1
|
Peled O, Greenbaum G, Bloch G. Diversification of social complexity following a major evolutionary transition in bees. Curr Biol 2025; 35:981-993.e5. [PMID: 39933519 DOI: 10.1016/j.cub.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/16/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
How social complexity evolved remains a long-standing enigma. In most animal groups, social complexity is typically classified into a few discrete classes. This approach is oversimplified and constrains our inference of social evolution to a narrow trajectory consisting of transitions between classes. Such categorical classifications also limit quantitative studies on the molecular and environmental drivers of social complexity. The recent accumulation of relevant quantitative data has set the stage to overcome these limitations. Here, we propose a data-driven, high-dimensional approach for studying the full diversity of social phenotypes. We curated and analyzed a comprehensive dataset encompassing 17 social traits across 80 species and studied the evolution of social complexity in bees. We found that honey bees, stingless bees, and bumble bees underwent a major evolutionary transition ∼80 mya, inconsistent with the stepwise progression of the social ladder conceptual framework. This major evolutionary transition was followed by a phase of substantial phenotypic diversification of social complexity. Other bee lineages display a continuum of social complexity, ranging from solitary to simple societies, but do not reach the levels of social complexity seen in honey bees, stingless bees, and bumble bees. Bee evolution, therefore, provides a remarkable demonstration of a macroevolutionary process in which a major transition removed biological constraints and opened novel evolutionary opportunities, driving the exploration of the landscape of social phenotypes. Our approach can be extended to incorporate additional data types and readily applied to illuminate the evolution of social complexity in other animal groups.
Collapse
Affiliation(s)
- Ohad Peled
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Gili Greenbaum
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
2
|
Matte A, LeBoeuf AC. Innovation in ant larval feeding facilitated queen-worker divergence and social complexity. Proc Natl Acad Sci U S A 2025; 122:e2413742122. [PMID: 39999174 PMCID: PMC11892636 DOI: 10.1073/pnas.2413742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Building differences between genetically equivalent units is a fundamental challenge for all multicellular organisms and superorganisms. In ants, reproductive or worker fate is typically determined during the larval stage, through feeding regimes managed by adult caretakers. However, the feeding care provided to larvae varies significantly across ants, as does phenotypic divergence between queen and worker castes. Here, we employed comparative phylogenetic methods and causal inference to investigate the relationships between larval feeding care, caste size dimorphism, and social complexity across ant diversity. We digitized the life's work of George and Jeanette Wheeler, cataloging the larval morphology of over 700 species, and we compiled data on species diets and larval feeding behaviors from the literature and our own observations. We measured queen-worker size dimorphism in 392 species and gathered data for colony size, worker polymorphism, and worker reproduction. Our analyses revealed that ancestral active-feeding larvae evolved passive morphologies when adults began feeding them individually, typically with processed material and often following a shift to nonpredatory diets. Greater queen-worker size dimorphism coevolved with larval passiveness, alongside traits indicative of increased social complexity, including larger colony sizes, worker subcastes, and a reduction in workers' reproductive potential. Likelihood comparisons of causal phylogenetic models support that extended alloparental care facilitated stronger caste dimorphism, which, in turn and along with increased colony sizes, promoted higher social complexity. Our results suggest that enhanced adult control over larval development enabled greater phenotypic specialization within colonies, with profound implications for social evolution.
Collapse
Affiliation(s)
- Arthur Matte
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Adria C. LeBoeuf
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
3
|
Meurville MP, Silvestro D, LeBoeuf AC. Ecological change and conflict reduction led to a social circulatory system in ants. Commun Biol 2025; 8:246. [PMID: 39955384 PMCID: PMC11830068 DOI: 10.1038/s42003-025-07688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Behavioral innovations can be ecologically transformative for lineages that perform them and for their associated communities. Many ecologically dominant, superorganismal, and speciose ant lineages use mouth-to-mouth social regurgitation behavior - stomodeal trophallaxis - to share exogenous and endogenous materials within colonies. This behavior is less common in other species-poor, less cooperative ant lineages. How and why trophallaxis evolved and fixed in only some ant clades remains unclear, and whether this trait could be indicative of superorganismality has yet to be established. Here we show that trophallaxis evolved in two main events, in non-doryline formicoids around 130 Ma and in some ponerines around 90 Ma, lineages that today encompass 86% of all ant species. We found that trophallaxis evolved in lineages that began drinking sugary liquids and that had reduced intra-colonial conflict by constraining worker reproductive potential. Evolution of trophallaxis increased net diversification. Causal models indicate that trophallaxis required low reproductive conflict and contributed to the large colony sizes of the ants that use it. This suggests that the evolution of social regurgitation was enabled by both social conflict reduction and opportunistic inclusion of nectar and honeydew in the ant diet during the shifts in terrestrial ecosystems toward flowering plants.
Collapse
Affiliation(s)
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Constant T, Dobson FS, Giroud S, Habold C. Safe Periods and Safe Activities: Two Phenological Responses to Mortality. Ecol Evol 2025; 15:e70718. [PMID: 39901893 PMCID: PMC11788320 DOI: 10.1002/ece3.70718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Phenology is often thought to evolve mainly in response to food availability, yet recent studies have focused on predation. Predation may explain apparent mismatches between phenology and resources. One type of phenological response to predation involves shifting phenology from a period of high to low predation (i.e., a safe-period strategy). This strategy presupposes variation in predation over time due to environmental factors such as the number or diversity of predators. Predation varies not only over time but also among different activities like reproduction and dormancy. Alternative activities involve alternative behavioral or physiological states, and different locations where they take place influencing predation risk. Phenological responses to predation may involve shifting from a high risk activity to a safer one, resulting in increased survival (i.e., a «safe-activity» strategy). This strategy may theoretically evolve under environmental conditions associated with constant predation over time, but assumes variation in predation among activities. Safe-period and safe-activity strategies are not mutually exclusive, but assume different conditions for their evolution. On the basis of a literature review, our goal was to: (1) propose a classification of phenological responses to predation according to their evolutionary context, including mean population responses and interindividual differences (degree of synchrony); (2) to show how these two strategies may explain the lack of support for the idea that phenology responds primarily to food availability; and (3) to propose several approaches for testing the influence of predation on phenology. Our review highlights the relevance of studying phenology on multiple scales, thereby integrating several interspecific interactions (communities scales) and multiple activities (annual scale), and studying synchronicity and the pace-of-life (inter-individual scale).
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
| | - F. Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
- Energetic Lab, Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIENUniversité de StrasbourgStrasbourgFrance
| |
Collapse
|
5
|
Touchard A, Robinson SD, Lalagüe H, Ascoët S, Billet A, Dejean A, Téné NJ, Petitclerc F, Troispoux V, Treilhou M, Bonnafé E, Vetter I, Vizueta J, Moreau CS, Orivel J, Tysklind N. Adaptive trade-offs between vertebrate defence and insect predation drive Amazonian ant venom evolution. Proc Biol Sci 2024; 291:20242184. [PMID: 39561794 PMCID: PMC11576106 DOI: 10.1098/rspb.2024.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom. Additionally, phylogenetic comparative analysis indicates that venom function (predatory, defensive or both) and mandible morphology correlate with venom bioactivity and volume. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions among species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrate predators and to paralyse insect prey which are correlated with different venom compositions and life-history strategies among Formicidae.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Hadrien Lalagüe
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Steven Ascoët
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Arnaud Billet
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Alain Dejean
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Nathan J. Téné
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Frédéric Petitclerc
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Valérie Troispoux
- INRAE, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Elsa Bonnafé
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland4102, Australia
| | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jérôme Orivel
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Niklas Tysklind
- INRAE, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| |
Collapse
|
6
|
Bell-Roberts L, Turner JFR, Werner GDA, Downing PA, Ross L, West SA. Larger colony sizes favoured the evolution of more worker castes in ants. Nat Ecol Evol 2024; 8:1959-1971. [PMID: 39187609 PMCID: PMC7616618 DOI: 10.1038/s41559-024-02512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The size-complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes. However, the implication of these results is unclear, because colony size and number of cells are correlated with other variables which may also influence selection for division of labour, and causality could be in either direction. Here, to resolve this problem, we tested multiple causal hypotheses using data from 794 ant species. We found that larger colony sizes favoured the evolution of increased division of labour, resulting in more worker castes and greater variation in worker size. By contrast, our results did not provide consistent support for alternative hypotheses regarding either queen mating frequency or number of queens per colony explaining variation in division of labour. Overall, our results provide strong support for the size-complexity hypothesis.
