1
|
Bialas JT, Dylewski Ł, Tobolka M. Brain size mediates the choice of breeding strategy in the red-backed shrike Lanius collurio. Integr Zool 2024; 19:683-693. [PMID: 38196090 DOI: 10.1111/1749-4877.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The brain size of vertebrates represents a trade-off between natural selection for enhanced cognitive abilities and the energetic constraints of brain tissue production. Processing information efficiently can confer benefits, but it also entails time costs. Breeding strategies, encompassing timing of breeding onset and nest-site selection, may be related to brain size. In this study, we aim to elucidate the relationship between brain size, breeding timing, nest-site choice, and breeding success in the red-backed shrike Lanius collurio. Our findings revealed that the timing of the first egg-laying date was associated with female head size, with larger-headed females tending to lay eggs later in the breeding season. Additionally, we observed that breeding success was positively correlated with increased nest concealment. However, this relationship was stronger in males with smaller heads. In turn, nest concealment was not related to head size but primarily influenced breeding onset. These results suggest that the choice of breeding strategy may be moderated by brain size, with differences between sexes. Larger-headed females may invest more time in selecting nesting sites, leading to delayed breeding onset, while larger-headed males may compensate for suboptimal nest concealment. Our study sheds light on the intricate interplay between brain size, breeding timing, nest-site preferences, and breeding success in passerine birds, underscoring the potential role of cognitive capacity in shaping individual decision-making processes.
Collapse
Affiliation(s)
- Joanna T Bialas
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Dylewski
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Tobolka
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Wien, Austria
| |
Collapse
|
2
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Mariën V, Piskin I, Zandecki C, Van houcke J, Arckens L. Age-related alterations in the behavioral response to a novel environment in the African turquoise killifish ( Nothobranchius furzeri). Front Behav Neurosci 2024; 17:1326674. [PMID: 38259633 PMCID: PMC10800983 DOI: 10.3389/fnbeh.2023.1326674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The African turquoise killifish (Nothobranchius furzeri) has emerged as a popular model organism for neuroscience research in the last decade. One of the reasons for its popularity is its short lifespan for a vertebrate organism. However, little research has been carried out using killifish in behavioral tests, especially looking at changes in their behavior upon aging. Therefore, we used the open field and the novel tank diving test to unravel killifish locomotion, exploration-related behavior, and behavioral changes over their adult lifespan. The characterization of this behavioral baseline is important for future experiments involving pharmacology to improve the aging phenotype. In this study, two cohorts of fish were used, one cohort was tested in the open field test and one cohort was tested in the novel tank diving test. Each cohort was tested from the age of 6 weeks to the age of 24 weeks and measurements were performed every three weeks. In the open field test, we found an increase in the time spent in the center zone from 18 weeks onward, which could indicate altered exploration behavior. However, upon aging, the fish also showed an increased immobility frequency and duration. In addition, after the age of 15 weeks, their locomotion decreased. In the novel tank diving test, we did not observe this aging effect on locomotion or exploration. Killifish spent around 80% of their time in the bottom half of the tank, and we could not observe habituation effects, indicating slow habituation to novel environments. Moreover, we observed that killifish showed homebase behavior in both tests. These homebases are mostly located near the edges of the open field test and at the bottom of the novel tank diving test. Altogether, in the open field test, the largest impact of aging on locomotion and exploration was observed beyond the age of 15 weeks. In the novel tank diving test, no effect of age was found. Therefore, to test the effects of pharmacology on innate behavior, the novel tank diving test is ideally suited because there is no confounding effect of aging.
Collapse
Affiliation(s)
- Valerie Mariën
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Piskin
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Caroline Zandecki
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jolien Van houcke
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Adaptive phenotypic plasticity induces individual variability along a cognitive trade-off. Proc Biol Sci 2023; 290:20230350. [PMID: 37357854 PMCID: PMC10291716 DOI: 10.1098/rspb.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Brand JA, Henry J, Melo GC, Wlodkowic D, Wong BBM, Martin JM. Sex differences in the predictability of risk-taking behavior. Behav Ecol 2023; 34:108-116. [PMID: 36789395 PMCID: PMC9918862 DOI: 10.1093/beheco/arac105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Recent research has found that individuals often vary in how consistently they express their behavior over time (i.e., behavioral predictability) and suggested that these individual differences may be heritable. However, little is known about the intrinsic factors that drive variation in the predictability of behavior. Indeed, whether variation in behavioral predictability is sex-specific is not clear. This is important, as behavioral predictability has been associated with vulnerability to predation, suggesting that the predictability of behavioral traits may have key fitness implications. We investigated whether male and female eastern mosquitofish (Gambusia holbrooki) differed in the predictability of their risk-taking behavior. Specifically, over a total of 954 behavioral trials, we repeatedly measured risk-taking behavior with three commonly used assays-refuge-use, thigmotaxis, and foraging latency. We predicted that there would be consistent sex differences in both mean-level risk-taking behavior and behavioral predictability across the assays. We found that risk-taking behavior was repeatable within each assay, and that some individuals were consistently bolder than others across all three assays. There were also consistent sex differences in mean-level risk-taking behavior, with males being bolder across all three assays compared to females. In contrast, both the magnitude and direction of sex differences in behavioral predictability were assay-specific. Taken together, these results highlight that behavioral predictability may be independent from underlying mean-level behavioral traits and suggest that males and females may differentially adjust the consistency of their risk-taking behavior in response to subtle changes in environmental conditions.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jason Henry
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Gabriela C Melo
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Donald Wlodkowic
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| |
Collapse
|
6
|
