological reproductive isolation and often enormous molecular divergence. With the aim of expediting species designations, here we propose and apply a revised framework for species diagnosis and description in this group. Our solution prioritizes reproductive isolation over traditional morphological characters as the key feature in delineating and diagnosing new species, reflecting both practical considerations and conceptual justifications. DNA sequence divergence criteria help prioritize crosses for establishing patterns of reproductive isolation among the many species of Caenorhabditis known to science, such as with the ribosomal internal transcribed spacer-2 (ITS2) DNA barcode. By adopting this approach, we provide new species name designations for 15 distinct biological species, thus increasing the number of named Caenorhabditis species in laboratory culture by nearly 3-fold. We anticipate that the improved accessibility of these species to the research community will expand the opportunities for study and accelerate our understanding of diverse biological phenomena.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris, France
- CNRS UMR 8197, Paris, France
- Inserm U1024, Paris, France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, France
- INSERM U1091, Nice, France
- Université Nice Sophia Antipolis, UFR Sciences, Nice, France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Gray JC, Cutter AD. Mainstreaming Caenorhabditis elegans in experimental evolution. Proc Biol Sci 2014; 281:20133055. [PMID: 24430852 DOI: 10.1098/rspb.2013.3055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.
Collapse
Affiliation(s)
- Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, , 25 Willcocks Street, Toronto, Ontario, Canada , M5S 3B2
| | | |
Collapse
|
42
|
Li S, Jovelin R, Yoshiga T, Tanaka R, Cutter AD. Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proc Biol Sci 2014; 281:20132858. [PMID: 24403340 DOI: 10.1098/rspb.2013.2858] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica's life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.
Collapse
Affiliation(s)
- Shuning Li
- Department of Ecology and Evolutionary Biology, University of Toronto, , Toronto, Ontario, Canada , M5S 3B2, Department of Applied Biological Sciences, Saga University, , Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|