Collapse
Affiliation(s)
| | | | - Gijsbert D A Werner
- Department of Biology, University of Oxford, Oxford, UK
- Netherlands Scientific Council for Government Policy, The Hague, The Netherlands
| | - Philip A Downing
- Ecology & Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Laura Ross
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Kikuchi DW, Allen WL, Arbuckle K, Aubier TG, Briolat ES, Burdfield-Steel ER, Cheney KL, Daňková K, Elias M, Hämäläinen L, Herberstein ME, Hossie TJ, Joron M, Kunte K, Leavell BC, Lindstedt C, Lorioux-Chevalier U, McClure M, McLellan CF, Medina I, Nawge V, Páez E, Pal A, Pekár S, Penacchio O, Raška J, Reader T, Rojas B, Rönkä KH, Rößler DC, Rowe C, Rowland HM, Roy A, Schaal KA, Sherratt TN, Skelhorn J, Smart HR, Stankowich T, Stefan AM, Summers K, Taylor CH, Thorogood R, Umbers K, Winters AE, Yeager J, Exnerová A. The evolution and ecology of multiple antipredator defences. J Evol Biol 2023; 36:975-991. [PMID: 37363877 DOI: 10.1111/jeb.14192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023]
Abstract
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- Evolutionary Biology, Universität Bielefeld, Bielefeld, Germany
| | | | - Kevin Arbuckle
- Department of Biosciences, Swansea University, Swansea, UK
| | - Thomas G Aubier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, Toulouse, France
| | | | - Emily R Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Klára Daňková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Liisa Hämäläinen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marie E Herberstein
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas J Hossie
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Brian C Leavell
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Carita Lindstedt
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ugo Lorioux-Chevalier
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | | | - Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Viraj Nawge
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Erika Páez
- Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Arka Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Raška
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bibiana Rojas
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Biology and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katja H Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela C Rößler
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Candy Rowe
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Arlety Roy
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Kaitlin A Schaal
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | - John Skelhorn
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah R Smart
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Ted Stankowich
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Amanda M Stefan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kate Umbers
- Hawkesbury Institute of the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science Western Sydney University, Penrith, New South Wales, Australia
| | - Anne E Winters
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Justin Yeager
- Grupo de Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
9
|
Mera-Rodríguez D, Jourdan H, Ward PS, Shattuck S, Cover SP, Wilson EO, Rabeling C. Biogeography and evolution of social parasitism in Australian Myrmecia bulldog ants revealed by phylogenomics. Mol Phylogenet Evol 2023:107825. [PMID: 37244505 DOI: 10.1016/j.ympev.2023.107825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Studying the historical biogeography and life history transitions from eusocial colony life to social parasitism contributes to our understanding of the evolutionary mechanisms generating biodiversity in eusocial insects. The ants in the genus Myrmecia are a well-suited system for testing evolutionary hypotheses about how their species diversity was assembled through time because the genus is endemic to Australia with the single exception of the species M. apicalis inhabiting the Pacific Island of New Caledonia, and because at least one social parasite species exists in the genus. However, the evolutionary mechanisms underlying the disjunct biogeographic distribution of M. apicalis and the life history transition(s) to social parasitism remain unexplored. To study the biogeographic origin of the isolated, oceanic species M. apicalis and to reveal the origin and evolution of social parasitism in the genus, we reconstructed a comprehensive phylogeny of the ant subfamily Myrmeciinae. We utilized Ultra Conserved Elements (UCEs) as molecular markers to generate a comprehensive molecular genetic dataset consisting of 2,287 loci per taxon on average for 66 out of the 93 known Myrmecia species as well as for the sister lineage Nothomyrmecia macrops and selected outgroups. Our time-calibrated phylogeny inferred that: (i) stem Myrmeciinae originated during the Paleocene ∼58 Ma ago; (ii) the current disjunct biogeographic distribution of M. apicalis was driven by long-distance dispersal from Australia to New Caledonia during the Miocene ∼14 Ma ago; (iii) the single social parasite species, M. inquilina, evolved directly from one of the two known host species, M. nigriceps, in sympatry via the intraspecific route of social parasite evolution; and (iv) 5 of the 9 previously established taxonomic species groups are non-monophyletic. We suggest minor changes to reconcile the molecular phylogenetic results with the taxonomic classification. Our study enhances our understanding of the evolution and biogeography of Australian bulldog ants, contributes to our knowledge about the evolution of social parasitism in ants, and provides a solid phylogenetic foundation for future inquiries into the biology, taxonomy, and classification of Myrmeciinae.
Collapse
Affiliation(s)
- Daniela Mera-Rodríguez
- Social Insect Research Group, School of Life Sciences, Arizona State University. 550 E Orange St., Tempe, AZ 85281, United States of America; Department of Integrative Taxonomy of Insects, Institute of Biology, University of Hohenheim. Garbenstraße 30, 70599, Stuttgart, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim and State Museum of Natural History Stuttgart, Germany.
| | - Hervé Jourdan
- Institute of Research for Development. Promenade Roger Laroque, Nouméa 98848, New Caledonia
| | - Philip S Ward
- Department of Entomology and Nematology, University of California, Davis, CA 95616, United States of America
| | - Steven Shattuck
- Museum of Comparative Zoology, Harvard University. 26 Oxford Street, Cambridge, MA 02138, United States of America
| | - Stefan P Cover
- Museum of Comparative Zoology, Harvard University. 26 Oxford Street, Cambridge, MA 02138, United States of America
| | - Edward O Wilson
- Museum of Comparative Zoology, Harvard University. 26 Oxford Street, Cambridge, MA 02138, United States of America
| | - Christian Rabeling
- Social Insect Research Group, School of Life Sciences, Arizona State University. 550 E Orange St., Tempe, AZ 85281, United States of America; Department of Integrative Taxonomy of Insects, Institute of Biology, University of Hohenheim. Garbenstraße 30, 70599, Stuttgart, Germany; KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim and State Museum of Natural History Stuttgart, Germany; Museum of Comparative Zoology, Harvard University. 26 Oxford Street, Cambridge, MA 02138, United States of America.
| |
Collapse
|
10
|
Drager KI, Rivera MD, Gibson JC, Ruzi SA, Hanisch PE, Achury R, Suarez AV. Testing the predictive value of functional traits in diverse ant communities. Ecol Evol 2023; 13:e10000. [PMID: 37091559 PMCID: PMC10115899 DOI: 10.1002/ece3.10000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Associating morphological features with ecological traits is essential for understanding the connection between organisms and their roles in the environment. If applied successfully, functional trait approaches link form and function in an organism. However, functional trait data not associated with natural history information provide an incomplete picture of an organism's role in the ecosystem. Using data on the relative trophic position of 592 ant (Formicidae) samples comprising 393 species from 11 subfamilies and 19 widely distributed communities, we tested the extent to which commonly used functional proxies (i.e., morphometric traits) predict diet/trophic position as estimated from stable isotopes (δ15N). We chose ants as a group due to their ubiquity and abundance, as well as the wealth of available data on species traits and trophic levels. We measured 12 traits that have previously been identified as functionally significant, and corrected trait values for size and evolutionary history by using phylogenetically corrected trait residuals. Estimated trophic positions varied from 0.9 to 4.8 or roughly 4 trophic levels. Morphological data spanned nearly the entire size range seen in ants from the smallest (e.g., Strumigenys mitis total length 1.1 mm) to the largest species (e.g., Dinoponera australis total length 28.3 mm). We found overall body size, relative eye position, and scape length to be informative for predicting diet/trophic position in these communities, albeit with relatively weak predictive values. Specifically, trophic position was negatively correlated with body size and positively correlated with sensory traits (higher eye position and scape length). Our results suggest that functional trait-based approaches can be informative but should be used with caution unless clear links between form and function have been established.