Lucon-Xiccato T, Montalbano G, Frigato E, Loosli F, Foulkes NS, Bertolucci C. Medaka as a model for seasonal plasticity: Photoperiod-mediated changes in behaviour, cognition, and hormones. Horm Behav 2022; 145:105244. [PMID: 35988451 DOI: 10.1016/j.yhbeh.2022.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Teleosts display the highest level of brain plasticity of all vertebrates. Yet we still know little about how seasonality affects fish behaviour and the underlying cognitive mechanisms since the common neurobehavioral fish models are native to tropical environments where seasonal variation is absent or reduced. The medaka, Oryzias latipes, which inhabits temperate zone habitats, represents a promising model in this context given its large phenotypic changes associated with seasonality and the possibility to induce seasonal plasticity by only manipulating photoperiod. Here, we report the first extended investigation of seasonal plasticity in medaka behaviour and cognition, as well as the potential underlying molecular mechanisms. We compared medaka exposed to summer photoperiod (16 h light:8 h dark) with medaka exposed to winter photoperiod (8 h light:16 h dark), and detected substantial differences. Medaka were more active and less social in summer photoperiod conditions, two effects that emerged in the second half of an open-field and a sociability test, respectively, and might be at least in part related to habituation to the testing apparatus. Moreover, the cognitive phenotype was significantly affected: in the early response to a social stimulus, brain functional lateralisation shifted between the two hemispheres under the two photoperiod conditions, and inhibitory and discrimination learning performance were reduced in summer conditions. Finally, the expression of genes encoding key pituitary hormones, tshß and gh, and of the tshß regulatory transcription factor tef in the brain was increased in summer photoperiod conditions. This work reveals remarkable behavioural and cognitive phenotypic plasticity in response to photoperiod in medaka, and suggests a potential regulatory role for the same hormones involved in seasonal plasticity of other vertebrates.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
7
|
Lucon-Xiccato T, Loosli F, Conti F, Foulkes NS, Bertolucci C. Comparison of anxiety-like and social behaviour in medaka and zebrafish. Sci Rep 2022; 12:10926. [PMID: 35764691 PMCID: PMC9239998 DOI: 10.1038/s41598-022-14978-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
The medaka, Oryzias latipes, is rapidly growing in importance as a model in behavioural research. However, our knowledge of its behaviour is still incomplete. In this study, we analysed the performance of medaka in 3 tests for anxiety-like behaviour (open-field test, scototaxis test, and diving test) and in 3 sociability tests (shoaling test with live stimuli, octagonal mirror test, and a modified shoaling test with mirror stimulus). The behavioural response of medaka was qualitatively similar to that observed in other teleosts in the open-field test (thigmotaxis), and in 2 sociability tests, the shoaling test and in the octagonal mirror test (attraction towards the social stimulus). In the remaining tests, medaka did not show typical anxiety (i.e., avoidance of light environments and preference for swimming at the bottom of the aquarium) and social responses (attraction towards the social stimulus). As a reference, we compared the behaviour of the medaka to that of a teleost species with well-studied behaviour, the zebrafish, tested under the same conditions. This interspecies comparison indicates several quantitative and qualitative differences across all tests, providing further evidence that the medaka responds differently to the experimental settings compared to other fish models.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Francesca Conti
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Harrison LM, Noble DWA, Jennions MD. A meta-analysis of sex differences in animal personality: no evidence for the greater male variability hypothesis. Biol Rev Camb Philos Soc 2021; 97:679-707. [PMID: 34908228 DOI: 10.1111/brv.12818] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
The notion that men are more variable than women has become embedded into scientific thinking. For mental traits like personality, greater male variability has been partly attributed to biology, underpinned by claims that there is generally greater variation among males than females in non-human animals due to stronger sexual selection on males. However, evidence for greater male variability is limited to morphological traits, and there is little information regarding sex differences in personality-like behaviours for non-human animals. Here, we meta-analysed sex differences in means and variances for over 2100 effects (204 studies) from 220 species (covering five broad taxonomic groups) across five personality traits: boldness, aggression, activity, sociality and exploration. We also tested if sexual size dimorphism, a proxy for sex-specific sexual selection, explains variation in the magnitude of sex differences in personality. We found no significant differences in personality between the sexes. In addition, sexual size dimorphism did not explain variation in the magnitude of the observed sex differences in the mean or variance in personality for any taxonomic group. In sum, we find no evidence for widespread sex differences in variability in non-human animal personality.
Collapse
Affiliation(s)
- Lauren M Harrison
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
9
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
10
|
McNeil RM, Devigili A, Kolm N, Fitzpatrick JL. Does brain size affect mate choice? An experimental examination in pygmy halfbeaks. Behav Ecol 2021; 32:1103-1113. [PMID: 34949959 PMCID: PMC8691582 DOI: 10.1093/beheco/arab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Choosing a mate is one of the most important decisions in an animal's lifetime. Female mate choice is often guided by the presence or intensity of male sexual ornaments, which must be integrated and compared among potential mates. Individuals with greater cognitive abilities may be better at evaluating and comparing sexual ornaments, even when the difference in ornaments is small. While brain size is often used as a proxy for cognitive ability, its effect on mate choice has rarely been investigated. Here, we investigate the effect of brain size on mate preferences in the pygmy halfbeak Dermogenys collettei, a small freshwater fish that forms mixed-sex shoals where mating takes place. Pygmy halfbeaks are ideal models as their semi-transparent heads allow for external brain measurements. After validating the use of external measurements as a proxy for internal brain size, we presented females with large or small brains (relative to body length) with two males that had either a large or small difference in sexual ornamentation (measured by the total area of red coloration). Unexpectedly, neither total relative brain size nor relative telencephalon size affected any measured aspect of mate preference. However, the difference in male sexual ornamentation did affect preference, with females preferring males with a smaller area of red coloration when the difference in ornaments was large. This study highlights the complexities of mate choice and the importance of considering a range of stimuli when examining mate preferences.
