1
|
Shirani F, Miller JR. Matching Habitat Choice and the Evolution of a Species' Range. Bull Math Biol 2025; 87:70. [PMID: 40332627 PMCID: PMC12058903 DOI: 10.1007/s11538-025-01445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025]
Abstract
Natural selection is not the only mechanism that promotes adaptation of an organism to its environment. Another mechanism is matching habitat choice, in which individuals sense and disperse toward habitat best suited to their phenotype. This can in principle facilitate rapid adaptation, enhance range expansion, and promote genetic differentiation, reproductive isolation, and speciation. However, empirical evidence that confirms the evolution of matching habitat choice in nature is limited. Here we obtain theoretical evidence that phenotype-optimal dispersal, a particular form of matching habitat choice, is likely to evolve only in the presence of a steep environmental gradient. Such a gradient may be steeper than the gradient the majority of species typically experience in nature, adding to the collection of possible explanations for the scarcity of evidence for matching habitat choice. We draw this conclusion from numerical solutions of a system of deterministic partial differential equations for a population's density along with the mean and variance of a fitness-related quantitative phenotypic trait such as body size. In steep gradients, we find that phenotype-optimal dispersal facilitates rapid adaptation on single-generation time scales, reduces within-population trait variation, increases range expansion speed, and enhances the chance of survival in rapidly changing environments. Moreover, it creates a directed gene flow that compensates for the maladaptive core-to-edge effects of random gene flow caused by random movements. These results suggest that adaptive gene flow to range margins, together with substantially reduced trait variation at central populations, may be hallmarks of phenotype-optimal dispersal in natural populations. Further, slowly-growing species under strong natural selection may particularly benefit from evolving phenotype-optimal dispersal.
Collapse
Affiliation(s)
- Farshad Shirani
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Judith R Miller
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
2
|
Munar-Delgado G, Pulido F, Edelaar P. Performance-based habitat choice can drive rapid adaptive divergence and reproductive isolation. Curr Biol 2024; 34:5564-5569.e4. [PMID: 39471808 DOI: 10.1016/j.cub.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Theory predicts that performance-based habitat choice1,2,3-where individuals select environments based on their local performance-should be widespread in nature and significantly influence ecological and evolutionary processes, including local adaptation, population divergence, reproductive isolation, and speciation.2,4,5,6,7,8,9 However, experimental evidence supporting these predictions has been largely lacking. In this study, we addressed this by inducing performance-based habitat choice in wild tree sparrows (Passer montanus) through the manipulation of differential access to transponder-operated feeders in two adjacent woodland areas. Sparrows overwhelmingly chose to move to and breed in the area where their feeding performance was highest, leading to local adaptation and increased reproductive success. Moreover, this non-random movement led to a high degree of assortative mating for transponder type and to reproductive isolation with respect to this ecological trait-all within a single generation. Our findings provide an empirical proof of principle that performance-based habitat choice can drive adaptive population divergence, even in the absence of divergent natural selection, underscoring its potential role as a key mechanism in ecological and evolutionary dynamics. This highlights the importance of integrating performance-based habitat choice into broader frameworks of adaptation and speciation, especially in the context of rapidly changing environments.
Collapse
Affiliation(s)
- Gabriel Munar-Delgado
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain; CIBIO-InBio, Research Centre in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal.
| | - Francisco Pulido
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville 41013, Spain.
| |
Collapse
|
3
|
Regan CE, Beck KB, McMahon K, Crofts S, Firth JA, Sheldon BC. Social phenotype-dependent selection of social environment in wild great and blue tits: an experimental study. Proc Biol Sci 2022; 289:20221602. [DOI: 10.1098/rspb.2022.1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There is growing evidence that individuals actively assess the match between their phenotype and their environment when making habitat choice decisions (so-called matching habitat choice). However, to our knowledge, no studies have considered how the social environment may interact with social phenotype in determining habitat choice, despite habitat choice being an inherently social process and growing evidence for individual variation in sociability. We conducted an experiment using wild great and blue tits to understand how birds integrate their social phenotype and social environment when choosing where and how to feed. We used programmable feeders to (i) record social interactions and estimate social phenotype, and (ii) experimentally manipulate the local density experienced by birds of differing social phenotype. By tracking feeder usage, we estimated how social environment and social phenotype predicted feeder choice and feeding behaviour. Both social environment and social phenotype predicted feeder usage, but a bird's decision to remain in a particular social environment did not depend on their social phenotype. By contrast, for feeding behaviour, responses to the social environment depended on social phenotype. Our results provide rare evidence of matching habitat choice and shed light on the dependence of habitat choice on between-individual differences in social phenotype.