Collapse
Affiliation(s)
- Kim I. Drager
- Department of Evolution, Ecology and BehaviorUniversity of Illinois505 S. Goodwin Ave. 515 Morrill HallUrbanaIllinois61801USA
| | - Michael D. Rivera
- Program in Ecology, Evolution and Conservation BiologyUniversity of Illinois505 S. Goodwin Ave. 515 Morrill HallUrbanaIllinois61801USA
| | - Joshua C. Gibson
- Department of EntomologyUniversity of Illinois505 S. Goodwin Ave. 320 Morrill HallUrbanaIllinois61801USA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐Champaign405 N. Mathews AveUrbanaIllinois61801USA
| | - Selina A. Ruzi
- Department of Applied EcologyNorth Carolina State University115 David Clark Labs, 100 Eugene Brooks AvenueRaleighNorth Carolina27695USA
| | - Priscila E. Hanisch
- Department of Animal Ecology and Tropical BiologyBiocenterUniversity of WürzburgAm Hubland 97074WürzburgGermany
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” MACN‐CONICETBuenos AiresArgentina
| | - Rafael Achury
- Department of EntomologyUniversity of Illinois505 S. Goodwin Ave. 320 Morrill HallUrbanaIllinois61801USA
- Terrestrial Ecology Research GroupTechnical University of MunichHans‐Carl‐von‐Carlowitz‐Platz 2Freising85354Germany
| | - Andrew V. Suarez
- Department of Evolution, Ecology and BehaviorUniversity of Illinois505 S. Goodwin Ave. 515 Morrill HallUrbanaIllinois61801USA
- Program in Ecology, Evolution and Conservation BiologyUniversity of Illinois505 S. Goodwin Ave. 515 Morrill HallUrbanaIllinois61801USA
- Department of EntomologyUniversity of Illinois505 S. Goodwin Ave. 320 Morrill HallUrbanaIllinois61801USA
| |
Collapse
|
11
|
Barassé V, Téné N, Klopp C, Paquet F, Tysklind N, Troispoux V, Lalägue H, Orivel J, Lefranc B, Leprince J, Kenne M, Tindo M, Treilhou M, Touchard A, Bonnafé E. Venomics survey of six myrmicine ants provides insights into the molecular and structural diversity of their peptide toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103876. [PMID: 36410579 DOI: 10.1016/j.ibmb.2022.103876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Among ants, Myrmicinae represents the most speciose subfamily. The venom composition previously described for these social insects is extremely variable, with alkaloids predominant in some genera while, conversely, proteomics studies have revealed that some myrmicine ant venoms are peptide-rich. Using integrated transcriptomic and proteomic approaches, we characterized the venom peptidomes of six ants belonging to the different tribes of Myrmicinae. We identified a total of 79 myrmicitoxins precursors which can be classified into 38 peptide families according to their mature sequences. Myrmicine ant venom peptidomes showed heterogeneous compositions, with linear and disulfide-bonded monomers as well as dimeric toxins. Several peptide families were exclusive to a single venom whereas some were retrieved in multiple species. A hierarchical clustering analysis of precursor signal sequences led us to divide the myrmicitoxins precursors into eight families, including some that have already been described in other aculeate hymenoptera such as secapin-like peptides and voltage-gated sodium channel (NaV) toxins. Evolutionary and structural analyses of two representatives of these families highlighted variation and conserved patterns that might be crucial to explain myrmicine venom peptide functional adaptations to biological targets.
Collapse
Affiliation(s)
- Valentine Barassé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Nathan Téné
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Christophe Klopp
- Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, Genotoul Bioinfo, INRAE Toulouse, 31326, Castanet-Tolosan, France.
| | - Françoise Paquet
- Centre de Biophysique Moléculaire - CNRS - UPR 4301, 45071, Orléans, France.
| | - Niklas Tysklind
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana.
| | - Valérie Troispoux
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana.
| | - Hadrien Lalägue
- CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Jérôme Orivel
- CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Benjamin Lefranc
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000, Rouen, France.
| | - Jérôme Leprince
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000, Rouen, France.
| | - Martin Kenne
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O.Box. 24157, Douala, Cameroon.
| | - Maurice Tindo
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O.Box. 24157, Douala, Cameroon.
| | - Michel Treilhou
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Axel Touchard
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France; CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Elsa Bonnafé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| |
Collapse
|
12
|
Notomi Y, Kazawa T, Maezawa S, Kanzaki R, Haupt SS. Use of Visual Information by Ant Species Occurring in Similar Urban Anthropogenic Environments. Zoolog Sci 2022; 39:529-544. [PMID: 36495488 DOI: 10.2108/zs220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Many insects, including ants, are known to respond visually to conspicuous objects. In this study, we compared orientation in an arena containing only a black target beacon as local information in six species of ants of widely varying degree of phylogenic relatedness, foraging strategy, and eye morphology (Aphaenogaster, Brachyponera, Camponotus, Formica, and two Lasius spp.), often found associated in similar urban anthropogenic habitats. Four species of ants displayed orientation toward the beacon, with two orienting toward it directly, while the other two approached it via convoluted paths. The two remaining species did not show any orientation with respect to the beacon. The results did not correlate with morphological parameters of the visual systems and could not be fully interpreted in terms of the species' ecology, although convoluted paths are linked to higher significance of chemical signals. Beacon aiming was shown to be an innate behavior in visually naive Formica workers, which, however, were less strongly attracted to the beacon than older foragers. Thus, despite sharing the same habitats and supposedly having similar neural circuits, even a very simple stimulus-related behavior in the absence of other information can differ widely in ants but is likely an ancestral trait retained especially in species with smaller eyes. The comparative analysis of nervous systems opens the possibility of determining general features of circuits responsible for innate and possibly learned attraction toward particular stimuli.
Collapse
Affiliation(s)
- Yusuke Notomi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba 278-8510, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan,
| |
Collapse
|
13
|
Wang H, Wen Q, Wang T, Ran F, Wang M, Fan X, Wei S, Li Z, Tan J. Next-Generation Sequencing of Four Mitochondrial Genomes of Dolichovespula (Hymenoptera: Vespidae) with a Phylogenetic Analysis and Divergence Time Estimation of Vespidae. Animals (Basel) 2022; 12:3004. [PMID: 36359128 PMCID: PMC9657509 DOI: 10.3390/ani12213004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 01/09/2024] Open
Abstract
The wasp genus Dolichovespula (Hymenoptera: Vespidae: Vespinae) is a eusocial wasp group. Due to the taxonomic and phylogenetic issues with the family Vespidae, more genetic data should be gathered to provide efficient approaches for precise molecular identification. For this work, we used next-generation sequencing (also known as high-throughput sequencing) to sequence the mitochondrial genomes (mtgenomes) of four Dolichovespula species, viz. D. flora, D. lama, D. saxonica, and D. xanthicincta 16,064 bp, 16,011 bp, 15,682 bp, and 15,941 bp in length, respectively. The mitochondrial genes of the four species are rearranged. The A + T content of each mtgenome is more than 80%, with a control region (A + T-rich region), 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. There are 7 to 11 more genes on the majority strands than on the minority strands. Using Bayesian inference and Maximum-Likelihood methodologies as well as data from other species available on GenBank, phylogenetic trees and relationship assessments in the genus Dolichovespula and the family Vespidae were generated. The two fossil-based calibration dates were used to estimate the origin of eusociality and the divergence time of clades in the family Vespidae. The divergence times indicate that the latest common ancestor of the family Vespidae appeared around 106 million years ago (Ma). The subfamily Stenogastrinae diverged from other Vespidae at about 99 Ma, the subfamily Eumeninae at around 95 Ma, and the subfamily Polistinae and Vespinae diverged at approximately 42 Ma. The genus Dolichovespula is thought to have originated around 25 Ma. The origin and distribution pattern of the genus Dolichovespula are briefly discussed.
Collapse
Affiliation(s)
- Hang Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Qian Wen
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Tongfei Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Fanrong Ran
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Meng Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Xulei Fan
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhonghu Li
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Jiangli Tan
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| |
Collapse
|
14
|
Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. Curr Biol 2022; 32:2942-2947.e4. [PMID: 35623348 DOI: 10.1016/j.cub.2022.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
Abstract
The evolution of eusociality has allowed ants to become one of the most conspicuous and ecologically dominant groups of organisms in the world. A large majority of the current ∼14,000 ant species belong to the formicoids,1 a clade of nine subfamilies that exhibit the most extreme forms of reproductive division of labor, large colony size,2 worker polymorphism,3 and extended queen longevity.4 The eight remaining non-formicoid subfamilies are less well studied, with few genomes having been sequenced so far and unclear phylogenetic relationships.5 By sequencing 65 genomes, we provide a robust phylogeny of the 17 ant subfamilies, retrieving high support to the controversial leptanillomorph clade (Leptanillinae and Martialinae) as the sister group to all other extant ants. Moreover, our genomic analyses revealed that the emergence of the formicoids was accompanied by an elevated number of positive selection events. Importantly, the top three gene functions under selection are linked to key features of complex eusociality, with histone acetylation being implicated in caste differentiation, gene silencing by RNA in worker sterility, and autophagy in longevity. These results show that the key pathways associated with eusociality have been under strong selection during the Cretaceous, suggesting that the molecular foundations of complex eusociality may have evolved rapidly in less than 20 Ma.
