1
|
Zeb U, Aziz T, Azizullah A, Zan XY, Khan AA, Bacha SAS, Cui FJ. Complete mitochondrial genomes of edible mushrooms: features, evolution, and phylogeny. PHYSIOLOGIA PLANTARUM 2024; 176:e14363. [PMID: 38837786 DOI: 10.1111/ppl.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 06/07/2024]
Abstract
Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.
Collapse
Affiliation(s)
- Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, PR China
| | - Azizullah Azizullah
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Asif Ali Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Syed Asim Shah Bacha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
2
|
Hope AG, Headlee KM, Olson ZH, Wiens BJ. Systematics, biogeography and phylogenomics of northern bog lemmings (Cricetidae), cold-temperate rodents of conservation concern under global change. SYST BIODIVERS 2023; 21:2237050. [PMID: 38523662 PMCID: PMC10959253 DOI: 10.1080/14772000.2023.2237050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Northern bog lemmings, Mictomys (Synaptomys) borealis, are currently being assessed for protections under the U.S. Endangered Species Act. A major impediment to comprehensive evaluation is a deficiency of data towards understanding the biology of these rodents. Inherent rarity and scarce specimen sampling, despite a continent-wide distribution, has precluded our ability to implement modern methods for resolving taxonomy, evolutionary history, and investigating multiple other species traits. Here we use a maternally inherited locus (mitochondrial cytochrome b) and between 5,939 and 11,513 nuclear loci from reduced representation sequencing (ddRADseq) to investigate the evolutionary history of northern bog lemmings. We 1) qualify evidence based on morphological and early molecular studies for the genus assignment of Mictomys, 2) test the validity of multiple sub-species designations, 3) provide spatial and temporal historical biogeographic perspectives, and 4) discuss how incomplete sampling might influence conservation efforts. Both mitochondrial and nuclear datasets exhibit deep divergence and paraphyly between two recognized species, the northern (Mictomys borealis) and southern (Synaptomys cooperi) bog lemmings. Based on mtDNA, the geographically isolated subspecies (M. b. sphagnicola) was found to be divergent from all other specimens. The remainder of the species exhibited shallow intra-specific differentiation in mtDNA, however nuclear data supports genetic distinction consistent with four geographic subspecies. Recent coalescence of all northern bog lemmings (except for M. b. sphagnicola) reflects divergence in multiple refugia through the last glacial cycle, including a well-known coastal center of endemism and multiple regions south of continental ice-sheets. Regional lineages across North America suggest strong latitudinal displacement with global climate change, coupled with isolation-reconnection dynamics. This taxon suffers from a lack of modern samples through most of its distribution, severely limiting interpretation of ongoing evolutionary processes, particularly in southern portions of the species' range. Limited voucher specimen sampling of vulnerable populations could aid in rigorous conservation decision-making.
Collapse
Affiliation(s)
- Andrew G Hope
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kaitlyn M Headlee
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Zachary H Olson
- School of Social and Behavioral Science, University of New England, Biddeford, Maine 04005, USA
| | - Ben J Wiens
- Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
3
|
Miller EF, Green RE, Balmford A, Maisano Delser P, Beyer R, Somveille M, Leonardi M, Amos W, Manica A. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Mol Ecol 2021; 30:3993-4004. [PMID: 34152661 DOI: 10.1111/mec.16032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species Distribution Models (SDMs), which allow us to back-cast the range occupied by a species based on its climatic preferences. In this paper, we contrast these two approaches by applying them to a large data set of 102 Holarctic bird species, for which both mitochondrial DNA sequences and distribution maps are available, to reconstruct their dynamics since the Last Glacial Maximum (LGM). Most species experienced an increase in effective population size (Ne , as estimated by BSPs) as well as an increase in geographical range (as reconstructed by SDMs) since the LGM; however, we found no correlation between the magnitude of changes in Ne and range size. The only clear signal we could detect was a later and greater increase in Ne for wetland birds compared to species that live in other habitats, a probable consequence of a delayed and more extensive increase in the extent of this habitat type after the LGM. The lack of correlation between SDM and BSP reconstructions could not be reconciled even when range shifts were considered. We suggest that this pattern might be linked to changes in population densities, which can be independent of range changes, and caution that interpreting either SDMs or BSPs independently is problematic and potentially misleading.