Collapse
Affiliation(s)
- Charlotte E. Regan
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| | - Kristina B. Beck
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| | - Keith McMahon
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| | - Sam Crofts
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| | - Josh A. Firth
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| | - Ben C. Sheldon
- Edward Grey Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3RT, UK
| |
Collapse
|
4
|
Cheek RG, Forester BR, Salerno PE, Trumbo DR, Chen N, Sillett TS, Morrison SA, Ghalambor CK, Funk WC. Habitat-linked genetic variation supports microgeographic adaptive divergence in an island-endemic bird species. Mol Ecol 2022; 31:2830-2846. [PMID: 35315161 PMCID: PMC9325526 DOI: 10.1111/mec.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250 km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA) similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3,000 single nucleotide polymorphisms (SNPs) in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing (RADseq). Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis (RDA) while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.
Collapse
Affiliation(s)
- Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Patricia E Salerno
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20013, USA
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
5
|
Diedericks G, Broeckhoven C, von der Heyden S, Weyl OLF, Hui C. The Role of Directed Dispersal in Driving Genetic and Morphological Structure in Invasive Smallmouth Bass. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.790829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dispersal is an essential life-history trait crucial to species persistence and diversification. This is particularly important in spatiotemporal fluctuating environments such as freshwater habitats, where species movement is confined to the dendritic network and wetted boundaries. To persist in such fluctuating environments, a species can modify, adaptively and plastically, its phenotypic variation to better match the environment or escape via directed dispersal to a more suitable habitat (i.e., matching habitat choice). We use the invasive smallmouth bass, Micropterus dolomieu, sampled at 10 km intervals, to assess the effect of directed dispersal on the fine scale genetic and phenotypic variation in populations of M. dolomieu along a river course. Gene flow was used as a proxy for dispersal. By comparing population genetic structure, morphological variation (of linear traits and geometric landmarks), and environmental heterogeneity, we discovered a clear correlation between environmental variation and morphological traits. Although isolation by distance seemed to have shaped the overall genetic pattern detected among the populations, the strong genetic structuring observed within the Ratel tributary appeared to be non-random. These results provide novel insights into the potential mechanisms promoting the spread and establishment of invasive species and the possible influence multiple introductions may have on fine scale genetic structuring.
Collapse
|
6
|
Porter CK, Benkman CW. Performance tradeoffs and resource availability drive variation in reproductive isolation between sympatrically diverging crossbills. Am Nat 2021; 199:362-379. [DOI: 10.1086/718235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Czuppon P, Blanquart F, Uecker H, Débarre F. The Effect of Habitat Choice on Evolutionary Rescue in Subdivided Populations. Am Nat 2021; 197:625-643. [PMID: 33989144 DOI: 10.1086/714034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvolutionary rescue is the process by which a population, in response to an environmental change, successfully avoids extinction through adaptation. In spatially structured environments, dispersal can affect the probability of rescue. Here, we model an environment consisting of patches that degrade one after another, and we investigate the probability of rescue by a mutant adapted to the degraded habitat. We focus on the effects of dispersal and of immigration biases. We identify up to three regions delimiting the effect of dispersal on the probability of evolutionary rescue: (i) starting from low dispersal rates, the probability of rescue increases with dispersal; (ii) at intermediate dispersal rates, it decreases; and (iii) at large dispersal rates, it increases again with dispersal, except if mutants are too counterselected in not-yet-degraded patches. The probability of rescue is generally highest when mutant and wild-type individuals preferentially immigrate into patches that have already undergone environmental change. Additionally, we find that mutants that will eventually rescue the population most likely first appear in nondegraded patches. Overall, our results show that habitat choice, compared with the often-studied unbiased immigration scheme, can substantially alter the dynamics of population survival and adaptation to new environments.
Collapse
|
8
|
Zhang M, Su C, Lu C. Cones structure and seed traits of four species of large-seeded pines: Adaptation to animal-mediated dispersal. Ecol Evol 2020; 10:5293-5301. [PMID: 32607152 PMCID: PMC7319130 DOI: 10.1002/ece3.6273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/07/2022] Open
Abstract
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large-seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal-dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal-dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal-dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large-seeded pines and their seed dispersers.
Collapse
Affiliation(s)
- Man‐Yu Zhang
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Chang‐Xiang Su
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Chang‐Hu Lu
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
9
|
Camacho C, Sanabria-Fernández A, Baños-Villalba A, Edelaar P. Experimental evidence that matching habitat choice drives local adaptation in a wild population. Proc Biol Sci 2020; 287:20200721. [PMID: 32429813 PMCID: PMC7287376 DOI: 10.1098/rspb.2020.0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers (Sphingonotus azurescens) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype-environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.