Collapse
|
15
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
16
|
Weyna A, Bourouina L, Galtier N, Romiguier J. Detection of F1 hybrids from single-genome data reveals frequent hybridization in Hymenoptera and particularly ants. Mol Biol Evol 2022; 39:6562163. [PMID: 35363317 PMCID: PMC9021736 DOI: 10.1093/molbev/msac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.
Collapse
Affiliation(s)
- Arthur Weyna
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Lucille Bourouina
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| |
Collapse
|
17
|
La Richelière F, Muñoz G, Guénard B, Dunn RR, Economo EP, Powell S, Sanders NJ, Weiser MD, Abouheif E, Lessard JP. Warm and arid regions of the world are hotspots of superorganism complexity. Proc Biol Sci 2022; 289:20211899. [PMID: 35135345 PMCID: PMC8832517 DOI: 10.1098/rspb.2021.1899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists have long been fascinated by the processes that give rise to phenotypic complexity of organisms, yet whether there exist geographical hotspots of phenotypic complexity remains poorly explored. Phenotypic complexity can be readily observed in ant colonies, which are superorganisms with morphologically differentiated queen and worker castes analogous to the germline and soma of multicellular organisms. Several ant species have evolved 'worker polymorphism', where workers in a single colony show quantifiable differences in size and head-to-body scaling. Here, we use 256 754 occurrence points from 8990 ant species to investigate the geography of worker polymorphism. We show that arid regions of the world are the hotspots of superorganism complexity. Tropical savannahs and deserts, which are typically species-poor relative to tropical or even temperate forests, harbour the highest densities of polymorphic ants. We discuss the possible adaptive advantages that worker polymorphism provides in arid environments. Our work may provide a window into the environmental conditions that promote the emergence of highly complex phenotypes.
Collapse
Affiliation(s)
- Frédérique La Richelière
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Canada, H4B 1R6,Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Canada, H3A 1B1
| | - Gabriel Muñoz
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Canada, H4B 1R6
| | - Benoit Guénard
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, People's Republic of China
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, 3510 Thomas Hall, Raleigh, NC, 27695, USA
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology, 1105 North University Ave Biological Sciences Building, University of Michigan Ann Arbor, MI 48109-1085, USA
| | - Michael D. Weiser
- Geographical Ecology Group, Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Canada, H3A 1B1
| | - Jean-Philippe Lessard
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Canada, H4B 1R6
| |
Collapse
|
18
|
Abstract
All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
19
|
Miller JS, Wan E, O'Fallon S, Pinter-Wollman N. Modularity and connectivity of nest structure scale with colony size. Evolution 2021; 76:101-113. [PMID: 34773247 DOI: 10.1111/evo.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Large body sizes have evolved structures to facilitate resource transport. Like unitary organisms, social insect colonies must transport information and resources. Colonies with more individuals may experience transport challenges similar to large-bodied organisms. In ant colonies, transport occurs in the nest, which may consist of structures that facilitate movement. We examine three attributes of nests that might have evolved to mitigate transport challenges related to colony size: (1) subdivision-nests of species with large colonies are more subdivided to reduce crowd viscosity; (2) branching-nest tunnels increase branching in species with large colonies to reduce travel distances; and (3) shortcuts-nests of species with large colonies have cross-linking tunnels to connect distant parts of the nest and create alternative routes. We test these hypotheses by comparing nest structures of species with different colony sizes in phylogenetically controlled meta-analyses. Our findings support the hypothesis that nest subdivision and branching evolved to mitigate transport challenges related to colony size. Nests of species with large colonies contain more chambers and branching tunnels. The similarity in how ant nests and bodies of unitary organisms have evolved in response to increasing size suggests common solutions across taxa and levels of biological organization.
Collapse
Affiliation(s)
- Julie S Miller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095
| | - Emma Wan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095
| | - Sean O'Fallon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
20
|
Coverdale TC, Agrawal AA. Evolution of shade tolerance is associated with attenuation of shade avoidance and reduced phenotypic plasticity in North American milkweeds. AMERICAN JOURNAL OF BOTANY 2021; 108:1705-1715. [PMID: 34585372 DOI: 10.1002/ajb2.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Mismatches between light conditions and light-capture strategy can reduce plant performance and prevent colonization of novel habitats. Although light-capture strategies tend to be highly conserved among closely related species, evolutionary transitions from shaded to unshaded habitats (and vice versa) occur in numerous plant lineages. METHODS We combined phylogenetic approaches with field and greenhouse experiments to investigate evolutionary constraints on light-capture strategy in North American milkweeds (genus Asclepias) and to determine whether colonization of shaded habitats in this heliophilic clade is associated with reduced plasticity and attenuation of the shade avoidance response. RESULTS Colonization of shaded habitats has occurred at least 10 times in this genus, including at least once in each major North American clade. Evolutionary transitions between habitats exhibit strong directional bias, with shifts from full-sun to shaded habitats occurring at least three times as often as the opposite transition. In field and greenhouse experiments, sun species responded to shade by increasing internode length, height, and specific leaf area, consistent with the shade avoidance response; paired shade species exhibited reduced plasticity overall, and only one trait (specific leaf area) responded to experimental shade. CONCLUSIONS Our results suggest that milkweeds colonized shaded environments multiple times using a light-capture strategy distinct from the ancestral (putatively shade avoidant) strategy, including a general attenuation of plasticity in response to variable light conditions. This pattern bolsters the notion that shade avoidance and tolerance represent divergent evolutionary strategies for maximizing performance under qualitatively different types of shade.
Collapse
Affiliation(s)
- Tyler C Coverdale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Kreider JJ, Chen T, Hartke TR, Buchori D, Hidayat P, Nazarreta R, Scheu S, Drescher J. Rainforest conversion to monocultures favors generalist ants with large colonies. Ecosphere 2021. [DOI: 10.1002/ecs2.3717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jan J. Kreider
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Ting‐Wen Chen
- Institute of Soil Biology Biology Centre of the Czech Academy of Sciences Na Sádkách 7 Ceske Budejovice 37005 Czech Republic
| | - Tamara R. Hartke
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Damayanti Buchori
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
- Center for Transdisciplinary and Sustainability Sciences IPB University Jl. Raya Pajajartan Bogor 16153 Indonesia
| | - Purnama Hidayat
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Rizky Nazarreta
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Stefan Scheu
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 Göttingen 37077 Germany
| | - Jochen Drescher
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| |
Collapse
|
22
|
Arbuckle K, Harris RJ. Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. BMC Ecol Evol 2021; 21:150. [PMID: 34344322 PMCID: PMC8336261 DOI: 10.1186/s12862-021-01880-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Understanding drivers of animal biodiversity has been a longstanding aim in evolutionary biology. Insects and fishes represent the largest lineages of invertebrates and vertebrates respectively, and consequently many ideas have been proposed to explain this diversity. Natural enemy interactions are often important in diversification dynamics, and key traits that mediate such interactions may therefore have an important role in explaining organismal diversity. Venom is one such trait which is intricately bound in antagonistic coevolution and has recently been shown to be associated with increased diversification rates in tetrapods. Despite ~ 10% of fish families and ~ 16% of insect families containing venomous species, the role that venom may play in these two superradiations remains unknown. Results In this paper we take a broad family-level phylogenetic perspective and show that variation in diversification rates are the main cause of variations in species richness in both insects and fishes, and that venomous families have diversification rates twice as high as non-venomous families. Furthermore, we estimate that venom was present in ~ 10% and ~ 14% of the evolutionary history of fishes and insects respectively. Conclusions Consequently, we provide evidence that venom has played a role in generating the remarkable diversity in the largest vertebrate and invertebrate radiations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01880-z.
