1
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. Genetics 2024; 228:iyae160. [PMID: 39373582 PMCID: PMC11631397 DOI: 10.1093/genetics/iyae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024] Open
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R Longan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
2
|
Longan ER, Fay JC. The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597243. [PMID: 38895255 PMCID: PMC11185594 DOI: 10.1101/2024.06.03.597243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus, has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast represents a case of apparent evolutionary constraints favoring greater adaptive capacity in S. cerevisiae. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants isolated from our screen. We found that the distributions of mutational effects displayed by the two species were very similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a single de novo duplication of the CUP1 gene in S. paradoxus but none in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger average effects in S. paradoxus. Our results show that even when the distributions of mutational effects are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
3
|
Wang JJT, Steenwyk JL, Brem RB. Natural trait variation across Saccharomycotina species. FEMS Yeast Res 2024; 24:foae002. [PMID: 38218591 PMCID: PMC10833146 DOI: 10.1093/femsyr/foae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024] Open
Abstract
Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for what they have in common-genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals. But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences. In this review, we discuss traits that vary across the Saccharomycotina subphylum. We describe cases of bright pigmentation; a zoo of cell shapes; metabolic specialties; and species with unique rules of gene regulation. We discuss the genetics of this diversity and why it matters, including insights into basic evolutionary principles with relevance across Eukarya.
Collapse
Affiliation(s)
- Johnson J -T Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Fay JC, Alonso-del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces Species' Heat Shock Response Is Indicative of Their Thermal Tolerance. Genome Biol Evol 2023; 15:evad207. [PMID: 37972247 PMCID: PMC10683043 DOI: 10.1093/gbe/evad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature, we measured changes in gene expression in response to a 12 °C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families, we sequenced, assembled, and annotated a complete S. uvarum genome. In response to heat, the cryophilic species showed a stronger stress response than the thermophilic species, and the hybrids showed a mixture of parental responses that depended on the time point. After an initial strong response indicative of high thermal stress, hybrids with a thermophilic parent resolved their heat shock response to become similar to their thermophilic parent. Within the hybrids, only a small number of temperature-responsive genes showed consistent differences between alleles from the thermophilic and cryophilic species. Our results show that divergence in the heat shock response is mainly a consequence of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat-induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Javier Alonso-del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| |
Collapse
|
5
|
Postaru M, Tucaliuc A, Cascaval D, Galaction AI. Cellular Stress Impact on Yeast Activity in Biotechnological Processes-A Short Overview. Microorganisms 2023; 11:2522. [PMID: 37894181 PMCID: PMC10609598 DOI: 10.3390/microorganisms11102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of Saccharomyces cerevisiae yeast cells is known worldwide, as they are the most used microorganisms in biotechnology for bioethanol and biofuel production. Also, they are analyzed and studied for their similar internal biochemical processes to human cells, for a better understanding of cell aging and response to cell stressors. The special ability of S. cerevisiae cells to develop in both aerobic and anaerobic conditions makes this microorganism a viable model to study the transformations and the way in which cellular metabolism is directed to face the stress conditions due to environmental changes. Thus, this review will emphasize the effects of oxidative, ethanol, and osmotic stress and also the physiological and genetic response of stress mitigation in yeast cells.
Collapse
Affiliation(s)
- Madalina Postaru
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Anca-Irina Galaction
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| |
Collapse
|
6
|
Fay JC, Alonso-Del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces species' heat shock response is indicative of their thermal tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547718. [PMID: 37461527 PMCID: PMC10349932 DOI: 10.1101/2023.07.04.547718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both S. cerevisiae and S. paradoxus grow at temperatures well above the maximum growth temperature of S. kudriavzevii and S. uvarum, but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature we measured changes in gene expression in response to a 12°C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families we sequenced, assembled and annotated a complete S. uvarum genome. All the strains exhibited a stronger response to heat than cold treatment. In response to heat, the cryophilic species showed a stronger response than the thermophilic species. The hybrids showed a mixture of parental stress responses depending on the time point. After the initial response, hybrids with a thermophilic parent were more similar to S. cerevisiae and S. paradoxus, and the S. cerevisiae × S. paradoxus hybrid showed the weakest heat shock response. Within the hybrids a small subset of temperature responsive genes showed species specific responses but most were also hybrid specific. Our results show that divergence in the heat shock response is indicative of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Javier Alonso-Del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
- Present position: Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
| |
Collapse
|
7
|
Contreras-Ruiz A, Alonso-del-Real J, Barrio E, Querol A. Saccharomyces cerevisiae wine strains show a wide range of competitive abilities and differential nutrient uptake behavior in co-culture with S. kudriavzevii. Food Microbiol 2023. [DOI: 10.1016/j.fm.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Abrams MB, Brem RB. Temperature-dependent genetics of thermotolerance between yeast species. Front Ecol Evol 2022; 10:859904. [PMID: 36911365 PMCID: PMC10004143 DOI: 10.3389/fevo.2022.859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered an enrichment of low-frequency variants at thermotolerance loci in S. cerevisiae population sequences, suggestive of a history of non-neutral selective forces acting at these genes. We interpret these results in light of models of the evolutionary mechanisms by which the thermotolerance trait arose in the S. cerevisiae lineage. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.