Collapse
Affiliation(s)
| | - Rhys E Green
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrew Balmford
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Robert Beyer
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Krejsa DM, Talbot SL, Sage GK, Sonsthagen SA, Jung TS, Magoun AJ, Cook JA. Dynamic landscapes in northwestern North America structured populations of wolverines (Gulo gulo). J Mammal 2021. [DOI: 10.1093/jmammal/gyab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Cyclic climatic and glacial fluctuations of the Late Quaternary produced a dynamic biogeographic history for high latitudes. To refine our understanding of this history in northwestern North America, we explored geographic structure in a wide-ranging carnivore, the wolverine (Gulo gulo). We examined genetic variation in populations across mainland Alaska, coastal Southeast Alaska, and mainland western Canada using nuclear microsatellite genotypes and sequence data from the mitochondrial DNA (mtDNA) control region and Cytochrome b (Cytb) gene. Data from maternally inherited mtDNA reflect stable populations in Northwest Alaska, suggesting the region harbored wolverine populations since at least the Last Glacial Maximum (LGM; 21 Kya), consistent with their persistence in the fossil record of Beringia. Populations in Southeast Alaska are characterized by minimal divergence, with no genetic signature of long-term refugial persistence (consistent with the lack of pre-Holocene fossil records there). The Kenai Peninsula population exhibits mixed signatures depending on marker type: mtDNA data indicate stability (i.e., historical persistence) and include a private haplotype, whereas biparentally inherited microsatellites exhibit relatively low variation and a lack of private alleles consistent with a more recent Holocene colonization of the peninsula. Our genetic work is largely consistent with the early 20th century taxonomic hypothesis that wolverines on the Kenai Peninsula belong to a distinct subspecies. Our finding of significant genetic differentiation of wolverines inhabiting the Kenai Peninsula, coupled with the peninsula’s burgeoning human population and the wolverine’s known sensitivity to anthropogenic impacts, provides valuable foundational data that can be used to inform conservation and management prescriptions for wolverines inhabiting these landscapes.
Collapse
Affiliation(s)
- Dianna M Krejsa
- Department of Biology and Angelo State Natural History Collections, Angelo State University, ASU Station 10890, San Angelo, TX 76909-0890, USA
| | - Sandra L Talbot
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - George K Sage
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | | | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Y1A 2C6, Canada
| | - Audrey J Magoun
- Wildlife Research and Management, 3680 Non Road, Fairbanks, AK 99709, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Miller EF, Manica A. mtDNAcombine: tools to combine sequences from multiple studies. BMC Bioinformatics 2021; 22:115. [PMID: 33750296 PMCID: PMC7945669 DOI: 10.1186/s12859-021-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Today an unprecedented amount of genetic sequence data is stored in publicly available repositories. For decades now, mitochondrial DNA (mtDNA) has been the workhorse of genetic studies, and as a result, there is a large volume of mtDNA data available in these repositories for a wide range of species. Indeed, whilst whole genome sequencing is an exciting prospect for the future, for most non-model organisms' classical markers such as mtDNA remain widely used. By compiling existing data from multiple original studies, it is possible to build powerful new datasets capable of exploring many questions in ecology, evolution and conservation biology. One key question that these data can help inform is what happened in a species' demographic past. However, compiling data in this manner is not trivial, there are many complexities associated with data extraction, data quality and data handling. RESULTS Here we present the mtDNAcombine package, a collection of tools developed to manage some of the major decisions associated with handling multi-study sequence data with a particular focus on preparing sequence data for Bayesian skyline plot demographic reconstructions. CONCLUSIONS There is now more genetic information available than ever before and large meta-data sets offer great opportunities to explore new and exciting avenues of research. However, compiling multi-study datasets still remains a technically challenging prospect. The mtDNAcombine package provides a pipeline to streamline the process of downloading, curating, and analysing sequence data, guiding the process of compiling data sets from the online database GenBank.