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
23
|
Lecocq de Pletincx N, Dellicour S, Aron S. The evolution of ant worker polymorphism correlates with multiple social traits. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03049-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Tercel MPTG, Symondson WOC, Cuff JP. The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Mol Ecol 2021; 30:2199-2206. [PMID: 33772967 DOI: 10.1111/mec.15903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023]
Abstract
Dietary analysis using DNA metabarcoding is a powerful tool that is increasingly being used to further our knowledge of trophic interactions in highly complex food webs but is not without limitations. Omnivores, the most generalist of consumers, pose unique challenges when using such methods. Here, we provide the rationale to understand the problems associated with analysing the complex diets of omnivores. By reviewing existing metabarcoding studies of omnivorous diet, and constructing hypothetical scenarios arising from each, we outline that great caution is required when interpreting sequencing data in such cases. In essence, the problems of accidental consumption and secondary ingestion are significant sources of error when investigating omnivorous diets. The integration of multiple high throughput sequencing markers increases the taxonomic breadth of taxa detected but we reveal how some detections may be misleading. Disentangling which taxa have been deliberately or accidentally consumed by the focal omnivore is challenging and can falsely emphasise those that were not intentionally consumed, obscuring biologically meaningful interactions. Although we suggest ways to disentangle these issues, we urge that the results of such analyses should be interpreted with caution and all possible scenarios for the presence of biota within omnivores given due consideration.
Collapse
Affiliation(s)
- Maximillian P T G Tercel
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.,Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands
| | | | - Jordan P Cuff
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.,Rothamsted Insect Survey, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| |
Collapse
|
25
|
Not Goanna Get Me: Mutations in the Savannah Monitor Lizard (Varanus exanthematicus) Nicotinic Acetylcholine Receptor Confer Reduced Susceptibility to Sympatric Cobra Venoms. Neurotox Res 2021; 39:1116-1122. [PMID: 33743133 DOI: 10.1007/s12640-021-00351-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Antagonistic coevolutionary relationships provide intense selection pressure which drive changes in the genotype. Predator-prey interactions have caused some venomous snakes and their predators/prey to evolve α-neurotoxin resistance through changes at the orthosteric site of nicotinic acetylcholine receptors. The presence of negatively charged amino acids at orthosteric site positions 191 and 195 is the ancestral state. These negatively charged amino acids have exerted a selection pressure for snake venom α-neurotoxins to evolve with strong positive charges on their molecular surface, with the opposite-charge attraction facilitating the binding by the neurotoxins. We aimed to test the effects of a series of mutations whereby one or both negatively charged amino acids are replaced by uncharged residues to ascertain if this was a novel form of reduced venom susceptibility in the varanid species. Using a biolayer interferometry assay, we tested the relative binding of α-neurotoxin-rich snake venoms against the orthosteric sites of V. giganteus (Perentie) and V. komodoensis (Komodo dragon), which both possess the negatively charged aspartic acid at position 191; V. mertensi (Merten's water monitor), which also has aspartic acid at position 195; and Varanus exanthematicus (savannah monitor), which lacks negatively charged amino acids at both positions 191 and 195. The orthosteric sites of these species are otherwise identical. In order to complete the structure-function relationship examination, we also tested a mutant version with the negatively charged aspartic acid at both positions 191 and 195. It was demonstrated that the presence of a negatively charged amino acid at either position 191 or 195 is crucial for the successful binding of snake venom α-neurotoxins, with V. giganteus, V. komodoensis and V. mertensi all strongly bound. The mutant version containing a negatively charged amino acid at both positions was bound equipotently to the native forms of V. giganteus, V. komodoensis and V. mertensi. Thus, the presence of a negatively charged amino acid at both positions does not increase binding affinity. In contrast, Varanus exanthematicus, lacking a negatively charged amino acid at either position, displayed dramatically less sensitivity to neurotoxins compared with the other species. V. exanthematicus is distinguished from the other species examined in this study by being a small, terrestrial, slow-moving species living sympatrically with a high density of large cobra species that have neurotoxin-rich venoms. Thus, this vulnerable prey item seems to have evolved a novel form of reduced susceptibility to snake venom neurotoxins under a strong selection pressures from these neurotoxic predators. These results therefore contribute to the body of knowledge of predator/prey chemical arm races while providing novel insights into the structure-activity relationships of the orthosteric site of the nicotinic acetylcholine receptor alpha-subunit.
Collapse
|
26
|
Schrader L, Winter M, Errbii M, Delabie J, Oettler J, Gadau J. Inhibition of HSP90 causes morphological variation in the invasive ant
Cardiocondyla obscurior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:333-340. [DOI: 10.1002/jez.b.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Miles Winter
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| | - Jacques Delabie
- Laboratório de Mirmecologia Cocoa Research Center‐CEPLAC & UESC‐DCAA Itabuna Bahia Brazil
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie University of Regensburg Regensburg Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity University of Münster Münster Germany
| |
Collapse
|
27
|
Harris RJ, Fry BG. Electrostatic resistance to alpha-neurotoxins conferred by charge reversal mutations in nicotinic acetylcholine receptors. Proc Biol Sci 2021; 288:20202703. [PMID: 33434458 DOI: 10.1098/rspb.2020.2703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The evolution of venom resistance through coevolutionary chemical arms races has arisen multiple times throughout animalia. Prior documentation of resistance to snake venom α-neurotoxins consists of the N-glycosylation motif or the hypothesized introduction of arginine at positions 187 at the α-1 nicotinic acetylcholine receptor orthosteric site. However, no further studies have investigated the possibility of other potential forms of resistance. Using a biolayer interferometry assay, we first confirm that the previously hypothesized resistance conferred by arginine at position 187 in the honey badger does reduce binding to α-neurotoxins, which has never been functionally tested. We further discovered a novel form of α-neurotoxin resistance conferred by charge reversal mutations, whereby a negatively charged amino acid is replaced by the positively charged amino acid lysine. As venom α-neurotoxins have evolved strong positive charges on their surface to facilitate binding to the negatively charged α-1 orthosteric site, these mutations result in a positive charge/positive charge interaction electrostatically repelling the α-neurotoxins. Such a novel mechanism for resistance has gone completely undiscovered, yet this form of resistance has convergently evolved at least 10 times within snakes. These coevolutionary innovations seem to have arisen through convergent phenotypes to ultimately evolve a similar biophysical mechanism of resistance across snakes.
Collapse
Affiliation(s)
- Richard J Harris
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
28
|
Hembry DH, Weber MG. Ecological Interactions and Macroevolution: A New Field with Old Roots. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-121505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Linking interspecific interactions (e.g., mutualism, competition, predation, parasitism) to macroevolution (evolutionary change on deep timescales) is a key goal in biology. The role of species interactions in shaping macroevolutionary trajectories has been studied for centuries and remains a cutting-edge topic of current research. However, despite its deep historical roots, classic and current approaches to this topic are highly diverse. Here, we combine historical and contemporary perspectives on the study of ecological interactions in macroevolution, synthesizing ideas across eras to build a zoomed-out picture of the big questions at the nexus of ecology and macroevolution. We discuss the trajectory of this important and challenging field, dividing research into work done before the 1970s, research between 1970 and 2005, and work done since 2005. We argue that in response to long-standing questions in paleobiology, evidence accumulated to date has demonstrated that biotic interactions (including mutualism) can influence lineage diversification and trait evolution over macroevolutionary timescales, and we outline major open questions for future research in the field.