Collapse
Affiliation(s)
- Melanie B. Abrams
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| | - Rachel B. Brem
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| |
Collapse
|
9
|
Roullier-Gall C, Bordet F, David V, Schmitt-Kopplin P, Alexandre H. Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chem 2021; 374:131732. [PMID: 34875436 DOI: 10.1016/j.foodchem.2021.131732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
It is of great importance to understand the molecular characteristics and substantial chemical transformations due to yeast-yeast interaction. Non-targeted metabolomics was used to unravel must in fermentation composition, inoculated with non-Saccharomyces (NS) yeasts and Saccharomyces cerevisiae (S) for sequential fermentation. ultrahigh-resolution mass spectrometry was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms. Among the modifications observed, metabolomic unravels deep changes in nitrogen metabolism due to yeast-yeast interactions and suggests that the redistribution pattern affects two different routes, the pentose phosphate and the amino acid synthesis pathways.
Collapse
Affiliation(s)
- C Roullier-Gall
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France.
| | - F Bordet
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - V David
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - P Schmitt-Kopplin
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - H Alexandre
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| |
Collapse
|
10
|
AlZaben F, Chuong JN, Abrams MB, Brem RB. Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genet 2021; 17:e1009793. [PMID: 34520469 PMCID: PMC8462698 DOI: 10.1371/journal.pgen.1009793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/24/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
A central goal of evolutionary genetics is to understand, at the molecular level, how organisms adapt to their environments. For a given trait, the answer often involves the acquisition of variants at unlinked sites across the genome. Genomic methods have achieved landmark successes in pinpointing these adaptive loci. To figure out how a suite of adaptive alleles work together, and to what extent they can reconstitute the phenotype of interest, requires their transfer into an exogenous background. We studied the joint effect of adaptive, gain-of-function thermotolerance alleles at eight unlinked genes from Saccharomyces cerevisiae, when introduced into a thermosensitive sister species, S. paradoxus. Although the loci damped each other’s beneficial impact (that is, they were subject to negative epistasis), most boosted high-temperature growth alone and in combination, and none was deleterious. The complete set of eight genes was sufficient to confer ~15% of the S. cerevisiae thermotolerance phenotype in the S. paradoxus background. The same loci also contributed to a heretofore unknown advantage in cold growth by S. paradoxus. Together, our data establish temperature resistance in yeasts as a model case of a genetically complex evolutionary tradeoff, which can be partly reconstituted from the sequential assembly of unlinked underlying loci. Organisms adapt to threats in the environment by acquiring DNA sequence variants that tweak traits to improve fitness. Experimental studies of this process have proven to be a particular challenge when they involve manipulation of a suite of genes, all on different chromosomes. We set out to understand how so many loci could work together to confer a trait. We used as a model system eight genes that govern the ability of the unicellular yeast Saccharomyces cerevisiae to grow at high temperature. We introduced these variant loci stepwise into a non-thermotolerant sister species, and found that the more S. cerevisiae alleles we added, the better the phenotype. We saw no evidence for toxic interactions between the genes as they were combined. We also used the eight-fold transgenic to dissect the biological mechanism of thermotolerance. And we discovered a tradeoff: the same alleles that boosted growth at high temperature eroded the organism’s ability to deal with cold conditions. These results serve as a case study of modular construction of a trait from nature, by assembling the genes together in one genome.
Collapse
Affiliation(s)
- Faisal AlZaben
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Julie N. Chuong
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Melanie B. Abrams
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
12
|
Abstract
Bioethanol is the largest biotechnology product and the most dominant biofuel globally. Saccharomyces cerevisiae is the most favored microorganism employed for its industrial production. However, obtaining maximum yields from an ethanol fermentation remains a technical challenge, since cellular stresses detrimentally impact on the efficiency of yeast cell growth and metabolism. Ethanol fermentation stresses potentially include osmotic, chaotropic, oxidative, and heat stress, as well as shifts in pH. Well-developed stress responses and tolerance mechanisms make S. cerevisiae industrious, with bioprocessing techniques also being deployed at industrial scale for the optimization of fermentation parameters and the effective management of inhibition issues. Overlap exists between yeast responses to different forms of stress. This review outlines yeast fermentation stresses and known mechanisms conferring stress tolerance, with their further elucidation and improvement possessing the potential to improve fermentation efficiency.