Collapse
Affiliation(s)
- Rebecca M McNeil
- Department of Zoology: Ethology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden
| | - Alessandro Devigili
- Department of Zoology: Ethology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology: Ethology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden
| | - John L Fitzpatrick
- Department of Zoology: Ethology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Herdegen-Radwan M, Cattelan S, Buda J, Raubic J, Radwan J. What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution 2021; 75:3037-3055. [PMID: 34658022 PMCID: PMC9299167 DOI: 10.1111/evo.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Female preferences for male ornamental traits can arise from indirect benefits, such as increased attractiveness or better viability of progeny, but empirical evidence for such benefits is inconsistent. Artificial selection offers a powerful way to investigate indirect effects of male ornaments. Here, we selected for the area of orange spots on male guppies, a trait subject to female preferences in our population, in replicated up‐ and down‐selected lines. We found a significant direct response to selection, and a correlated response in female preferences, with females from down‐selected lines showing less interest in more orange males. Nevertheless, up‐selected males sired more offspring in direct competition with low‐selected males, irrespective of female origin. We did not find a significantly correlated response to selection among any other fitness correlates we measured. Our results imply that female preferences for orange spots can lead to increased reproductive success of their sons, with no effect on general viability of progeny. Furthermore, although we demonstrate that female preferences may evolve via linkage disequilibrium with the preferred trait, the potential for runaway selection by positive feedback may be constrained by the lack of corresponding linkage with male reproductive competitiveness.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jarosław Raubic
- Population Ecology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| |
Collapse
|
12
|
Savaşçı BB, Lucon-Xiccato T, Bisazza A. Ontogeny and personality affect inhibitory control in guppies, Poecilia reticulata. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Sowersby W, Eckerström-Liedholm S, Kotrschal A, Näslund J, Rowiński P, Gonzalez-Voyer A, Rogell B. Fast life-histories are associated with larger brain size in killifishes. Evolution 2021; 75:2286-2298. [PMID: 34270088 DOI: 10.1111/evo.14310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
The high energetic demands associated with the vertebrate brain are proposed to result in a trade-off between the pace of life-history and relative brain size. However, because both life-history and brain size also have a strong relationship with body size, any associations between the pace of life-history and relative brain size may be confounded by coevolution with body size. Studies on systems where contrasts in the pace of life-history occur without concordant contrasts in body size could therefore add to our understanding of the potential coevolution between relative brain size and life-history. Using one such system - 21 species of killifish - we employed a common garden design across two ontogenetic stages to investigate the association between relative brain size and the pace of life-history. Contrary to predictions, we found that relative brain size was larger in adult fast-living killifishes, compared to slow-living species. Although we found no differences in relative brain size between juvenile killifishes. Our results suggest that fast- and slow-living killifishes do not exhibit the predicted trade-off between brain size and life-history. Instead, fast and slow-living killifishes could differ in the ontogenetic timing of somatic versus neural growth or inhabit environments that differ considerably in cognitive demands.
Collapse
Affiliation(s)
- Will Sowersby
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Biology, Osaka City University, Osaka, Japan
| | - Simon Eckerström-Liedholm
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Wild Animal Initiative, Farmington, Minnesota, USA
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Animal Sciences: Behavioural Ecology, Wageningen University, Wageningen, Netherlands
| | - Joacim Näslund
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Piotr Rowiński
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alejandro Gonzalez-Voyer
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Instituto de Ecología, Universidad Nacional Autónoma de México, México, Mexico
| | - Björn Rogell
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
14
|
Jenkins MR, Cummings JM, Cabe AR, Hulthén K, Peterson MN, Langerhans RB. Natural and anthropogenic sources of habitat variation influence exploration behaviour, stress response, and brain morphology in a coastal fish. J Anim Ecol 2021; 90:2446-2461. [PMID: 34143892 DOI: 10.1111/1365-2656.13557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Evolutionary ecology aims to better understand how ecologically important traits respond to environmental heterogeneity. Environments vary both naturally and as a result of human activities, and investigations that simultaneously consider how natural and human-induced environmental variation affect diverse trait types grow increasingly important as human activities drive species endangerment. Here, we examined how habitat fragmentation and structural habitat complexity affect disparate trait types in Bahamas mosquitofish Gambusia hubbsi inhabiting tidal creeks. We tested a priori predictions for how these factors might influence exploratory behaviour, stress reactivity and brain anatomy. We examined approximately 350 adult Bahamas mosquitofish from seven tidal-creek populations across Andros Island, The Bahamas that varied in both human-caused fragmentation (three fragmented and four unfragmented) and natural habitat complexity (e.g. fivefold variation in rock habitat). Populations that had experienced severe human-induced fragmentation, and thus restriction of tidal exchange from the ocean, exhibited greater exploration of a novel environment, stronger physiological stress responses to a mildly stressful event and smaller telencephala (relative to body size). These changes matched adaptive predictions based mostly on (a) reduced chronic predation risk and (b) decreased demands for navigating tidally dynamic habitats. Populations from sites with greater structural habitat complexity showed a higher propensity for exploration and a relatively larger optic tectum and cerebellum. These patterns matched adaptive predictions related to increased demands for navigating complex environments. Our findings demonstrate environmental variation, including recent anthropogenic impacts (<50 years), can significantly affect complex, ecologically important traits. Yet trait-specific patterns may not be easily predicted, as we found strong support for only six of 12 predictions. Our results further highlight the utility of simultaneously quantifying multiple environmental factors-for example had we failed to account for habitat complexity, we would not have detected the effects of fragmentation on exploratory behaviours. These responses, and their ecological consequences, may be complex: rapid and adaptive phenotypic responses to anthropogenic impacts can facilitate persistence in human-altered environments, but may come at a cost of population vulnerability if ecological restoration was to occur without consideration of the altered traits.