Collapse
Affiliation(s)
- David H. Hembry
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Marjorie G. Weber
- Department of Plant Biology; Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
29
|
Sosiak CE, Barden P. Multidimensional trait morphology predicts ecology across ant lineages. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christine E. Sosiak
- Federated Department of Biological Sciences New Jersey Institute of Technology Newark NJ USA
| | - Phillip Barden
- Federated Department of Biological Sciences New Jersey Institute of Technology Newark NJ USA
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
| |
Collapse
|
30
|
Fichaux M, Vleminckx J, Courtois EA, Delabie J, Galli J, Tao S, Labrière N, Chave J, Baraloto C, Orivel J. Environmental determinants of leaf litter ant community composition along an elevational gradient. Biotropica 2020. [DOI: 10.1111/btp.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mélanie Fichaux
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
| | - Jason Vleminckx
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Institute of Environment, Department of Biological Sciences Florida International University Miami FL USA
| | - Elodie A. Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA) CNRS IFREMER Université de Guyane Cayenne France
- Department of Biology Centre of Excellence PLECO (Plant and Vegetation Ecology) University of Antwerp Wilrijk Belgium
| | - Jacques Delabie
- Laboratório de Mirmecologia CEPEC CEPLAC Itabuna Brazil
- Departamento de Ciências Agrárias e Ambientais Universidade Estadual de Santa Cruz Ilheus Brazil
| | - Jordan Galli
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Naturalia Environnement Site Agroparc Avignon Cedex 9 France
| | - Shengli Tao
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Nicolas Labrière
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Christopher Baraloto
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Institute of Environment, Department of Biological Sciences Florida International University Miami FL USA
| | - Jérôme Orivel
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
| |
Collapse
|
31
|
Friedman NR, Lecroq Bennet B, Fischer G, Sarnat EM, Huang J, Knowles LLK, Economo EP. Macroevolutionary integration of phenotypes within and across ant worker castes. Ecol Evol 2020; 10:9371-9383. [PMID: 32953067 PMCID: PMC7487254 DOI: 10.1002/ece3.6623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022] Open
Abstract
Phenotypic traits are often integrated into evolutionary modules: sets of organismal parts that evolve together. In social insect colonies, the concepts of integration and modularity apply to sets of traits both within and among functionally and phenotypically differentiated castes. On macroevolutionary timescales, patterns of integration and modularity within and across castes can be clues to the selective and ecological factors shaping their evolution and diversification. We develop a set of hypotheses describing contrasting patterns of worker integration and apply this framework in a broad (246 species) comparative analysis of major and minor worker evolution in the hyperdiverse ant genus Pheidole. Using geometric morphometrics in a phylogenetic framework, we inferred fast and tightly integrated evolution of mesosoma shape between major and minor workers, but slower and more independent evolution of head shape between the two worker castes. Thus, Pheidole workers are evolving as a mixture of intracaste and intercaste integration and rate heterogeneity. The decoupling of homologous traits across worker castes may represent an important process facilitating the rise of social complexity.
Collapse
Affiliation(s)
- Nicholas R. Friedman
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Beatrice Lecroq Bennet
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Georg Fischer
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eli M. Sarnat
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Jen‐Pan Huang
- Department of Ecology and Evolutionary Biology, Museum of ZoologyUniversity of MichiganAnn ArborMIUSA
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - L. Lacey Knowles Knowles
- Department of Ecology and Evolutionary Biology, Museum of ZoologyUniversity of MichiganAnn ArborMIUSA
| | - Evan P. Economo
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
32
|
Yang J, Guo YF, Chen XD, Zhang X, Ju MM, Bai GQ, Liu ZL, Zhao GF. Framework Phylogeny, Evolution and Complex Diversification of Chinese Oaks. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1024. [PMID: 32823635 PMCID: PMC7464331 DOI: 10.3390/plants9081024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Oaks (Quercus L.) are ideal models to assess patterns of plant diversity. We integrated the sequence data of five chloroplast and two nuclear loci from 50 Chinese oaks to explore the phylogenetic framework, evolution and diversification patterns of the Chinese oak's lineage. The framework phylogeny strongly supports two subgenera Quercus and Cerris comprising four infrageneric sections Quercus, Cerris, Ilex and Cyclobalanopsis for the Chinese oaks. An evolutionary analysis suggests that the two subgenera probably split during the mid-Eocene, followed by intergroup divergence within the subgenus Cerris around the late Eocene. The initial diversification of sections in the subgenus Cerris was dated between the mid-Oligocene and the Oligocene-Miocene boundary, while a rapid species radiation in section Quercus started in the late Miocene. Diversification simulations indicate a potential evolutionary shift on section Quercus, while several phenotypic shifts likely occur among all sections. We found significant negative correlations between rates of the lineage diversification and phenotypic turnover, suggesting a complex interaction between the species evolution and morphological divergence in Chinese oaks. Our infrageneric phylogeny of Chinese oaks accords with the recently proposed classification of the genus Quercus. The results point to tectonic activity and climatic change during the Tertiary as possible drivers of evolution and diversification in the Chinese oak's lineage.
Collapse
Affiliation(s)
- Jia Yang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Yu-Fan Guo
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Xiao-Dan Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Xiao Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Miao-Miao Ju
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Guo-Qing Bai
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
- Institute of Botany of Shaanxi Province, Xi’an 710061, China
| | - Zhan-Lin Liu
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Gui-Fang Zhao
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| |
Collapse
|
33
|
Barden P, Perrichot V, Wang B. Specialized Predation Drives Aberrant Morphological Integration and Diversity in the Earliest Ants. Curr Biol 2020; 30:3818-3824.e4. [PMID: 32763171 DOI: 10.1016/j.cub.2020.06.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Extinct haidomyrmecine "hell ants" are among the earliest ants known [1, 2]. These eusocial Cretaceous taxa diverged from extant lineages prior to the most recent common ancestor of all living ants [3] and possessed bizarre scythe-like mouthparts along with a striking array of horn-like cephalic projections [4-6]. Despite the morphological breadth of the fifteen thousand known extant ant species, phenotypic syndromes found in the Cretaceous are without parallel and the evolutionary drivers of extinct diversity are unknown. Here, we provide a mechanistic explanation for aberrant hell ant morphology through phylogenetic reconstruction and comparative methods, as well as a newly reported specimen. We report a remarkable instance of fossilized predation that provides direct evidence for the function of dorsoventrally expanded mandibles and elaborate horns. Our findings confirm the hypothesis that hell ants captured other arthropods between mandible and horn in a manner that could only be achieved by articulating their mouthparts in an axial plane perpendicular to that of modern ants. We demonstrate that the head capsule and mandibles of haidomyrmecines are uniquely integrated as a consequence of this predatory mode and covary across species while finding no evidence of such modular integration in extant ant groups. We suggest that hell ant cephalic integration-analogous to the vertebrate skull-triggered a pathway for an ancient adaptive radiation and expansion into morphospace unoccupied by any living taxon.
Collapse
Affiliation(s)
- Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Dr Martin Luther King Jr Boulevard, Newark, NJ 07102, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY 10024, USA.
| | - Vincent Perrichot
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, 35000 Rennes, France.
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
34
|
Pull CD, McMahon DP. Superorganism Immunity: A Major Transition in Immune System Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
35
|
Shinohara T, Takami Y. Functional diversity and trade-offs in divergent antipredator morphologies in herbivorous insects. Ecol Evol 2020; 10:5089-5096. [PMID: 32551084 PMCID: PMC7297758 DOI: 10.1002/ece3.6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 11/07/2022] Open
Abstract
Predator-prey interactions may be responsible for enormous morphological diversity in prey species. We performed predation experiments with morphological manipulations (ablation) to investigate the defensive function of dorsal spines and explanate margins in Cassidinae leaf beetles against three types of predators: assassin bugs (stinger), crab spiders (biter), and tree frogs (swallower). There was mixed support for the importance of primary defense mechanisms (i.e., preventing detection or identification). Intact spined prey possessing dorsal spines were more likely to be attacked by assassin bugs and tree frogs, while intact armored prey possessing explanate margins were likely to avoid attack by assassin bugs. In support of the secondary defense mechanisms (i.e., preventing subjugation), dorsal spines had a significant physical defensive function against tree frogs, and explanate margins protected against assassin bugs and crab spiders. Our results suggest a trade-off between primary and secondary defenses. Dorsal spines improved the secondary defense but weakened the primary defense against tree frogs. We also detected a trade-off in which dorsal spines and explanate margins improved secondary defenses against mutually exclusive predator types. Adaptation to different predatory regimes and functional trade-offs may mediate the diversification of external morphological defenses in Cassidinae leaf beetles.