Collapse
|
13
|
Shekhawat K, Bauer FF, Setati ME. The transcriptomic response of a wine strain of Lachancea thermotolerans to oxygen deprivation. FEMS Yeast Res 2020; 20:5909970. [PMID: 32960268 DOI: 10.1093/femsyr/foaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/20/2020] [Indexed: 11/14/2022] Open
Abstract
The yeast Lachancea thermotolerans is of significant biotechnological interest, and selected strains of this species have become commonly used starter cultures in wine fermentation. However, the impact of this species on wine is frequently limited by the rapid dominance of Saccharomyces cerevisiae strains which are better adapted to wine alcoholic fermentation conditions. Previous studies have shown that the major limiting factor for L. thermotolerans competitive performance in the wine ecosystem is oxygen availability, and not ethanol levels as had been previously suggested. Here we investigated the transcriptional response of L. thermotolerans to anaerobiosis in wine fermentation conditions. The data show that L. thermotolerans broadly redirects gene expression towards genes involved in central carbon metabolism, lipid metabolism, remodeling of the cell wall as well as autophagy. Furthermore, the induction of genes that are likely involved in the generation of lactate indicates a redirection of metabolic flux towards this metabolite. The data provide the first insight into the oxygen-dependent response of L. thermotolerans and suggest potential genetic targets to improve lactate production and/or anaerobic fermentation performance of this yeast.
Collapse
Affiliation(s)
- Kirti Shekhawat
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| | - Florian F Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| |
Collapse
|
14
|
Mullis A, Lu Z, Zhan Y, Wang TY, Rodriguez J, Rajeh A, Chatrath A, Lin Z. Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and Its Adaptive Significance. Mol Biol Evol 2020; 37:455-468. [PMID: 31589316 PMCID: PMC6993855 DOI: 10.1093/molbev/msz229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78–80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.
Collapse
Affiliation(s)
- Alison Mullis
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ahmad Rajeh
- Department of Biology, Saint Louis University, St. Louis, MO.,Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO
| | - Ajay Chatrath
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO
| |
Collapse
|
15
|
Velázquez R, Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Hernández LM, Ramírez M. Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO 2, Ethanol, and High CO 2 Pressure. Microorganisms 2020; 8:E1372. [PMID: 32906752 PMCID: PMC7564342 DOI: 10.3390/microorganisms8091372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
The use of Torulaspora delbrueckii has been repeatedly proposed to improve a wine's organoleptic quality. This yeast has lower efficiency in completing wine fermentation than Saccharomyces cerevisiae since it has less fermentation capability and greater sensitivity to SO2, ethanol, and CO2 pressure. Therefore, the completion of fermentation is not guaranteed when must or wine is single-inoculated with T. delbrueckii. To solve this problem, new strains of T. delbrueckii with enhanced resistance to winemaking conditions were obtained. A genetic study of four wine T. delbrueckii strains was carried out. Spore clones free of possible recessive growth-retarding alleles were obtained from these yeasts. These spore clones were used to successively isolate mutants resistant to SO2, then those resistant to ethanol, and finally those resistant to high CO2 pressure. Most of these mutants showed better capability for base wine fermentation than the parental strain, and some of them approached the fermentation capability of S. cerevisiae. The genetic stability of the new mutants was good enough to be used in industrial-level production in commercial wineries. Moreover, their ability to ferment sparkling wine could be further improved by the continuous addition of oxygen in the culture adaptation stage prior to base wine inoculation.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - María L. Álvarez
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Luis M. Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| |
Collapse
|
16
|
Zhu LX, Wang GQ, Aihaiti A. Combined indigenous yeast strains produced local wine from over ripen Cabernet Sauvignon grape in Xinjiang. World J Microbiol Biotechnol 2020; 36:122. [DOI: 10.1007/s11274-020-02831-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
|
17
|
Nespolo RF, Solano‐Iguaran JJ, Paleo‐López R, Quintero‐Galvis JF, Cubillos FA, Bozinovic F. Performance, genomic rearrangements, and signatures of adaptive evolution: Lessons from fermentative yeasts. Ecol Evol 2020; 10:5240-5250. [PMID: 32607147 PMCID: PMC7319171 DOI: 10.1002/ece3.6208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/20/2020] [Indexed: 01/27/2023] Open
Abstract
