1
|
Koch EL, Brien MN, Galarza JA, Jiggins CD, Mappes J. Evolutionary potential and constraints in an aposematic species: genetic correlations between warning coloration and fitness components in wood tiger moths. Evolution 2025; 79:393-410. [PMID: 39673401 DOI: 10.1093/evolut/qpae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Variability in warning signals is common but remains puzzling since deviations from the most common form should result in a higher number of predator attacks. One explanation may lie in constraints due to genetic correlations between warning color and other traits under selection. To explore the relationship between variation in warning color and different life-history traits, we used an extensive data set comprising 64,741 individuals from a Finnish and an Estonian population of the wood tiger moths, Arctia plantaginis, that have been maintained in captivity over 25 generations. This species exhibits variable warning coloration in larval and adult stages. Measuring these traits alongside several fitness components allowed us to set color variation into context and obtain a better understanding of selection and constraints. Complete pedigree information enabled us to estimate genetic variances and covariances, which revealed several complex interplays between fitness components: Selection for faster development led to a significantly reduced fecundity. Fecundity was also constrained by negative correlations between direct genetic and maternal effects. However, we found no evidence that genetic associations with life-history traits constrain the efficiency of warning colors.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Melanie N Brien
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juan A Galarza
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Han CS, Robledo-Ruiz DA, Garcia-Gonzalez F, Dingemanse NJ, Tuni C. Unraveling mate choice evolution through indirect genetic effects. Evol Lett 2024; 8:841-850. [PMID: 39677572 PMCID: PMC11637604 DOI: 10.1093/evlett/qrae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 12/17/2024] Open
Abstract
Attractiveness is not solely determined by a single sexual trait but rather by a combination of traits. Because the response of the chooser is based on the combination of sexual traits in the courter, variation in the chooser's responses that are attributable to the opposite-sex courter genotypes (i.e., the indirect genetic effects [IGEs] on chooser response) can reflect genetic variation in overall attractiveness. This genetic variation can be associated with the genetic basis of other traits in both the chooser and the courter. Investigating this complex genetic architecture, including IGEs, can enhance our understanding of the evolution of mate choice. In the present study on the field cricket Gryllus bimaculatus, we estimated (1) genetic variation in overall attractiveness and (2) genetic correlations between overall attractiveness and other pre- and postcopulatory traits (e.g., male latency to sing, female latency to mount, male guarding intensity, male and female body mass, male mandible size, and testis size) within and between sexes. We revealed a genetic basis for attractiveness in both males and females. Furthermore, a genetic variance associated with female attractiveness was correlated with a genetic variance underlying larger male testes. Our findings imply that males that mate with attractive females can produce offspring that are successful in terms of precopulatory sexual selection (daughters who are attractive) and postcopulatory sexual selection (sons with an advantage in sperm competition), potentially leading to runaway sexual selection. Our study exemplifies how the incorporation of the IGE framework provides novel insights into the evolution of mate choice.
Collapse
Affiliation(s)
- Chang S Han
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Diana A Robledo-Ruiz
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francisco Garcia-Gonzalez
- Estación Biológica de Doñana-CSIC, Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Cristina Tuni
- Department of Biology, Ludwig Maximilian University, Munich, Germany
- Department of Life Science & Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
3
|
Chik HYJ, Mannarelli ME, Dos Remedios N, Simons MJP, Burke T, Schroeder J, Dugdale HL. Adult telomere length is positively correlated with survival and lifetime reproductive success in a wild passerine. Mol Ecol 2024; 33:e17455. [PMID: 38993011 DOI: 10.1111/mec.17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Explaining variation in individual fitness is a key goal in evolutionary biology. Recently, telomeres, repeating DNA sequences capping chromosome ends, have gained attention as a biomarker for body state, physiological costs, and senescence. Existing research has provided mixed evidence for whether telomere length correlates with fitness, including survival and reproductive output. Moreover, few studies have examined how the rate of change in telomere length correlates with fitness in wild populations. Here, we intensively monitored an insular population of house sparrows, and collected longitudinal telomere and life history data (16 years, 1225 individuals). We tested whether telomere length and its rate of change predict fitness measures, namely survival, lifespan and annual and lifetime reproductive effort and success. Telomere length positively predicted short-term survival, independent of age, but did not predict lifespan, suggesting either a diminishing telomere length-survival correlation with age or other extrinsic factors of mortality. The positive association of telomere length with survival translated into reproductive benefits, as birds with longer telomeres produced more genetic recruits, hatchlings and reared more fledglings over their lifetime. In contrast, there was no association between telomere dynamics and annual reproductive output, suggesting telomere dynamics might not reflect the costs of reproduction in this population, potentially masked by variation in individual quality. The rate of change of telomere length did not correlate with neither lifespan nor lifetime reproductive success. Our results provide further evidence that telomere length correlates with fitness, and contribute to our understanding of the selection on, and evolution of, telomere dynamics.