Collapse
Affiliation(s)
- Matthew R Jenkins
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - John M Cummings
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alex R Cabe
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kaj Hulthén
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - M Nils Peterson
- Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC, USA
| | - R Brian Langerhans
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Coto ZN, Traniello JFA. Brain Size, Metabolism, and Social Evolution. Front Physiol 2021; 12:612865. [PMID: 33708134 PMCID: PMC7940180 DOI: 10.3389/fphys.2021.612865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zach N Coto
- Department of Biology, Boston University, Boston, MA, United States
| | - James F A Traniello
- Department of Biology, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
16
|
|
17
|
Ramsaran V, Jackson B, Bucciol S, Puniani T, Lawrence M, Elvidge C. Predator kairomones elicit bold, exploratory behaviours in juvenile bluegill, Lepomis macrochirus. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Kotrschal A, Szorkovszky A, Herbert-Read J, Bloch NI, Romenskyy M, Buechel SD, Eslava AF, Alòs LS, Zeng H, Le Foll A, Braux G, Pelckmans K, Mank JE, Sumpter D, Kolm N. Rapid evolution of coordinated and collective movement in response to artificial selection. SCIENCE ADVANCES 2020; 6:6/49/eaba3148. [PMID: 33268362 PMCID: PMC7710366 DOI: 10.1126/sciadv.aba3148] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Collective motion occurs when individuals use social interaction rules to respond to the movements and positions of their neighbors. How readily these social decisions are shaped by selection remains unknown. Through artificial selection on fish (guppies, Poecilia reticulata) for increased group polarization, we demonstrate rapid evolution in how individuals use social interaction rules. Within only three generations, groups of polarization-selected females showed a 15% increase in polarization, coupled with increased cohesiveness, compared to fish from control lines. Although lines did not differ in their physical swimming ability or exploratory behavior, polarization-selected fish adopted faster speeds, particularly in social contexts, and showed stronger alignment and attraction responses to multiple neighbors. Our results reveal the social interaction rules that change when collective behavior evolves.
Collapse
Affiliation(s)
- Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Behavioural Ecology, Wageningen University, Wageningen, Netherlands
| | - Alexander Szorkovszky
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - James Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge, UK
- Aquatic Ecology, Lund University, Lund, Sweden
| | - Natasha I Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Maksym Romenskyy
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ada Fontrodona Eslava
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
- Centre for Biological Diversity, University of St. Andrews, St. Andrews, UK
| | | | - Hongli Zeng
- School of Science, Nanjing University of Posts and Telecommmunications, Nanjing, China
| | - Audrey Le Foll
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Ganaël Braux
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | | | - Judith E Mank
- University College London, London, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - David Sumpter
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Development of Open-Field Behaviour in the Medaka, Oryzias latipes. BIOLOGY 2020; 9:biology9110389. [PMID: 33182555 PMCID: PMC7696969 DOI: 10.3390/biology9110389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Animal models play an important role in research on behaviour and its impairment. Fish larvae allow researchers to conduct experiments on large samples in just a few days and with small-scale experimental infrastructure, substantially increasing research output. However, several aspects of larval biology, including their behaviour, are frequently unknown. Our study has demonstrated that the most important behavioural paradigm for studying anxiety and stress in animals, the open-field test, can be used in the larvae of an important fish genetic model, the medaka. This finding will allow researchers to develop models to study anxiety and stress disorders based on medaka larvae. Abstract The use of juvenile and larval fish models has been growing in importance for several fields. Accordingly, the evaluation of behavioural tests that can be applied to larvae and juveniles is becoming increasingly important. We tested medaka at four different ages (1, 10, 30, and 120 dph) in the open field test, one of the most commonly used behavioural assays, to investigate its suitability for larvae and juveniles of this species. We also explored ontogenetic variation in behaviour during this test. On average, adult 120-day-old medaka showed higher locomotor activity in terms of distance moved compared with younger fish. Our analysis suggests that this effect was derived from both quantitative changes in locomotion related to the ontogenetic increase in fish size as well as qualitative changes in two aspects of locomotor behaviour. Specifically, time spent moving was similar between 1- and 10-day-old medaka, but progressively increased with development. In addition, we revealed that adult medaka showed constant levels of activity, whereas younger medaka progressively reduced their activity over the course of the entire experiment. The thigmotaxis behaviour typically used to assess anxiety in the open field test emerged at 120 days post-hatching, even though a difference in the temporal pattern of spatial preference emerged earlier, between 10 and 30 days post-hatching. In conclusion, some measures of the open field test such as total distance moved allow behavioural phenotyping in the medaka of all ages, although with some degree of quantitative and qualitative developmental variation. In contrast, immature medaka appear not to exhibit thigmotactic behaviour.
Collapse
|
20
|
Daniel DK, Bhat A. Bolder and Brighter? Exploring Correlations Between Personality and Cognitive Abilities Among Individuals Within a Population of Wild Zebrafish, Danio rerio. Front Behav Neurosci 2020; 14:138. [PMID: 32903664 PMCID: PMC7438763 DOI: 10.3389/fnbeh.2020.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Within populations, individual differences in behavioral and cognitive traits are dependent on the habitat and specific contexts, such as the presence of a predator or other risks. The ability to show variable responses to changing conditions can be of immense survival advantage to organisms. We studied individual differences in specific personality traits, such as boldness, exploration, and spatial ability, and the effect of these traits on learning ability and memory in the presence of a predatory threat, among wild caught zebrafish (Danio rerio). Under laboratory conditions, individuals were trained to perform a simple navigation task, and their performance, exploration, boldness traits were measured, along with learning and memory abilities under two contexts (i.e., in the presence and absence of a predator). Our results revealed that fish showed a clear decline in emergence time, exploration time, and feeding latency over trials, indicative of learning, and further tests for memory also showed memory retention. While the presence of a predator increased emergence time and latencies for navigating, indicating declines in boldness and exploration, these were found to be correlated to different personalities among the individuals and dependent on their sex. While females tended to be bolder and learned the spatial task faster, they showed lower memory retention abilities than males. Personality traits were also found to affect cognitive abilities among individuals. In general, the presence of a predator decreased performance latencies. However, bolder individuals were less affected and emerged more quickly from the refuge chamber than shy individuals. Our results point to the complex interplay of ecological context along with inherent correlations across personality traits that decide the overall personality and cognitive responses among individuals even within populations. These findings thus highlight the importance of an inclusive approach that combines personality and cognition studies for understanding variations within populations.