The capacity of some yeasts to extract energy from single sugars, generating CO2 and ethanol (=fermentation), even in the presence of oxygen, is known as the Crabtree effect. This phenomenon represents an important adaptation as it allowed the utilization of the ecological niche given by modern fruits, an abundant source of food that emerged in the terrestrial environment in the Cretaceous. However, identifying the evolutionary events that triggered fermentative capacity in Crabtree-positive species is challenging, as microorganisms do not leave fossil evidence. Thus, key innovations should be inferred based only on traits measured under culture conditions. Here, we reanalyzed data from a common garden experiment where several proxies of fermentative capacity were recorded in Crabtree-positive and Crabtree-negative species, representing yeast phylogenetic diversity. In particular, we applied the "lasso-OU" algorithm which detects points of adaptive shifts, using traits that are proxies of fermentative performance. We tested whether multiple events or a single event explains the actual fermentative capacity of yeasts. According to the lasso-OU procedure, evolutionary changes in the three proxies of fermentative capacity that we considered (i.e., glycerol production, ethanol yield, and respiratory quotient) are consistent with a single evolutionary episode (a whole-genomic duplication, WGD), instead of a series of small genomic rearrangements. Thus, the WGD appears as the key event behind the diversification of fermentative yeasts, which by increasing gene dosage, and maximized their capacity of energy extraction for exploiting the new ecological niche provided by single sugars.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES)Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | | | - Rocío Paleo‐López
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de BiologíaFacultad de Química y BiologíaUniversidad de Santiago de 9 ChileSantiagoChile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES)Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
| |
Collapse
|
18
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
19
|
Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans. FEMS Microbiol Ecol 2019; 95:5550729. [DOI: 10.1093/femsec/fiz126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/14/2019] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT
The response of Saccharomyces cerevisiae to cocultivation with Lachancea thermotolerans during alcoholic fermentations has been investigated using tandem mass tag (TMT)-based proteomics. At two key time-points, S. cerevisiae was sorted from single S. cerevisiae fermentations and from mixed fermentations using flow cytometry sorting. Results showed that the purity of sorted S. cerevisiae was above 96% throughout the whole mixed-culture fermentation, thereby validating our sorting methodology. By comparing protein expression of S. cerevisiae with and without L. thermotolerans, 26 proteins were identified as significantly regulated proteins at the early death phase (T1), and 32 significantly regulated proteins were identified at the late death phase (T2) of L. thermotolerans in mixed cultures. At T1, proteins involved in endocytosis, increasing nutrient availability, cell rescue and resistance to stresses were upregulated, and proteins involved in proline synthesis and apoptosis were downregulated. At T2, proteins involved in protein synthesis and stress responses were up- and downregulated, respectively. These data indicate that S. cerevisiae was stressed by the presence of L. thermotolerans at T1, using both defensive and fighting strategies to keep itself in a dominant position, and that it at T2 was relieved from stress, perhaps increasing its enzymatic machinery to ensure better survival.
Collapse
|
20
|
Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ Microbiol 2019; 21:1627-1644. [PMID: 30672093 DOI: 10.1111/1462-2920.14536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
21
|
Superior Dispersal Ability Can Lead to Persistent Ecological Dominance throughout Succession. Appl Environ Microbiol 2019; 85:AEM.02421-18. [PMID: 30635382 PMCID: PMC6414377 DOI: 10.1128/aem.02421-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments. A large number of descriptive surveys have shown that microbial communities experience successional changes over time and that ecological dominance is common in the microbial world. However, direct evidence for the ecological processes mediating succession or causing ecological dominance remains rare. Different dispersal abilities among species may be a key mechanism. We surveyed fungal diversity within a metacommunity of pitchers of the model carnivorous plant Sarracenia purpurea and discovered that the yeast Candida pseudoglaebosa was ecologically dominant. Its frequency in the metacommunity increased during the growing season, and it was not replaced by other taxa. We next measured its competitive ability in a manipulative laboratory experiment and tracked its dispersal over time in nature. Despite its dominance, C. pseudoglaebosa is not a superior competitor. Instead, it is a superior disperser: it arrives in pitchers earlier, and disperses into more pitchers, than other fungi. Differential dispersal across the spatially structured metacommunity of individual pitchers emerges as a key driver of the continuous dominance of C. pseudoglaebosa during succession. IMPORTANCE Microbial communities are ubiquitous and occupy nearly every imaginable habitat and resource, including human-influenced habitats (e.g., fermenting food and hospital surfaces) and habitats with little human influence (e.g., aquatic communities living in carnivorous plant pitchers). We studied yeast communities living in pitchers of the carnivorous purple pitcher plant to understand how and why microbial communities change over time. We found that dispersal ability is not only important for fungal communities early in their existence, it can also determine which species is dominant (here, the yeast Candida pseudoglaebosa) long after the species and its competitors have arrived. These results contrast with observations from many human-influenced habitats, in which a good competitor eventually outcompetes good dispersers, since humans often design these habitats to favor a specific competitor. This study will help microbiologists understand the qualities of microbial species that enable takeover of new habitats in both natural and human-influenced environments.