Collapse
Affiliation(s)
- Eleanor F Miller
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
6
|
Raspopova AA, Bannikova AA, Sheftel BI, Kryštufek B, Kouptsov AV, Illarionova NA, Pavlova SV, Lebedev VS. A never-ending story of the common shrew: searching for the origin. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00498-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Lynch LM. Fossil Calibration of Mitochondrial Phylogenetic Relationships of North American Pine Martens, Martes, Suggests an Older Divergence of M. americana and M. caurina than Previously Hypothesized. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09476-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Merwe M, Yap JS, Bragg JG, Cristofolini C, Foster CSP, Ho SYW, Rossetto M. Assemblage accumulation curves: A framework for resolving species accumulation in biological communities using DNA sequences. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marlien Merwe
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Jia‐Yee S. Yap
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Queensland Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Caroline Cristofolini
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
| | - Charles S. P. Foster
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales Royal Botanic Garden Sydney Sydney New South Wales Australia
- Queensland Alliance of Agriculture and Food Innovation University of Queensland Brisbane Queensland Australia
| |
Collapse
|
9
|
Implications of introgression for wildlife translocations: the case of North American martens. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Barbosa S, Paupério J, Herman JS, Ferreira CM, Pita R, Vale-Gonçalves HM, Cabral JA, Garrido-García JA, Soriguer RC, Beja P, Mira A, Alves PC, Searle JB. Endemic species may have complex histories: within-refugium phylogeography of an endangered Iberian vole. Mol Ecol 2017; 26:951-967. [DOI: 10.1111/mec.13994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- S. Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Department of Ecology and Evolutionary Biology; Corson Hall, Cornell University; Ithaca NY 14853-2701 USA
| | - J. Paupério
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
| | - J. S. Herman
- Department of Natural Sciences; National Museums Scotland; Chambers Street Edinburgh EH1 1JF UK
| | - C. M. Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
| | - R. Pita
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade de Évora; 7000-890 Évora Portugal
| | - H. M. Vale-Gonçalves
- CITAB, Centro de Investigação e Tecnologias Agroambientais e Biológicas; Universidade de Trás-os-Montes e Alto Douro (UTAD); 5001-801 Vila Real Portugal
| | - J. A. Cabral
- CITAB, Centro de Investigação e Tecnologias Agroambientais e Biológicas; Universidade de Trás-os-Montes e Alto Douro (UTAD); 5001-801 Vila Real Portugal
| | - J. A. Garrido-García
- Estación Biológica de Doñana (CSIC); Avda Américo Vespucio s/n, Isla de la Cartuja 41092 Sevilla Spain
| | - R. C. Soriguer
- Estación Biológica de Doñana (CSIC); Avda Américo Vespucio s/n, Isla de la Cartuja 41092 Sevilla Spain
| | - P. Beja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - A. Mira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade de Évora; 7000-890 Évora Portugal
| | - P. C. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM); 13005 Ciudad Real Spain
| | - J. B. Searle
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO Laboratório Associado; Universidade do Porto; 4485-661 Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
- Department of Ecology and Evolutionary Biology; Corson Hall, Cornell University; Ithaca NY 14853-2701 USA
| |
Collapse
|
11
|
Satler JD, Carstens BC. Phylogeographic concordance factors quantify phylogeographic congruence among co-distributed species in the Sarracenia alata pitcher plant system. Evolution 2016; 70:1105-19. [PMID: 27076412 DOI: 10.1111/evo.12924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 12/18/2022]
Abstract
Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research.
Collapse
Affiliation(s)
- Jordan D Satler
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, 43210.
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
12
|
Hope AG, Malaney JL, Bell KC, Salazar-Miralles F, Chavez AS, Barber BR, Cook JA. Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Mol Phylogenet Evol 2016; 100:170-182. [PMID: 27083861 DOI: 10.1016/j.ympev.2016.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/27/2022]
Abstract
Integration of molecular methods, ecological modeling, and statistical hypothesis testing are increasing our understanding of differentiation within species and phylogenetic relationships among species by revealing environmental connections to evolutionary processes. Within mammals, novel diversity is being discovered and characterized as more complete geographic sampling is coupled with newer multi-disciplinary approaches. North American red squirrels exemplify a forest obligate genus whose species are monitored as indicators of forest ecosystem condition, yet phylogenetic relationships reflecting evolutionary history within this genus remain tentative. Through testing of competing systematic and niche-based divergence hypotheses, we recognize three species, Tamiasciurus douglasii, T. hudsonicus, and T. fremonti. Our data provide evidence of regional differences in evolutionary dynamics and continental gradients of complexity that are important both for future management and for investigating multiple pathways that can lead to the formation of new species.
Collapse
Affiliation(s)
- Andrew G Hope
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Jason L Malaney
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA.
| | - Kayce C Bell
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Fernando Salazar-Miralles
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA.
| | - Brian R Barber
- Biodiversity Institute, University of Wyoming, Laramie, WY 82071, USA.
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Satler JD, Zellmer AJ, Carstens BC. Biogeographic barriers drive co-diversification within associated eukaryotes of the Sarracenia alata pitcher plant system. PeerJ 2016; 4:e1576. [PMID: 26788436 PMCID: PMC4715430 DOI: 10.7717/peerj.1576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022] Open
Abstract
Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.