Collapse
Affiliation(s)
- Danita K Daniel
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| |
Collapse
|
21
|
Daniel MJ, Koffinas L, Hughes KA. Mating Preference for Novel Phenotypes Can Be Explained by General Neophilia in Female Guppies. Am Nat 2020; 196:414-428. [PMID: 32970460 DOI: 10.1086/710177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUnderstanding how genetic variation is maintained in ecologically important traits is a fundamental question in evolutionary biology. Male Trinidadian guppies (Poecilia reticulata) exhibit extreme genetic diversity in color patterns within populations, which is believed to be promoted by a female mating preference for rare or novel patterns. However, the origins of this preference remain unclear. Here, we test the hypothesis that mating preference for novel phenotypes is a by-product of general neophilia that evolved in response to selection in nonmating contexts. We measured among-female variation in preference for eight different, novel stimuli that spanned four ecological contexts: mate choice, exploration, foraging, and social (but nonsexual) interactions. Females exhibited preference for novelty in six out of eight tests. Individual variation in preference for novelty was positively correlated among all eight types of stimuli. Furthermore, factor analysis revealed a single axis of general neophilia that accounts for 61% of individual variation in preference for novel color patterns. The single-factor structure of neophilia suggests that interest in novelty is governed primarily by shared processes that transcend context. Because neophilia likely has a sizable heritable component, our results provide evidence that mating preference for novel phenotypes may be a nonadaptive by-product of natural selection on neophilia.
Collapse
|
22
|
Katajamaa R, Jensen P. Selection for reduced fear in red junglefowl changes brain composition and affects fear memory. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200628. [PMID: 32968523 PMCID: PMC7481730 DOI: 10.1098/rsos.200628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Brain size reduction is a common trait in domesticated species when compared to wild conspecifics. This reduction can happen through changes in individual brain regions as a response to selection on specific behaviours. We selected red junglefowl for 10 generations for diverging levels of fear towards humans and measured brain size and composition as well as habituation learning and conditioned place preference learning in young chicks. Brain size relative to body size as well as brainstem region size relative to whole brain size were significantly smaller in chicks selected for low fear of humans compared to chicks selected for high fear of humans. However, when including allometric effects in the model, these differences disappear but a tendency towards larger cerebra in low-fear chickens remains. Low-fear line chicks habituated more effectively to a fearful stimulus with prior experience of that same stimulus, whereas high-fear line chicks with previous experience of the stimulus had a response similar to naive chicks. The phenotypical changes are in line with previously described effects of domestication.
Collapse
Affiliation(s)
| | - Per Jensen
- Author for correspondence: Per Jensen e-mail:
| |
Collapse
|
23
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Personality traits covary with individual differences in inhibitory abilities in 2 species of fish. Curr Zool 2020; 66:187-195. [PMID: 32440277 PMCID: PMC7233618 DOI: 10.1093/cz/zoz039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/03/2019] [Indexed: 12/21/2022] Open
Abstract
In a number of animal species, individuals differ in their ability to solve cognitive tasks. However, the mechanisms underlying this variability remain unclear. It has been proposed that individual differences in cognition may be related to individual differences in behavior (i.e., personality); a hypothesis that has received mixed support. In this study, we investigated whether personality correlates with the cognitive ability that allows inhibiting behavior in 2 teleost fish species, the zebrafish Danio rerio and the guppy Poecilia reticulata. In both species, individuals that were bolder in a standard personality assay, the open-field test, showed greater inhibitory abilities in the tube task, which required them to inhibit foraging behavior toward live prey sealed into a transparent tube. This finding reveals a relationship between boldness and inhibitory abilities in fish and lends support to the hypothesis of a link between personality and cognition. Moreover, this study suggests that species separated by a relatively large phylogenetic distance may show the same link between personality and cognition, when tested on the same tasks.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| |
Collapse
|
24
|
|
25
|
Kotrschal A, Corral-Lopez A, Kolm N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol Lett 2019; 15:20190137. [PMID: 31088278 PMCID: PMC6548732 DOI: 10.1098/rsbl.2019.0137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The relationship between brain size and ageing is a paradox. The cognitive benefits of large brains should protect from extrinsic mortality and thus indirectly select for slower ageing. However, the substantial energetic cost of neural tissue may also impact the energetic budget of large-brained organisms, causing less investment in somatic maintenance and thereby faster ageing. While the positive association between brain size and survival in the wild is well established, no studies exist on the direct effects of brain size on ageing. Here we test how brain size influences intrinsic ageing in guppy (Poecilia reticulata) brain size selection lines with 12% difference in relative brain size. Measuring survival under benign conditions, we find that large-brained animals live 22% shorter than small-brained animals and the effect is similar in both males and females. Our results suggest a trade-off between investment into brain size and somatic maintenance. This implies that the link between brain size and ageing is contingent on the mechanism of mortality, and selection for positive correlations between brain size and ageing should occur mainly under cognition-driven survival benefits from increased brain size. We show that accelerated ageing can be a cost of evolving a larger brain.