Collapse
|
22
|
Fay JC, Liu P, Ong GT, Dunham MJ, Cromie GA, Jeffery EW, Ludlow CL, Dudley AM. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biol 2019; 17:e3000147. [PMID: 30835725 PMCID: PMC6400334 DOI: 10.1371/journal.pbio.3000147] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.
Collapse
Affiliation(s)
- Justin C. Fay
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| | - Ping Liu
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Eric W. Jeffery
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Catherine L. Ludlow
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Genetic Basis of Variation in Heat and Ethanol Tolerance in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:179-188. [PMID: 30459179 PMCID: PMC6325899 DOI: 10.1534/g3.118.200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae has the capability of fermenting sugar to produce concentrations of ethanol that are toxic to most organisms. Other Saccharomyces species also have a strong fermentative capacity, but some are specialized to low temperatures, whereas S. cerevisiae is the most thermotolerant. Although S. cerevisiae has been extensively used to study the genetic basis of ethanol tolerance, much less is known about temperature dependent ethanol tolerance. In this study, we examined the genetic basis of ethanol tolerance at high temperature among strains of S. cerevisiae. We identified two amino acid polymorphisms in SEC24 that cause strong sensitivity to ethanol at high temperature and more limited sensitivity to temperature in the absence of ethanol. We also identified a single amino acid polymorphism in PSD1 that causes sensitivity to high temperature in a strain dependent fashion. The genes we identified provide further insight into genetic variation in ethanol and temperature tolerance and the interdependent nature of these two traits in S. cerevisiae.
Collapse
|
24
|
Ming M, Wang X, Lian L, Zhang H, Gao W, Zhu B, Lou D. Metabolic responses ofSaccharomyces cerevisiaeto ethanol stress using gas chromatography-mass spectrometry. Mol Omics 2019; 15:216-221. [DOI: 10.1039/c9mo00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic responses ofSaccharomyces cerevisiaeunder ethanol stress by a metabolomics method based on GC-MS.
Collapse
Affiliation(s)
- Ming Ming
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Xiyue Wang
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Lili Lian
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Hao Zhang
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Wenxiu Gao
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Bo Zhu
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| | - Dawei Lou
- Department of Analytical Chemistry
- Jilin Institute of Chemical Technology
- Jilin
- P. R. China
| |
Collapse
|
25
|
Chen Y, Zhang X, Zhang M, Zhu J, Wu Z, Zheng X. A transcriptome analysis of the ameliorate effect of Cyclocarya paliurus triterpenoids on ethanol stress in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2018; 34:182. [PMID: 30478689 DOI: 10.1007/s11274-018-2561-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/17/2018] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae (S. cerevisiae) plays a critical role in ethanol fermentation. However, during the fermentation, yeast cells are exposed to the accumulation of ethanol, which significantly affect the cell growth and the target product yield. In the present work, we employed RNA-sequence (RNA-seq) to investigate the ameliorate effect of Cyclocarya paliurus (C. paliurus) triterpenoids on S. cerevisiae under the ethanol stress. After C. paliurus triterpenoids intervention (0.3% v/v), 84 differentially expressed genes (DEGs) were identified, including 39 up-regulated and 45 down-regulated genes. The addition of triterpenoids decreased the filamentous and invasive growth of cells, and benefit to the redox balance and glycolysis. This study offers a global view through transcriptome analysis to understand the molecular response to ethanol in Sc131 by the treatment of C. paliurus triterpenoids, which may be helpful to enhance ethanol tolerance of S. cerevisiae in the fermentation of Chinese fruit wine.