Collapse
Affiliation(s)
- Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Maria-Elena Mannarelli
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Natalie Dos Remedios
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Mirre J P Simons
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London Silwood Park, Ascot, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Sauve D, Charmantier A, Hatch SA, Friesen VL. The magnitude of selection on growth varies among years and increases under warming conditions in a subarctic seabird. Evol Lett 2024; 8:56-63. [PMID: 38370550 PMCID: PMC10871900 DOI: 10.1093/evlett/qrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/20/2024] Open
Abstract
Because of ongoing rapid climate change, many ecosystems are becoming both warmer and more variable, and these changes are likely to alter the magnitude and variability of natural selection acting on wild populations. Critically, changes and fluctuations in selection can impact both population demography and evolutionary change. Therefore, predicting the impacts of climate change depends on understanding the magnitude and variation in selection on traits across different life stages and environments. Long-term experiments in wild settings are a great opportunity to determine the impact of environmental conditions on selection. Here we examined variability in the strength of selection on size traits of nestling black-legged kittiwakes (Rissa tridactyla) in a 25-year study including a food supplementation experiment on Middleton Island in the Gulf of Alaska. Using mixed effect models, we examined the annual variability of stage-specific and resource-specific selection gradients across 25 years. We found that (a) larger and heavier hatchlings were the most likely to survive during early ontogeny, (b) non-food supplemented younger nestlings in a brood experienced the strongest selection, and (c) warmer conditions increased the magnitude of selection on nestling mass and affected non-food supplemented and second-hatched nestlings the most. Our results suggested that variable resource dynamics likely caused some of the changes in selection from year to year and that warming conditions increased the strength of selection on subarctic seabird growth. However, our experimental manipulation revealed that local environmental heterogeneity could buffer the selection expected from broader climatic changes. Consequently, understanding the interactive effects of local conditions and general changes in climate seems likely to improve our ability to predict future selection gradients.
Collapse
Affiliation(s)
- Drew Sauve
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, United States
| | - Vicki L Friesen
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Monk CT, Power M, Freitas C, Harrison PM, Heupel M, Kuparinen A, Moland E, Simpfendorfer C, Villegas-Ríos D, Olsen EM. Atlantic cod individual spatial behaviour and stable isotope associations in a no-take marine reserve. J Anim Ecol 2023; 92:2333-2347. [PMID: 37843043 DOI: 10.1111/1365-2656.14014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
Collapse
Affiliation(s)
- Christopher T Monk
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Power
- Biology Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Carla Freitas
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- MARE, Marine and Environmental Sciences Center, Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Philip M Harrison
- Department of Biology and Faculty of Forestry and Environmental Management, Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Michelle Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Even Moland
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Colin Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Esben M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
6
|
Riley CL, Oostra V, Plaistow SJ. Does the definition of a novel environment affect the ability to detect cryptic genetic variation? J Evol Biol 2023; 36:1618-1629. [PMID: 37897127 DOI: 10.1111/jeb.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by 'novel environment', an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta-analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad-scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad-sense measures of variance, and decreased variation in narrow-sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment-dependant genetic variation, highlighting non-additive genetic variance as an important component of cryptic genetic variation and avenue for future research.