Collapse
Affiliation(s)
| | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University , Stockholm , Sweden
| |
Collapse
|
26
|
Male guppies differ in daily frequency but not diel pattern of display under daily light changes. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2768-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Herdegen-Radwan M. Bolder guppies do not have more mating partners, yet sire more offspring. BMC Evol Biol 2019; 19:211. [PMID: 31726971 PMCID: PMC6857137 DOI: 10.1186/s12862-019-1539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intra-individual stable but inter-individually variable behaviours, i.e. personalities, are commonly reported across diverse animal groups, yet the reasons for their maintenance remain controversial. Therefore, studying fitness consequences of personality traits is necessary to discriminate between alternative explanations. RESULTS Here, I measured boldness, a highly repeatable personality trait, and reproductive success in male guppies, Poecilia reticulata. I found that bolder males had higher reproductive success than their shyer conspecifics and they sired offspring with females who had larger clutches. CONCLUSIONS This result provides direct evidence for fitness consequences of boldness in the guppy. It suggests that the effect may be driven by bolder males mating with more fecund females.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology of Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
28
|
Corral-López A, Romensky M, Kotrschal A, Buechel SD, Kolm N. Brain size affects responsiveness in mating behaviour to variation in predation pressure and sex ratio. J Evol Biol 2019; 33:165-177. [PMID: 31610058 DOI: 10.1111/jeb.13556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022]
Abstract
Despite ongoing advances in sexual selection theory, the evolution of mating decisions remains enigmatic. Cognitive processes often require simultaneous processing of multiple sources of information from environmental and social cues. However, little experimental data exist on how cognitive ability affects such fitness-associated aspects of behaviour. Using advanced tracking techniques, we studied mating behaviours of guppies artificially selected for divergence in relative brain size, with known differences in cognitive ability, when predation threat and sex ratio was varied. In females, we found a general increase in copulation behaviour in when the sex ratio was female biased, but only large-brained females responded with greater willingness to copulate under a low predation threat. In males, we found that small-brained individuals courted more intensively and displayed more aggressive behaviours than large-brained individuals. However, there were no differences in female response to males with different brain size. These results provide further evidence of a role for female brain size in optimal decision-making in a mating context. In addition, our results indicate that brain size may affect mating display skill in male guppies. We suggest that it is important to consider the association between brain size, cognitive ability and sexual behaviour when studying how morphological and behavioural traits evolve in wild populations.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Division of Biosciences, Genetics, Evolution & Environment, University College of London, London, UK
| | - Maksym Romensky
- Department of Mathematics, Uppsala University, Uppsala, Sweden.,Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.,Behavioural Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Herczeg G, Urszán TJ, Orf S, Nagy G, Kotrschal A, Kolm N. Yes, correct context is indeed the key: An answer to Haave-Audet et al. 2019. J Evol Biol 2019; 32:1450-1455. [PMID: 31604005 DOI: 10.1111/jeb.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/26/2022]
Abstract
We published a study recently testing the link between brain size and behavioural plasticity using brain size selected guppy (Poecilia reticulata) lines (2019, Journal of Evolutionary Biology, 32, 218-226). Only large-brained fish showed habituation to a new, but actually harmless environment perceived as risky, by increasing movement activity over the 20-day observation period. We concluded that "Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level". In a commentary published in the same journal, Haave-Audet et al. challenged the main message of our study, stating that (a) relative brain size is not a suitable proxy for cognitive ability and (b) habituation measured by us is likely not adaptive and costly. In our response, we first show that a decade's work has proven repeatedly that relative brain size is indeed positively linked to cognitive performance in our model system. Second, we discuss how switching from stressed to unstressed behaviour in stressful situations without real risk is likely adaptive. Finally, we point out that the main cost of behavioural plasticity in our case is the development and maintenance of the neural system needed for information processing, and not the expression of plasticity. We hope that our discussion with Haave-Audet et al. helps clarifying some central issues in this emerging research field.
Collapse
Affiliation(s)
- Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás János Urszán
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Stephanie Orf
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Nagy
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
|
31
|
Haave-Audet E, Guillette LM, Mathot KJ. Context is key: A comment on Herczeg et al. 2019. J Evol Biol 2019; 32:1444-1449. [PMID: 31420908 DOI: 10.1111/jeb.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
In the last several years, there has been a surge in the number of studies addressing the causes and consequences of among-individual variation in cognitive ability and behavioural plasticity. Here, we use a recent publication by Herczeg et al. (2019: 32(3), 218-226) to highlight three shortcomings common to this newly emerging field. In their study, Herczeg et al. attempted to link variation in cognitive ability and behavioural plasticity by testing whether selection lines of guppies (Poecilia reticulata) that differ in relative brain size also differ in behavioural plasticity, as might be expected if the costs to plasticity are predominantly derived from the cost of developing large brains. First, residual brain size may not be a suitable proxy for 'cognitive ability'. Recent work has shown that intraspecific variation in cognitive ability can be better understood by considering variation in the specific brain areas responsible for the relevant behaviours as opposed to whole-brain mass. Second, the measure of behavioural plasticity, habituation, is unlikely to fulfil the assumptions that plasticity is both adaptive and costly. Finally, we point out several misconceptions regarding animal personality that continue to contribute to the choice of traits that are not well aligned with study objectives. Elucidating the mechanisms underlying among-individual variation in cognition and behavioural plasticity within populations requires integration between behavioural ecology and comparative cognition, and the study system developed by Herczeg et al. has the potential to provide important mechanistic insights. We hope that by articulating and critically appraising the underlying assumptions that are common in these traditionally separate disciplines, a strong foundation can emerge to allow for more fruitful integration of these fields.
Collapse
Affiliation(s)
- Elène Haave-Audet
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, Edmonton, AB, Canada.,School of Biology, University of St Andrews, St Andrews, UK
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Canada Research Chair in Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Verhagen I, Gienapp P, Laine VN, Grevenhof EM, Mateman AC, Oers K, Visser ME. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Irene Verhagen
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Veronika N. Laine
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Elizabeth M. Grevenhof
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Andrea C. Mateman
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Kees Oers
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| |
Collapse
|
33
|
van der Woude E, Groothuis J, Smid HM. No gains for bigger brains: Functional and neuroanatomical consequences of relative brain size in a parasitic wasp. J Evol Biol 2019; 32:694-705. [PMID: 30929291 PMCID: PMC6850633 DOI: 10.1111/jeb.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/25/2018] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and six generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large‐brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.