Collapse
Affiliation(s)
- Yuhui Chen
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Man Zhang
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zufang Wu
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, People's Republic of China
| |
Collapse
|
26
|
Ganucci D, Guerrini S, Mangani S, Vincenzini M, Granchi L. Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Front Microbiol 2018; 9:1563. [PMID: 30057578 PMCID: PMC6053494 DOI: 10.3389/fmicb.2018.01563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Different Saccharomyces cerevisiae strains are simultaneously or in succession involved in spontaneous wine fermentations. In general, few strains occur at percentages higher than 50% of the total yeast isolates (predominant strains), while a variable number of other strains are present at percentages much lower (secondary strains). Since S. cerevisiae strains participating in alcoholic fermentations may differently affect the chemical and sensory qualities of resulting wines, it is of great importance to assess whether the predominant strains possess a "dominant character." Therefore, the aim of this study was to investigate whether the predominance of some S. cerevisiae strains results from a better adaptation capability (fitness advantage) to the main stress factors of oenological interest: ethanol and temperature. Predominant and secondary S. cerevisiae strains from different wineries were used to evaluate the individual effect of increasing ethanol concentrations (0-3-5 and 7% v/v) as well as the combined effects of different ethanol concentrations (0-3-5 and 7% v/v) at different temperature (25-30 and 35°C) on yeast growth. For all the assays, the lag phase period, the maximum specific growth rate (μmax) and the maximum cell densities were estimated. In addition, the fitness advantage between the predominant and secondary strains was calculated. The findings pointed out that all the predominant strains showed significantly higher μmax and/or lower lag phase values at all tested conditions. Hence, S. cerevisiae strains that occur at higher percentages in spontaneous alcoholic fermentations are more competitive, possibly because of their higher capability to fit the progressively changing environmental conditions in terms of ethanol concentrations and temperature.
Collapse
Affiliation(s)
- Donatella Ganucci
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Simona Guerrini
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Silvia Mangani
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| |
Collapse
|
27
|
Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New Trends in the Uses of Yeasts in Oenology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:177-210. [PMID: 29860974 DOI: 10.1016/bs.afnr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.
Collapse
Affiliation(s)
- Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Jiri Stribny
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Bruno M Oliveira
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| |
Collapse
|
28
|
Siavoshi F, Sahraee M, Ebrahimi H, Sarrafnejad A, Saniee P. Natural fruits, flowers, honey, and honeybees harbor Helicobacter pylori-positive yeasts. Helicobacter 2018; 23:e12471. [PMID: 29457310 DOI: 10.1111/hel.12471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND For controlling Helicobacter pylori infection in humans, its environmental reservoir should be determined. In this study, yeast isolates from an isolated village in Iran were studied for the intracellular occurrence of H. pylori. MATERIALS AND METHODS In this study, yeasts were isolated from 29 samples, including oral swabs from villagers (n = 7), flowers and fruits (n = 6), honey and honeybees (n = 12) and miscellaneous samples (4). Yeasts were classified into 12 RFLP groups and identified by amplification of 26S rDNA and sequencing. DNA extracted from the yeast cells was examined for the presence of H. pylori using PCR. RESULTS Of the 29 yeasts, 27 were members of different genera of Ascomycete. H. pylori was detected in 5 of 9 Candida (55.5%), 4 of 5 Komagataella (80%), 3 of 4 Pichia (100%), 2 of 2 Cytobasidia (100%), 2 of 2 Hansenia (100%), 1 of 1 Meyerozyma (100%) and 2 of 3 not sequenced (66.6%) yeasts. Distribution of 19 of 29 (65.5%) H. pylori-positive yeasts within 4 groups was as follows: 1 of 7(14.3%) in oral swabs, 5 of 6 (83.3%) in flowers and fruits, 10 of 12 (83.3%) in honey and the bee group and 3 of 4 (75%) in miscellaneous. CONCLUSIONS Different genera of osmotolerant yeasts from flowers, fruits, honey, and honeybees contained H. pylori in their vacuole. High frequency of H. pylori-positive yeasts in these samples might be related to their high sugar content. Insects such as honeybees that facilitate transfer and easy access of these yeasts to nectars serve as the main reservoirs of these yeasts, playing an important role in their protection and dispersal. Accordingly, H. pylori inside these yeasts can be carried by honeybees to different sugar- and nutrient-rich environments. Sugar-rich environments and honeybees play an important role in distribution of H. pylori-positive yeasts in nature.