Collapse
Affiliation(s)
- Camille L Riley
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| | - Vicencio Oostra
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Stewart J Plaistow
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Gauzere J, Pemberton JM, Kruuk LEB, Morris A, Morris S, Walling CA. Maternal effects do not resolve the paradox of stasis in birth weight in a wild red deer populaton. Evolution 2022; 76:2605-2617. [PMID: 36111977 PMCID: PMC9828841 DOI: 10.1111/evo.14622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
In natural populations, quantitative traits seldom show short-term evolution at the rate predicted by evolutionary models. Resolving this "paradox of stasis" is a key goal in evolutionary biology, as it directly challenges our capacity to predict evolutionary change. One particularly promising hypothesis to explain the lack of evolutionary responses in a key offspring trait, body weight, is that positive selection on juveniles is counterbalanced by selection against maternal investment in offspring growth, given that reproduction is costly for the mothers. Here, we used data from one of the longest individual-based studies of a wild mammal population to test this hypothesis. We first showed that despite positive directional selection on birth weight, and heritable variation for this trait, no genetic change has been observed for birth weight over the past 47 years in the study population. Contrarily to our expectation, we found no evidence of selection against maternal investment in birth weight-if anything, selection favors mothers that produce large calves. Accordingly, we show that genetic change in birth weight over the study period is actually lower than that predicted from models including selection on maternal performance; ultimately our analysis here only deepens rather than resolves the paradox of stasis.
Collapse
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Loeske E. B. Kruuk
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Alison Morris
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Craig A. Walling
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FLUK
| |
Collapse
|
8
|
Decomposing phenotypic skew and its effects on the predicted response to strong selection. Nat Ecol Evol 2022; 6:774-785. [PMID: 35422480 DOI: 10.1038/s41559-022-01694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022]
Abstract
The major frameworks for predicting evolutionary change assume that a phenotype's underlying genetic and environmental components are normally distributed. However, the predictions of these frameworks may no longer hold if distributions are skewed. Despite this, phenotypic skew has never been decomposed, meaning the fundamental assumptions of quantitative genetics remain untested. Here we demonstrate that the substantial phenotypic skew in the body size of juvenile blue tits (Cyanistes caeruleus) is driven by environmental factors. Although skew had little impact on our predictions of selection response in this case, our results highlight the impact of skew on the estimation of inheritance and selection. Specifically, the nonlinear parent-offspring regressions induced by skew, alongside selective disappearance, can strongly bias estimates of heritability. The ubiquity of skew and strong directional selection on juvenile body size imply that heritability is commonly overestimated, which may in part explain the discrepancy between predicted and observed trait evolution.