Collapse
Affiliation(s)
- Emma van der Woude
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
34
|
Doria MD, Morand-Ferron J, Bertram SM. Spatial cognitive performance is linked to thigmotaxis in field crickets. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Herczeg G, Urszán TJ, Orf S, Nagy G, Kotrschal A, Kolm N. Brain size predicts behavioural plasticity in guppies (Poecilia reticulata): An experiment. J Evol Biol 2018; 32:218-226. [PMID: 30474900 DOI: 10.1111/jeb.13405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 11/28/2022]
Abstract
Understanding how animal personality (consistent between-individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video-aided motion tracking. We found that individuals differed consistently in activity and risk-taking, as well as in behavioural plasticity. In activity, only the large-brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk-taking, we found sensitization (decreased risk-taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour-specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.
Collapse
Affiliation(s)
- Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Tamás J Urszán
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Stephanie Orf
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | - Gergely Nagy
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, EötvösLoránd University, Budapest, Hungary
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
36
|
|
37
|
Reddon AR, Chouinard‐Thuly L, Leris I, Reader SM. Wild and laboratory exposure to cues of predation risk increases relative brain mass in male guppies. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adam R. Reddon
- Department of BiologyMcGill University Montreal Quebec Canada
| | | | - Ioannis Leris
- Department of BiologyMcGill University Montreal Quebec Canada
- Department of Biology and Helmholtz InstituteUtrecht University Utrecht The Netherlands
| | - Simon M. Reader
- Department of BiologyMcGill University Montreal Quebec Canada
| |
Collapse
|
38
|
Corral-López A, Kotrschal A, Kolm N. Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol 2018; 221:jeb.175240. [DOI: 10.1242/jeb.175240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Understanding what drives animal decisions is fundamental in evolutionary biology, and mate choice decisions are arguably some of the most important decisions in any individual's life. As cognitive ability can impact decision-making, elucidating the link between mate choice and cognitive ability is necessary to fully understand mate choice. To experimentally study this link, we used guppies (Poecilia reticulata) artificially selected for divergence in relative brain size and with previously demonstrated differences in cognitive ability. A previous test in our female guppy selection lines demonstrated the impact of brain size and cognitive ability on information processing during female mate choice decisions. Here we evaluated the effect of brain size and cognitive ability on male mate choice decisions. Specifically, we investigated the preferences of large-brained, small-brained, and non-selected guppy males for female body size, a key indicator of female fecundity in this species. For this, male preferences were quantified in dichotomous choice tests when presented to dyads of females with small, medium and large body size differences. All types of males showed preference for larger females but no effect of brain size was found in the ability to discriminate between differently sized females. However, we found that non-selected and large-brained males, but not small-brained males, showed context-dependent preferences for larger females depending on the difference in female size. Our results have two important implications. First, they provide further evidence that male mate choice occurs also in a species in which secondary sexual ornamentation occurs only in males. Second, they show that brain size and cognitive ability have important effects on individual variation in mating preferences and sexually selected traits.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| |
Collapse
|
39
|
Duckworth RA, Potticary AL, Badyaev AV. On the Origins of Adaptive Behavioral Complexity: Developmental Channeling of Structural Trade-offs. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Kotrschal A, Szorkovszky A, Romenskyy M, Perna A, Buechel SD, Zeng HL, Pelckmans K, Sumpter D, Kolm N. Brain size does not impact shoaling dynamics in unfamiliar groups of guppies (Poecilia reticulata). Behav Processes 2017; 147:13-20. [PMID: 29248747 DOI: 10.1016/j.beproc.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
Abstract
Collective movement is achieved when individuals adopt local rules to interact with their neighbours. How the brain processes information about neighbours' positions and movements may affect how individuals interact in groups. As brain size can determine such information processing it should impact collective animal movement. Here we investigate whether brain size affects the structure and organisation of newly forming fish shoals by quantifying the collective movement of guppies (Poecilia reticulata) from large- and small-brained selection lines, with known differences in learning and memory. We used automated tracking software to determine shoaling behaviour of single-sex groups of eight or two fish and found no evidence that brain size affected the speed, group size, or spatial and directional organisation of fish shoals. Our results suggest that brain size does not play an important role in how fish interact with each other in these types of moving groups of unfamiliar individuals. Based on these results, we propose that shoal dynamics are likely to be governed by relatively basic cognitive processes that do not differ in these brain size selected lines of guppies.
Collapse
Affiliation(s)
| | | | - Maksym Romenskyy
- Department of Mathematics, Uppsala University, 75106, Uppsala, Sweden
| | - Andrea Perna
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Severine D Buechel
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| | - Hong-Li Zeng
- Department of Mathematics, Uppsala University, 75106, Uppsala, Sweden
| | | | - David Sumpter
- Department of Mathematics, Uppsala University, 75106, Uppsala, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
41
|
Kotrschal A, Zeng HL, van der Bijl W, Öhman-Mägi C, Kotrschal K, Pelckmans K, Kolm N. Evolution of brain region volumes during artificial selection for relative brain size. Evolution 2017; 71:2942-2951. [PMID: 28986929 DOI: 10.1111/evo.13373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/14/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Abstract
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.
Collapse
Affiliation(s)
| | - Hong-Li Zeng
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | | | | | - Kurt Kotrschal
- Department of Behavioural Biology, University of Vienna, Vienna, Austria.,Konrad Lorenz Forschungsstelle, University of Vienna, Vienna, Austria.,Wolf Science Center, University of Veterinary Medicine Vienna, Ernstbrunn, Austria
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Klefoth T, Skov C, Kuparinen A, Arlinghaus R. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection. Evol Appl 2017; 10:994-1006. [PMID: 29151855 PMCID: PMC5680629 DOI: 10.1111/eva.12504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp (Cyprinus carpio) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.