Collapse
Affiliation(s)
- Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Marzieh Sahraee
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Hoda Ebrahimi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfatah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Faculty of Life Science and Biotechnology, Department of Microbiology and Microbial Biotechnology, Shahid Beheshti University G. C, Tehran, Iran
| |
Collapse
|
29
|
Shekhawat K, Porter TJ, Bauer FF, Setati ME. Employing oxygen pulses to modulate Lachancea thermotolerans–Saccharomyces cerevisiae Chardonnay fermentations. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1319-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Alonso-Del-Real J, Contreras-Ruiz A, Castiglioni GL, Barrio E, Querol A. The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation. Front Microbiol 2017; 8:2087. [PMID: 29118746 PMCID: PMC5661026 DOI: 10.3389/fmicb.2017.02087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermentative environment. For this reason, we studied for the first time the use of a Saccharomyces kudriavzevii strain, CR85, for co-inoculations at increasing proportions and sequential inoculations, as well as the effect of aeration, to improve its fermentation performance in order to obtain wines with an ethanol yield reduction. An enhanced competitive performance of S. kudriavzevii CR85 was observed when it represented 90% of the cells present in the inoculum. Furthermore, airflow supply of 20 VVH to the fermentation synergistically improved CR85 endurance and, interestingly, a significant ethanol concentration reduction was achieved.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Alba Contreras-Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Gabriel L Castiglioni
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| |
Collapse
|
31
|
Bagheri B, Bauer FF, Setati ME. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations. Front Microbiol 2017; 8:1988. [PMID: 29085347 PMCID: PMC5650610 DOI: 10.3389/fmicb.2017.01988] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022] Open
Abstract
Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non-Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non-Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of indigenous yeast populations did not appear to affect the broad interaction patterns between the consortium species. The data show that the wine ecosystem is characterized by both mutually supportive and inhibitory species. The current study presents a first step in the development of a model to predict the oenological potential of any given wine mycobiome.
Collapse
Affiliation(s)
| | | | - Mathabatha E. Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
MacKintosh C, Ferrier DEK. Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 2017; 6:1623. [PMID: 28928963 PMCID: PMC5590085 DOI: 10.12688/f1000research.11792.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Ancient whole-genome duplications (WGDs)- paleopolyploidy events-are key to solving Darwin's 'abominable mystery' of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life.
Collapse
Affiliation(s)
- Carol MacKintosh
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK
| |
Collapse
|
33
|
Pérez-Torrado R, Rantsiou K, Perrone B, Navarro-Tapia E, Querol A, Cocolin L. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Sci Rep 2017; 7:43603. [PMID: 28266552 PMCID: PMC5339867 DOI: 10.1038/srep43603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
This study investigates the behaviour of Saccharomyces cerevisiae strains, in order to obtain insight into the intraspecies competition taking place in mixed populations of this species. Two strains of S. cerevisiae, one dominant and one non-dominant, were labelled and mixed, and individual fermentations were set up to study the transcriptomes of the strains by means of RNA-seq. The results obtained suggest that cell-to-cell contact and aggregation, which are driven by the expression of genes that are associated with the cell surface, are indispensable conditions for the achievement of dominance. Observations on mixed aggregates, made up of cells of both strains, which were detected by means of flow cytometry, have confirmed the transcriptomic data. Furthermore, overexpression of the SSU1 gene, which encodes for a transporter that confers resistance to sulphites, provides an ecological advantage to the dominant strain. A mechanistic model is proposed that sheds light on the dominance phenomenon between different strains of the S. cerevisiae species. The collected data suggest that cell-to-cell contact, together with differential sulphite production and resistance is important in determining the dominance of one strain over another.
Collapse
Affiliation(s)
- Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC. Food Biotechnology Department. Institute of Agrochemistry and Food Technology (IATA-CSIC) Avda. Agustín Escardino, 7. E-46980 Paterna (Valencia), Spain
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Benedeta Perrone
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Elisabeth Navarro-Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC. Food Biotechnology Department. Institute of Agrochemistry and Food Technology (IATA-CSIC) Avda. Agustín Escardino, 7. E-46980 Paterna (Valencia), Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC. Food Biotechnology Department. Institute of Agrochemistry and Food Technology (IATA-CSIC) Avda. Agustín Escardino, 7. E-46980 Paterna (Valencia), Spain
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
34
|
Alonso-Del-Real J, Lairón-Peris M, Barrio E, Querol A. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition. Front Microbiol 2017; 8:150. [PMID: 28223968 PMCID: PMC5293751 DOI: 10.3389/fmicb.2017.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| |
Collapse
|
35
|
Tian J, Zhang S, Li H. Changes in intracellular metabolism underlying the adaptation of Saccharomyces cerevisiae strains to ethanol stress. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-016-1251-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Hilber-Bodmer M, Schmid M, Ahrens CH, Freimoser FM. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiol 2017; 17:4. [PMID: 28056814 PMCID: PMC5216558 DOI: 10.1186/s12866-016-0908-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. RESULTS Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. CONCLUSIONS The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.