Collapse
Affiliation(s)
| | | | | | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km. 1, 41013 Seville, Spain
| |
Collapse
|
10
|
Affiliation(s)
- Carlos Camacho
- Dept of Evolutionary Ecology, Estación Biológica de Doñana – CSIC Seville Spain
- Dept of Biology, Centre for Animal Movement Research (CAnMove). Lund Univ. Ecology Building SE‐223 62 Lund Sweden
| | - Andrew P. Hendry
- Redpath Museum and Dept of Biology, McGill Univ. Montréal QC Canada
| |
Collapse
|
11
|
Porter CK, Benkman CW. Character displacement of a learned behaviour and its implications for ecological speciation. Proc Biol Sci 2019; 286:20190761. [PMID: 31362636 DOI: 10.1098/rspb.2019.0761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cultural evolution may accelerate population divergence and speciation, though most support for this hypothesis is restricted to scenarios of allopatric speciation driven by random cultural drift. By contrast, the role of cultural evolution in non-allopatric speciation (i.e. speciation with gene flow) has received much less attention. One clade in which cultural evolution may have figured prominently in speciation with gene flow includes the conifer-seed-eating finches in the red crossbill (Loxia curvirostra) complex. Here we focus on Cassia crossbills (Loxia sinesciuris; an ecotype recently split taxonomically from red crossbills) that learn social contact calls from their parents. Previous work found that individuals modify their calls throughout life such that they become increasingly divergent from a closely related, sympatric red crossbill ecotype. This open-ended modification of calls could lead to character displacement if it causes population-level divergence in call structure that, in turn, reduces (maladaptive) heterospecific flocking. Heterospecific flocking is maladaptive because crossbills use public information from flockmates to assess resource quality, and feeding rates are depressed when flockmates differ in their ability to exploit a shared resource (i.e. when flockmates are heterospecifics). We confirm the predictions of character displacement by documenting substantial population-level divergence in Cassia crossbill call structure over just two decades and by using field experiments to demonstrate that Cassia and red crossbills differentially respond to these evolved differences in call structure, reducing heterospecific flock formation. Moreover, because crossbills choose mates from within flocks, a reduction in heterospecific flocking should increase assortative mating and may have been critical for speciation of Cassia crossbills in the face of ongoing gene flow in as few as 5000 years. Our results provide evidence for a largely neglected yet potentially widespread mechanism by which reproductive isolation can evolve between sympatric lineages as a byproduct of adaptive cultural evolution.
Collapse
Affiliation(s)
- Cody K Porter
- Program in Ecology, Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| | - Craig W Benkman
- Program in Ecology, Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA
| |
Collapse
|
12
|
Mameri D, van Kammen C, Groothuis TGG, Seehausen O, Maan ME. Visual adaptation and microhabitat choice in Lake Victoria cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181876. [PMID: 31032041 PMCID: PMC6458373 DOI: 10.1098/rsos.181876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 06/04/2023]
Abstract
When different genotypes choose different habitats to better match their phenotypes, genetic differentiation within a population may be promoted. Mating within those habitats may subsequently contribute to reproductive isolation. In cichlid fish, visual adaptation to alternative visual environments is hypothesized to contribute to speciation. Here, we investigated whether variation in visual sensitivity causes different visual habitat preferences, using two closely related cichlid species that occur at different but overlapping water depths in Lake Victoria and that differ in visual perception (Pundamilia spp.). In addition to species differences, we explored potential effects of visual plasticity, by rearing fish in two different light conditions: broad-spectrum (mimicking shallow water) and red-shifted (mimicking deeper waters). Contrary to expectations, fish did not prefer the light environment that mimicked their typical natural habitat. Instead, we found an overall preference for the broad-spectrum environment. We also found a transient influence of the rearing condition, indicating that the assessment of microhabitat preference requires repeated testing to control for familiarity effects. Together, our results show that cichlid fish exert visual habitat preference but do not support straightforward visual habitat matching.