Collapse
Affiliation(s)
- Thomas Klefoth
- Department of Biology and Ecology of Fishes Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin Germany.,Angling Association of Lower Saxony (Anglerverband Niedersachsen e.V.) Hannover Germany
| | - Christian Skov
- National Institute of Aquatic Resources (DTU Aqua) Technical University of Denmark Silkeborg Denmark
| | - Anna Kuparinen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin Germany.,Faculty of Life Sciences Department for Crop and Animal Sciences Division of Integrative Fisheries Management Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
43
|
Lucon-Xiccato T, Griggio M. Shoal sex composition affects exploration in the Mediterranean killifish. Ethology 2017. [DOI: 10.1111/eth.12654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Matteo Griggio
- Dipartimento di Biologia; Università di Padova; Padova Italy
| |
Collapse
|
44
|
Sex composition modulates the effects of familiarity in new environment. Behav Processes 2017; 140:133-138. [DOI: 10.1016/j.beproc.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022]
|
45
|
Kareklas K, Elwood RW, Holland RA. Personality effects on spatial learning: Comparisons between visual conditions in a weakly electric fish. Ethology 2017. [DOI: 10.1111/eth.12629] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyriacos Kareklas
- School of Biological Sciences; Medical Biology Centre; Queen's University Belfast; Belfast UK
| | - Robert W. Elwood
- School of Biological Sciences; Medical Biology Centre; Queen's University Belfast; Belfast UK
| | | |
Collapse
|
46
|
Corral-López A, Bloch NI, Kotrschal A, van der Bijl W, Buechel SD, Mank JE, Kolm N. Female brain size affects the assessment of male attractiveness during mate choice. SCIENCE ADVANCES 2017; 3:e1601990. [PMID: 28345039 PMCID: PMC5362185 DOI: 10.1126/sciadv.1601990] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 05/23/2023]
Abstract
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Natasha I. Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Severine D. Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, U.K
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| |
Collapse
|
47
|
Agrillo C, Bisazza A. Understanding the origin of number sense: a review of fish studies. Philos Trans R Soc Lond B Biol Sci 2017; 373:20160511. [PMID: 29292358 PMCID: PMC5784038 DOI: 10.1098/rstb.2016.0511] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 02/02/2023] Open
Abstract
The ability to use quantitative information is thought to be adaptive in a wide range of ecological contexts. For nearly a century, the numerical abilities of mammals and birds have been extensively studied using a variety of approaches. However, in the last two decades, there has been increasing interest in investigating the numerical abilities of teleosts (i.e. a large group of ray-finned fish), mainly due to the practical advantages of using fish species as models in laboratory research. Here, we review the current state of the art in this field. In the first part, we highlight some potential ecological functions of numerical abilities in fish and summarize the existing literature that demonstrates numerical abilities in different fish species. In many cases, surprising similarities have been reported among the numerical performance of mammals, birds and fish, raising the question as to whether vertebrates' numerical systems have been inherited from a common ancestor. In the second part, we will focus on what we still need to investigate, specifically the research fields in which the use of fish would be particularly beneficial, such as the genetic bases of numerical abilities, the development of these abilities and the evolutionary foundation of vertebrate number sense.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, Padova 35131, Italy
| |
Collapse
|
48
|
Parolini M, Romano A, Possenti CD, Caprioli M, Rubolini D, Saino N. Contrasting effects of increased yolk testosterone content on development and oxidative status in gull embryos. J Exp Biol 2017; 220:625-633. [DOI: 10.1242/jeb.145235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Hormone-mediated maternal effects generate variation in offspring phenotype. In birds, maternal egg testosterone (T) exerts differential effects on offspring traits after hatching, suggesting that mothers experience a trade-off between contrasting T effects. However, there is very little information on T pre-natal effects. In the yellow-legged gull (Larus michahellis), we increased yolk T concentration within physiological limits and measured the effects on development and oxidative status of late-stage embryos. T-treated embryos had a larger body size but a smaller brain than controls. Males had a larger brain than females, controlling for overall size. T treatment differentially affected brain mass and total amount of pro-oxidants in the brain depending on laying order. T-treatment effects were not sex dependent. For the first time in the wild, we show contrasting T pre-natal effects on body mass and brain size. Hence, T may enforce trade-offs between different embryonic traits, but also within the same trait during different developmental periods.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Andrea Romano
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | | | - Manuela Caprioli
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| | - Nicola Saino
- Department of Biosciences, University of Milan, via Celoria 26, Milan I-20133, Italy
| |
Collapse
|
49
|
Lucon-Xiccato T, Bisazza A. Individual differences in cognition among teleost fishes. Behav Processes 2017; 141:184-195. [PMID: 28126389 DOI: 10.1016/j.beproc.2017.01.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Individual differences in cognitive abilities have been thoroughly investigated in humans and to a lesser extent in other mammals. Despite the growing interest in studying cognition in other taxonomic groups, data on individual differences are scarce for non-mammalian species. Here, we review the literature on individual differences in cognitive abilities in teleost fishes. Relatively few studies have directly addressed this topic and have provided evidence of consistent and heritable individual variation in cognitive abilities in fish. We found much more evidence of individual cognitive differences in other research areas, namely sex differences, personality differences, cerebral lateralisation and comparison between populations. Altogether, these studies suggest that individual differences in cognition are as common in fish as in warm-blooded vertebrates. Based on the example of research on mammals, we suggest directions for future investigation in fish.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
50
|
Symonds MRE, Weston MA, van Dongen WFD, Lill A, Robinson RW, Guay PJ. Time Since Urbanization but Not Encephalisation Is Associated with Increased Tolerance of Human Proximity in Birds. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|