Collapse
Affiliation(s)
- Jordan D Satler
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH , United States
| | - Amanda J Zellmer
- Department of Biology, Occidental College , Los Angeles, CA , United States
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH , United States
| |
Collapse
|
14
|
Hope AG, Waltari E, Malaney JL, Payer DC, Cook JA, Talbot SL. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 2015. [DOI: 10.1890/es15-00104.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Ho SYW, Tong KJ, Foster CSP, Ritchie AM, Lo N, Crisp MD. Biogeographic calibrations for the molecular clock. Biol Lett 2015; 11:20150194. [PMID: 26333662 PMCID: PMC4614420 DOI: 10.1098/rsbl.2015.0194] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 11/12/2022] Open
Abstract
Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.
Collapse
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - K Jun Tong
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S P Foster
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew M Ritchie
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Nathan Lo
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael D Crisp
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Giarla TC, Jansa SA. The impact of Quaternary climate oscillations on divergence times and historical population sizes inThylamysopossums from the Andes. Mol Ecol 2015; 24:2495-506. [DOI: 10.1111/mec.13173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas C. Giarla
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul MN 55108 USA
- J.F. Bell Museum of Natural History; University of Minnesota; St. Paul MN 55108 USA
| | - Sharon A. Jansa
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul MN 55108 USA
- J.F. Bell Museum of Natural History; University of Minnesota; St. Paul MN 55108 USA
| |
Collapse
|
17
|
Stojak J, McDevitt AD, Herman JS, Searle JB, Wójcik JM. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common voleMicrotus arvalis. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12535] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Joanna Stojak
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
| | - Allan D. McDevitt
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; 3000 Leuven Belgium
| | - Jeremy S. Herman
- Department of Natural Sciences; National Museums Scotland; Edinburgh EH1 1JF UK
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853-2701 USA
| | - Jan M. Wójcik
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
| |
Collapse
|
18
|
Peacock E, Sonsthagen SA, Obbard ME, Boltunov A, Regehr EV, Ovsyanikov N, Aars J, Atkinson SN, Sage GK, Hope AG, Zeyl E, Bachmann L, Ehrich D, Scribner KT, Amstrup SC, Belikov S, Born EW, Derocher AE, Stirling I, Taylor MK, Wiig Ø, Paetkau D, Talbot SL. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic. PLoS One 2015; 10:e112021. [PMID: 25562525 PMCID: PMC4285400 DOI: 10.1371/journal.pone.0112021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.
Collapse
Affiliation(s)
- Elizabeth Peacock
- Alaska Science Center, US Geological Survey, Anchorage, Alaska, United States of America
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
- * E-mail:
| | - Sarah A. Sonsthagen
- Alaska Science Center, US Geological Survey, Anchorage, Alaska, United States of America
| | - Martyn E. Obbard
- Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
| | - Andrei Boltunov
- All-Russian Research Institute for Nature Protection, Moscow, Russian Federation
| | - Eric V. Regehr
- US Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, United States of America
| | | | - Jon Aars
- Norwegian Polar Institute, Tromsø, Norway
| | | | - George K. Sage
- Alaska Science Center, US Geological Survey, Anchorage, Alaska, United States of America
| | - Andrew G. Hope
- Alaska Science Center, US Geological Survey, Anchorage, Alaska, United States of America
| | - Eve Zeyl
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Kim T. Scribner
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - Steven C. Amstrup
- Polar Bears International, Bozeman, Montana, United States of America
| | - Stanislav Belikov
- All-Russian Research Institute for Nature Protection, Moscow, Russian Federation
| | - Erik W. Born
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | - Andrew E. Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ian Stirling
- Science & Technology Branch, Environment Canada, Edmonton, Alberta, Canada
| | - Mitchell K. Taylor
- Faculty of Science and Environmental Studies, Lakehead University, Thunder Bay, Ontario, Canada
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - David Paetkau
- Wildlife Genetics International, Nelson, British Columbia, Canada
| | - Sandra L. Talbot
- Alaska Science Center, US Geological Survey, Anchorage, Alaska, United States of America
| |
Collapse
|
19
|
Avitia M, Escalante AE, Rebollar EA, Moreno-Letelier A, Eguiarte LE, Souza V. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence. PeerJ 2014; 2:e696. [PMID: 25548732 PMCID: PMC4273935 DOI: 10.7717/peerj.696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/22/2014] [Indexed: 01/19/2023] Open
Abstract
Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas) that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1) performed comparative phylogenetic analyses, (2) described the genetic structure of bacterial populations, (3) calculated descriptive parameters of genetic diversity, (4) performed neutrality tests, and (5) conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes.
Collapse
Affiliation(s)
- Morena Avitia
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Ana E Escalante
- Departamento de Ecología de la Biodiversidad, Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Eria A Rebollar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México ; Biology Department, James Madison University , Harrisonburg VA , USA
| | | | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México , México DF , México
| |
Collapse
|