Collapse
Affiliation(s)
- Tadashi Shinohara
- Graduate School of Human Development & EnvironmentKobe UniversityKobeJapan
| | - Yasuoki Takami
- Graduate School of Human Development & EnvironmentKobe UniversityKobeJapan
| |
Collapse
|
36
|
Blanchard BD, Nakamura A, Cao M, Chen ST, Moreau CS. Spine and dine: A key defensive trait promotes ecological success in spiny ants. Ecol Evol 2020; 10:5852-5863. [PMID: 32607195 PMCID: PMC7319116 DOI: 10.1002/ece3.6322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
A key focus of ecologists is explaining the origin and maintenance of morphological diversity and its association with ecological success. We investigate potential benefits and costs of a common and varied morphological trait, cuticular spines, for foraging behavior, interspecific competition, and predator-prey interactions in naturally co-occurring spiny ants (Hymenoptera: Formicidae: Polyrhachis) in an experimental setting. We expect that a defensive trait like spines might be associated with more conspicuous foraging, a greater number of workers sent out to forage, and potentially increased competitive ability. Alternatively, consistent with the ecological trade-off hypothesis, we expect that investment in spines for antipredator defense might be negatively correlated with these other ecological traits. We find little evidence for any costs to ecological traits, instead finding that species with longer spines either outperform or do not differ from species with shorter spines for all tested metrics, including resource discovery rate and foraging effort as well as competitive ability and antipredator defense. Spines appear to confer broad antipredator benefits and serve as a form of defense with undetectable costs to key ecological abilities like resource foraging and competitive ability, providing an explanation for both the ecological success of the study genus and the large number of evolutionary origins of this trait across all ants. This study also provides a rare quantitative empirical test of ecological effects related to a morphological trait in ants.
Collapse
Affiliation(s)
- Benjamin D. Blanchard
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Department of Science and EducationIntegrative Research CenterField Museum of Natural HistoryChicagoILUSA
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
| | - Min Cao
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
| | | | - Corrie S. Moreau
- Departments of Entomology and Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
37
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
38
|
Barua A, Mikheyev AS. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates. Proc Biol Sci 2020; 287:20200613. [PMID: 32345154 PMCID: PMC7282918 DOI: 10.1098/rspb.2020.0613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Key innovations provide ecological opportunity by enabling access to new resources, colonization of new environments, and are associated with adaptive radiation. The most well-known pattern associated with adaptive radiation is an early burst of phenotypic diversification. Venoms facilitate prey capture and are widely believed to be key innovations leading to adaptive radiation. However, few studies have estimated their evolutionary rate dynamics. Here, we test for patterns of adaptive evolution in venom gene expression data from 52 venomous snake species. By identifying shifts in tempo and mode of evolution along with models of phenotypic evolution, we show that snake venom exhibits the macroevolutionary dynamics expected of key innovations. Namely, all toxin families undergo shifts in their rates of evolution, likely in response to changes in adaptive optima. Furthermore, we show that rapid-pulsed evolution modelled as a Lévy process better fits snake venom evolution than conventional early burst or Ornstein-Uhlenbeck models. While our results support the idea of snake venom being a key innovation, the innovation of venom chemistry lacks clear mechanisms that would lead to reproductive isolation and thus adaptive radiation. Therefore, the extent to which venom directly influences the diversification process is still a matter of contention.
Collapse
Affiliation(s)
- Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
- Evolutionary genomics group, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
39
|
Anderson PSL, Rivera MD, Suarez AV. "Simple" Biomechanical Model for Ants Reveals How Correlated Evolution among Body Segments Minimizes Variation in Center of Mass as Heads Get Larger. Integr Comp Biol 2020; 60:1193-1207. [PMID: 32386301 DOI: 10.1093/icb/icaa027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of comparative biomechanics strives to understand the diversity of the biological world through the lens of physics. To accomplish this, researchers apply a variety of modeling approaches to explore the evolution of form and function ranging from basic lever models to intricate computer simulations. While advances in technology have allowed for increasing model complexity, insight can still be gained through the use of low-parameter "simple" models. All models, regardless of complexity, are simplifications of reality and must make assumptions; "simple" models just make more assumptions than complex ones. However, "simple" models have several advantages. They allow individual parameters to be isolated and tested systematically, can be made applicable to a wide range of organisms and make good starting points for comparative studies, allowing for complexity to be added as needed. To illustrate these ideas, we perform a case study on body form and center of mass stability in ants. Ants show a wide diversity of body forms, particularly in terms of the relative size of the head, petiole(s), and gaster (the latter two make-up the segments of the abdomen not fused to thorax in hymenopterans). We use a "simple" model to explore whether balance issues pertaining to the center of mass influence patterns of segment expansion across major ant clades. Results from phylogenetic comparative methods imply that the location of the center of mass in an ant's body is under stabilizing selection, constraining the center of mass to the middle segment (thorax) over the legs. This is potentially maintained by correlated rates of evolution between the head and gaster on either end. While these patterns arise from a model that makes several assumptions/simplifications relating to shape and materials, they still offer intriguing insights into the body plan of ants across ∼68% of their diversity. The results from our case study illustrate how "simple," low-parameter models both highlight fundamental biomechanical trends and aid in crystalizing specific questions and hypotheses for more complex models to address.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, IL, USA.,Beckman Institute for Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Michael D Rivera
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Andrew V Suarez
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, IL, USA.,Beckman Institute for Science and Technology, University of Illinois, Urbana-Champaign, IL, USA.,Department of Entomology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
40
|
From molecules to macroevolution: Venom as a model system for evolutionary biology across levels of life. Toxicon X 2020; 6:100034. [PMID: 32550589 PMCID: PMC7285901 DOI: 10.1016/j.toxcx.2020.100034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Biological systems are inherently hierarchical. Consequently, any field which aims to understand an aspect of biology holistically requires investigations at each level of the hierarchy of life, and venom research is no exception. This article aims to illustrate the structure of the field in light of a ‘levels of life’ perspective. In doing so, I highlight how traditional fields and approaches fit into this structure as focussing on describing levels or investigating links between levels, and emphasise where implicit assumptions are made due to lack of direct information. Taking a ‘levels of life’ perspective to venom research enables us to understand the complementarity of different research programmes and identify avenues for future research. Moreover, it provides a broader view that, in itself, shows how new questions can be addressed. For instance, understanding how adaptations develop and function from molecular to organismal scales, and what the consequences are of those adaptations at scales from molecular to macroevolutionary, is a general question relevant to a great deal of biology. As a trait which is molecular in nature and has clearer and more direct links between genotype and phenotype than many other traits, venom provides a relatively simple system to address such questions. Furthermore, because venom is also diverse at each level of life, the complexity within the hierarchical structure provides variation that enables powerful analytical approaches to answering questions. As a result, venom provides an excellent model system for understanding big questions in evolutionary biology. Venom is a molecular trait used directly in fitness-relevant ecological interaction. Venom is consequently an ideal model system for evolutionary biology. A ‘levels of life’ perspective is well suited to research in venom biology. This structure of the field provides many advantages to guide future studies. Clinical implications can arise from studies of venom at all levels of life.
Collapse
|
41
|
Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. Proc Natl Acad Sci U S A 2020; 117:6608-6615. [PMID: 32152103 PMCID: PMC7104247 DOI: 10.1073/pnas.1913750117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The scope of adaptive phenotypic change within a lineage is shaped by how functional traits evolve. Castes are defining functional traits of adaptive phenotypic change in complex insect societies, and caste evolution is expected to be phylogenetically conserved and developmentally constrained at broad phylogenetic scales. Yet how castes evolve at the species level has remained largely unaddressed. Turtle ant soldiers (genus Cephalotes), an iconic example of caste specialization, defend nest entrances by using their elaborately armored heads as living barricades. Across species, soldier morphotype determines entrance specialization and defensive strategy, while head size sets the specific size of defended entrances. Our species-level comparative analyses of morphotype and head size evolution reveal that these key ecomorphological traits are extensively reversible, repeatable, and decoupled within soldiers and between soldier and queen castes. Repeated evolutionary gains and losses of the four morphotypes were reconstructed consistently across multiple analyses. In addition, morphotype did not predict mean head size across the three most common morphotypes, and head size distributions overlapped broadly across all morphotypes. Concordantly, multiple model-fitting approaches suggested that soldier head size evolution is best explained by a process of divergent pulses of change. Finally, while soldier and queen head size were broadly coupled across species, the level of head size disparity between castes was decoupled from both queen head size and soldier morphotype. These findings demonstrate that caste evolution can be highly dynamic at the species level, reshaping our understanding of adaptive morphological change in complex social lineages.
Collapse
|
42
|
Caste-specific morphological modularity in the ant tribe Camponotini (Hymenoptera, Formicidae). BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0048-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The morphological structures of organisms form tightly integrated but mutually independent character complexes (modules) linked through common development and function. Even though their abundance, diversity, and complex caste systems make camponotine ants ideal subjects to research developmental modularity and phenotypic integration, no studies investigating these phenomena have been conducted in this taxonomic group. This study attempts to identify and visualize integrated character complexes in 14 taxa from the genera Camponotus and Colobopsis using statistical analyses of morphometry.