Collapse
Affiliation(s)
- Maja Hilber-Bodmer
- Agroscope, Institute for Plant Production Sciences IPS, Schloss 1, P.B., 8820, Wädenswil, Switzerland
| | - Michael Schmid
- Agroscope, Institute for Plant Production Sciences IPS, Schloss 1, P.B., 8820, Wädenswil, Switzerland.,SIB, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences IPS, Schloss 1, P.B., 8820, Wädenswil, Switzerland.,SIB, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Florian M Freimoser
- Agroscope, Institute for Plant Production Sciences IPS, Schloss 1, P.B., 8820, Wädenswil, Switzerland.
| |
Collapse
|
37
|
Impact of Sucrose Addition on the Physiochemical Properties and Volatile Compounds of “Shuangyou” Red Wines. J FOOD QUALITY 2017. [DOI: 10.1155/2017/2926041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
“Shuangyou,” a Vitis amurensis Rupr. variety, is widely cultivated in northeastern and western China. Its berries have high acidity and low sugar content. In this study, different proportions of sucrose were added to the must samples during fermentation to investigate the effect of sugar on the physicochemical properties and volatile compounds of “Shuangyou” wines. The addition of sucrose significantly improved yeast growth and alcohol production, altered the color qualities, and slightly decreased titratable acidity during fermentation. The highest tested proportion of added sucrose resulted in the highest maximum yeast counts and final ethanol concentrations. Moreover, 37 volatile compounds (esters, alcohols, fatty acids, ketones, and aldehydes) were identified and quantified by solid-phase microextraction with gas chromatography-mass spectrometry. The concentrations of these compounds were correlated with the addition of sucrose. Furthermore, the addition of 100 g/L sucrose was sufficient for improving the concentrations of the aromatic compounds. The increase in ester, alcohol, and fatty acid concentration led to a positive OAVs impact (odor activity value > 1) at the end of fermentation.
Collapse
|
38
|
Ramakrishnan V, Walker GA, Fan Q, Ogawa M, Luo Y, Luong P, Joseph CML, Bisson LF. Inter-Kingdom Modification of Metabolic Behavior: [GAR+] Prion Induction in Saccharomyces cerevisiae Mediated by Wine Ecosystem Bacteria. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
39
|
Paleo-López R, Quintero-Galvis JF, Solano-Iguaran JJ, Sanchez-Salazar AM, Gaitan-Espitia JD, Nespolo RF. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts. Ecol Evol 2016; 6:3851-61. [PMID: 27516851 PMCID: PMC4972215 DOI: 10.1002/ece3.2097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.
Collapse
Affiliation(s)
- Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Jaiber J Solano-Iguaran
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Angela M Sanchez-Salazar
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile
| | - Juan D Gaitan-Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; CSIRO Oceans & Atmosphere GPO Box 1538 Hobart 7001 Tasmania Australia
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia 5090000 Chile; Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
40
|
Ciani M, Capece A, Comitini F, Canonico L, Siesto G, Romano P. Yeast Interactions in Inoculated Wine Fermentation. Front Microbiol 2016; 7:555. [PMID: 27148235 PMCID: PMC4840204 DOI: 10.3389/fmicb.2016.00555] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process.
Collapse
Affiliation(s)
- Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| | - Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata Potenza, Italy
| |
Collapse
|
41
|
Wang C, Mas A, Esteve-Zarzoso B. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Front Microbiol 2016; 7:502. [PMID: 27148191 PMCID: PMC4829597 DOI: 10.3389/fmicb.2016.00502] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 11/13/2022] Open
Abstract
The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.
Collapse
Affiliation(s)
- Chunxiao Wang
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
42
|
Dashko S, Liu P, Volk H, Butinar L, Piškur J, Fay JC. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations. Front Microbiol 2016; 7:215. [PMID: 26941733 PMCID: PMC4764737 DOI: 10.3389/fmicb.2016.00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/09/2016] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance.
Collapse
Affiliation(s)
- Sofia Dashko
- Wine Research Center, University of Nova GoricaVipava, Slovenia; Department of Biology, Lund UniversityLund, Sweden
| | - Ping Liu
- Department of Genetics and Center for Genome Sciences and System Biology, Washington University St. Louis, MO, USA
| | - Helena Volk
- Wine Research Center, University of Nova Gorica Vipava, Slovenia
| | - Lorena Butinar
- Wine Research Center, University of Nova Gorica Vipava, Slovenia
| | - Jure Piškur
- Wine Research Center, University of Nova GoricaVipava, Slovenia; Department of Biology, Lund UniversityLund, Sweden
| | - Justin C Fay
- Department of Genetics and Center for Genome Sciences and System Biology, Washington University St. Louis, MO, USA
| |
Collapse
|
43
|
Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 2016; 100:2035-46. [PMID: 26728020 DOI: 10.1007/s00253-015-7255-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.
Collapse
|