Collapse
Affiliation(s)
- Daniel Mameri
- CEF – Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Corina van Kammen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
| | - Ton G. G. Groothuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Pellerin F, Cote J, Bestion E, Aguilée R. Matching habitat choice promotes species persistence under climate change. OIKOS 2018. [DOI: 10.1111/oik.05309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Félix Pellerin
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| | - Julien Cote
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| | - Elvire Bestion
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
- Environment and Sustainability Inst., College of Life and Environmental Sciences, Univ. of Exeter; Penryn Cornwall UK
| | - Robin Aguilée
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, Univ; Toulouse III Paul Sabatier, 118 route de Narbonne FR-31062 Toulouse France
| |
Collapse
|
14
|
Parchman TL, Edelaar P, Uckele K, Mezquida ET, Alonso D, Jahner JP, Summers RW, Benkman CW. Resource stability and geographic isolation are associated with genome divergence in western Palearctic crossbills. J Evol Biol 2018; 31:1715-1731. [PMID: 30125437 DOI: 10.1111/jeb.13367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/25/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023]
Abstract
While many conifers produce annually variable seed crops, serotinous species (which hold seeds in cones for multiple years) represent unusually stable food resources for seed predators. Such stability is conducive to residency and potentially population divergence of consumers as exemplified by the Cassia crossbill (Loxia sinesciuris) in North America. We used genotyping by sequencing (GBS) to test whether three Mediterranean subspecies of common crossbills (L. curvirostra) associated with the serotinous Aleppo pine (Pinus halepensis) were more genetically distinct than European crossbills associated with nonserotinous conifers. We assembled a Cassia crossbill draft genome as a reference for mapping GBS reads and as a first step towards a more contiguous genome assembly. We found clear patterns of genetic divergence for each of the P. halepensis-associated subspecies. Geographic isolation, as promoted by resource stability and residency, is associated with genetic divergence of two of these subspecies. However, geographic isolation cannot account for divergence of L. c. hispana. Instead, resource stability likely contributed to divergence by reducing dispersal and increasing resource competition that may limit breeding by immigrants. In contrast, we found no differentiation among common crossbills associated with less stable resources, and only slight differentiation between common crossbills and parrot crossbills (L. pytyopsittacus). The substantial morphological divergence between common and parrot crossbills has likely originated or been maintained by selection despite gene flow generated by spatiotemporal resource fluctuation. Our results indicate that phenological as well as morphological characteristics of conifers have influenced crossbill diversification, and suggest a possible link between resource stability and population divergence.
Collapse
Affiliation(s)
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
| | - Kathryn Uckele
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, NV, USA
| | - Eduardo T Mezquida
- Department of Ecology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
| | - Daniel Alonso
- Department of Ornithology, Aranzadi Sciences Society, Donostia-S. Sebastián, Spain
| | - Joshua P Jahner
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Ron W Summers
- Royal Society for the Protection of Birds Centre for Conservation Science, North Scotland Regional Office, Inverness, UK
| | - Craig W Benkman
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
15
|
Akcali CK, Porter CK. Comment on Van Belleghem et al. 2016: Habitat choice mechanisms in speciation and other forms of diversification. Evolution 2017; 71:2754-2761. [DOI: 10.1111/evo.13375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Christopher K. Akcali
- Department of Biology; University of North Carolina; Chapel Hill North Carolina 27599 USA
- North Carolina Museum of Natural Sciences; Raleigh North Carolina 27601 USA
| | - Cody K. Porter
- Department of Zoology and Physiology; University of Wyoming; Laramie Wyoming 82071 USA
| |
Collapse
|
16
|
Edelaar P, Jovani R, Gomez-Mestre I. Should I Change or Should I Go? Phenotypic Plasticity and Matching Habitat Choice in the Adaptation to Environmental Heterogeneity. Am Nat 2017; 190:506-520. [PMID: 28937819 DOI: 10.1086/693345] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It can be challenging for organisms to achieve a good match between their phenotypic characteristics and environmental requirements that vary in space and time. The evolution of adaptive phenotypes can result from genetic differentiation at the population level. Individuals, however, could also change their phenotype (adaptive plasticity) or select an environment because it matches with their phenotype (matching habitat choice). It is poorly known under which conditions these different solutions to environmental heterogeneity evolve and whether they operate together. Using an individual-based simulation model, we assessed which solutions evolved depending on degree of temporal variation, costs of multiple underlying traits, and order of dispersal and development. Population genetic divergence was superseded by plasticity or matching habitat choice as temporal variation increased. Plasticity and matching habitat choice were limited by their trait costs, even when this involved only a part of the underlying traits. Independent of the order of dispersal and development, plasticity evolved more commonly than matching habitat choice, in part because the match a phenotype can achieve by matching habitat choice is limited by the types of environments available. Our results explain the apparent relative rarity of matching habitat choice in nature. At the same time, our results can be used to look for matching habitat choice in those biological systems where the conditions for other solutions seem unfavorable.
Collapse
|