Results
The identified modules differ between castes: Minor workers have small heads and long extremities, while major workers have enlarged heads modified for defence, and short, thick appendages; extremities (legs and antennae) are strongly correlated in both worker castes. Gynes show weaker integration of extremities, but a strong correlation of mesosoma and eyes, and highly variable median ocellus size. Gynes infested by mermithid nematodes exhibit reduction of gyne-specific characters and altered patterns of phenotypic integration.
Conclusion
The integrated character complexes described herein can largely be interpreted as functional, caste-specific modules related to behavioural ecology and task allocation within ant colonies. This modular nature of the body plan is hypothesized to facilitate the evolution of novel phenotypes and thus contributes to the tremendous evolutionary success of ants. The study of these modules can help to further elucidate the evolution and ontogeny of castes in camponotine ants, as well as the effects of parasite infestation on the phenotype.
Collapse
|
43
|
Skarbek CJ, Noack M, Bruelheide H, Härdtle W, von Oheimb G, Scholten T, Seitz S, Staab M. A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. J Anim Ecol 2019; 89:299-308. [DOI: 10.1111/1365-2656.13115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Carl J. Skarbek
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
- Biometry and Environmental System Analysis Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Merle Noack
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University of Lüneburg Lüneburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Thomas Scholten
- Soil Science and Geomorphology Department of Geosciences University of Tübingen Tübingen Germany
| | - Steffen Seitz
- Soil Science and Geomorphology Department of Geosciences University of Tübingen Tübingen Germany
| | - Michael Staab
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| |
Collapse
|
44
|
Wessinger CA, Rausher MD, Hileman LC. Adaptation to hummingbird pollination is associated with reduced diversification in Penstemon. Evol Lett 2019; 3:521-533. [PMID: 31636944 PMCID: PMC6791294 DOI: 10.1002/evl3.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diversification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolutionary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon. Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred, although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is consistent with predicted levels of diversity under stable macroevolutionary rates.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| | - Mark D Rausher
- Department of Biology Duke University Durham North Carolina 27708
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| |
Collapse
|
45
|
Linksvayer TA, Johnson BR. Re-thinking the social ladder approach for elucidating the evolution and molecular basis of insect societies. CURRENT OPINION IN INSECT SCIENCE 2019; 34:123-129. [PMID: 31401545 DOI: 10.1016/j.cois.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The evolution of large insect societies is a major evolutionary transition that occurred in the long-extinct ancestors of termites, ants, corbiculate bees, and vespid wasps. Researchers have long used 'social ladder thinking': assuming progressive stepwise phenotypic evolution and asserting that extant species with simple societies (e.g. some halictid bees) represent the ancestors of species with complex societies, and thus provide insight into general early steps of eusocial evolution. We discuss how this is inconsistent with data and modern evolutionary 'tree thinking'. Phylogenetic comparative methods with broad sampling provide the best means to make rigorous inferences about ancestral traits and evolutionary transitions that occurred within each lineage, and to determine whether consistent phenotypic and genomic changes occurred across independent lineages.
Collapse
Affiliation(s)
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California Davis, United States
| |
Collapse
|
46
|
Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett 2019; 366:5499024. [DOI: 10.1093/femsle/fnz117] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
ABSTRACTIt is often taken for granted that all animals host and depend upon a microbiome, yet this has only been shown for a small proportion of species. We propose that animals span a continuum of reliance on microbial symbionts. At one end are the famously symbiont-dependent species such as aphids, humans, corals and cows, in which microbes are abundant and important to host fitness. In the middle are species that may tolerate some microbial colonization but are only minimally or facultatively dependent. At the other end are species that lack beneficial symbionts altogether. While their existence may seem improbable, animals are capable of limiting microbial growth in and on their bodies, and a microbially independent lifestyle may be favored by selection under some circumstances. There is already evidence for several ‘microbiome-free’ lineages that represent distantly related branches in the animal phylogeny. We discuss why these animals have received such little attention, highlighting the potential for contaminants, transients, and parasites to masquerade as beneficial symbionts. We also suggest ways to explore microbiomes that address the limitations of DNA sequencing. We call for further research on microbiome-free taxa to provide a more complete understanding of the ecology and evolution of macrobe-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX 78712, USA
| | - Jon G Sanders
- Cornell Institute of Host–Microbe Interactions and Disease, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA
| | - Noah Fierer
- Department of Ecology & Evolutionary Biology, University of Colorado at Boulder, 216 UCB, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, CIRES Bldg. Rm. 318, Boulder, CO 80309, USA
| |
Collapse
|
47
|
Fujioka H, Abe MS, Okada Y. Observation of plugging behaviour reveals entrance‐guarding schedule of morphologically specialized caste in
Colobopsis nipponicus. Ethology 2019. [DOI: 10.1111/eth.12877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
| | - Masato S. Abe
- RIKEN Center for Advanced Intelligence Project Tokyo Japan
| | - Yasukazu Okada
- Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Department of Biological Sciences Tokyo Metropolitan University Tokyo Japan
| |
Collapse
|
48
|
Wright AM. A Systematist's Guide to Estimating Bayesian Phylogenies From Morphological Data. INSECT SYSTEMATICS AND DIVERSITY 2019; 3:2. [PMID: 31355348 PMCID: PMC6643758 DOI: 10.1093/isd/ixz006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 05/07/2023]
Abstract
Phylogenetic trees are crucial to many aspects of taxonomic and comparative biology. Many researchers have adopted Bayesian methods to estimate their phylogenetic trees. In this family of methods, a model of morphological evolution is assumed to have generated the data observed by the researcher. These models make a variety of assumptions about the evolution of morphological characters, and these assumptions are translated into mathematics as parameters. The incorporation of prior distributions further allows researchers to quantify their prior beliefs about the value any one parameter can take. How to translate biological knowledge into mathematical language is difficult, and can be confusing to many biologists. This review aims to help systematics researchers understand the biological meaning of common models and assumptions. Using examples from the insect fossil record, I will demonstrate empirically what assumptions mean in concrete terms, and discuss how researchers can use and understand Bayesian methods for phylogenetic estimation.
Collapse
Affiliation(s)
- April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA
| |
Collapse
|
49
|
Wang L, Cornell SJ, Speed MP. The evolution of variance in sequential defences. J Theor Biol 2019; 462:194-209. [PMID: 30300647 DOI: 10.1016/j.jtbi.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 01/14/2023]
Abstract
The defences used by organisms against predators display a great degree of variability. Defence phenotypes can differ substantially among individuals of the same species, and a single individual can itself deploy a variety of defences. Here, we use a mathematical model that includes mutation and selection to understand the evolutionary origin of this variability in a population of a species that deploys defences sequentially ("first" and "second" defences). Typically, the first defence evolves to have lower variance, i.e. appears more closely accumulated around the ideal phenotype, than the second defence (even when the breaching the first defence incurs more fitness loss than breaching the second defence with the other parameters the same for both defences). However, if the first defence is much less effective in repelling predators, or is much less tolerant of deviation from the ideal phenotype, then the first defence can evolve to have higher variance than the second. Other factors like mutation strength and the losses in the fitness when each defence fails also influence the defence variance. Larger mutation rate incurs larger equilibrium variances, and when the comparative importance in fitness of one defence increases, then the ratio between the variances of this defence and the other defence decreases. Sequentially acting defences are found in many organisms, so we encourage empirical research to test our theoretical predictions.
Collapse
Affiliation(s)
- Lingzi Wang
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Stephen J Cornell
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
50
|
Harris RJ, Jenner RA. Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System. Toxins (Basel) 2019; 11:E60. [PMID: 30678265 PMCID: PMC6409815 DOI: 10.3390/toxins11020060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Research on venomous animals has mainly focused on the molecular, biochemical, and pharmacological aspects of venom toxins. However, it is the relatively neglected broader study of evolutionary ecology that is crucial for understanding the biological relevance of venom systems. As fish have convergently evolved venom systems multiple times, it makes them ideal organisms to investigate the evolutionary ecology of venom on a broader scale. This review outlines what is known about how fish venom systems evolved as a result of natural enemy interactions and about the ecological consequences of evolving a venom system. This review will show how research on the evolutionary ecology of venom in fish can aid in understanding the evolutionary ecology of animal venoms more generally. Further, understanding these broad ecological questions can shed more light on the other areas of toxinology, with applications across multiple disciplinary fields.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Ronald A Jenner
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| |
Collapse
|