Collapse
|
9
|
Shutt JD, Bell SC, Bell F, Castello J, El Harouchi M, Burgess MD. Territory‐level temperature influences breeding phenology and reproductive output in three forest passerine birds. OIKOS 2022. [DOI: 10.1111/oik.09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jack D. Shutt
- Piedfly.Net, Yarner Wood Bovey Tracey Devon UK
- Dept of Natural Sciences, Manchester Metropolitan Univ. Manchester UK
| | | | - Fraser Bell
- Centre for Ecology and Conservation, Cornwall Campus, Univ. of Exeter Penryn Cornwall UK
| | - Joan Castello
- Centre for Research in Animal Behaviour, Univ. of Exeter Exeter Devon UK
| | | | - Malcolm D. Burgess
- Centre for Research in Animal Behaviour, Univ. of Exeter Exeter Devon UK
- RSPB Centre for Conservation Science, The Lodge Sandy Bedfordshire UK
| |
Collapse
|
10
|
Labuda D, Harding T, Milot E, Vézina H. The effective family size of immigrant founders predicts their long-term demographic outcome: From Québec settlers to their 20th-century descendants. PLoS One 2022; 17:e0266079. [PMID: 35507549 PMCID: PMC9067642 DOI: 10.1371/journal.pone.0266079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Population history reconstruction, using extant genetic diversity data, routinely relies on simple demographic models to project the past through ascending genealogical-tree branches. Because genealogy and genetics are intimately related, we traced descending genealogies of the Québec founders to pursue their fate and to assess their contribution to the present-day population. Focusing on the female and male founder lines, we observed important sex-biased immigration in the early colony years and documented a remarkable impact of these early immigrants on the genetic make-up of 20th-century Québec. We estimated the immigrants’ survival ratio as a proportion of lineages found in the 1931–60 Québec to their number introduced within the immigration period. We assessed the effective family size, EFS, of all immigrant parents and their Québec-born descendants. The survival ratio of the earliest immigrants was the highest and declined over centuries in association with the immigrants’ EFS. Parents with high EFS left plentiful married descendants, putting EFS as the most important variable determining the parental demographic success throughout time for generations ahead. EFS of immigrant founders appears to predict their long-term demographic and, consequently, their genetic outcome. Genealogically inferred immigrants’ "autosomal" genetic contribution to 1931–60 Québec from consecutive immigration periods follow the same yearly pattern as the corresponding maternal and paternal lines. Québec genealogical data offer much broader information on the ancestral diversity distribution than genetic scrutiny of a limited population sample. Genealogically inferred population history could assist studies of evolutionary factors shaping population structure and provide tools to target specific health interventions.
Collapse
Affiliation(s)
- Damian Labuda
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, Québec, Canada
- * E-mail:
| | - Tommy Harding
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montreal, Québec, Canada
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Emmanuel Milot
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Hélène Vézina
- Projet BALSAC, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| |
Collapse
|
11
|
Baud A, McPeek S, Chen N, Hughes KA. Indirect Genetic Effects: A Cross-disciplinary Perspective on Empirical Studies. J Hered 2022; 113:1-15. [PMID: 34643239 PMCID: PMC8851665 DOI: 10.1093/jhered/esab059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indirect genetic effects (IGE) occur when an individual's phenotype is influenced by genetic variation in conspecifics. Opportunities for IGE are ubiquitous, and, when present, IGE have profound implications for behavioral, evolutionary, agricultural, and biomedical genetics. Despite their importance, the empirical study of IGE lags behind the development of theory. In large part, this lag can be attributed to the fact that measuring IGE, and deconvoluting them from the direct genetic effects of an individual's own genotype, is subject to many potential pitfalls. In this Perspective, we describe current challenges that empiricists across all disciplines will encounter in measuring and understanding IGE. Using ideas and examples spanning evolutionary, agricultural, and biomedical genetics, we also describe potential solutions to these challenges, focusing on opportunities provided by recent advances in genomic, monitoring, and phenotyping technologies. We hope that this cross-disciplinary assessment will advance the goal of understanding the pervasive effects of conspecific interactions in biology.
Collapse
Affiliation(s)
- Amelie Baud
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,the Universitat Pompeu Fabra (UPF), Barcelona,Spain
| | - Sarah McPeek
- the Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Nancy Chen
- the Department of Biology, University of Rochester, Rochester, NY 14627,USA
| | - Kimberly A Hughes
- the Department of Biological Science, Florida State University, Tallahassee, FL 32303,USA
| |
Collapse
|
12
|
Sun S, Narayan VP, Wang Y, Wasana N. Digest: Nature and nurture: influences of parental care and rearing environment on phenotypic plasticity in
Nicrophorus vespilloides. Evolution 2022; 76:681-684. [DOI: 10.1111/evo.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology & Evolutionary Biology University of Michigan Ann Arbor MI 48109 USA
| | - Vikram P. Narayan
- The School of Biological Sciences The University of Queensland St. Lucia, Qld 4072 Australia
- College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Yiguan Wang
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories Charlotte Auerbach Road Edinburgh EH9 3FL UK
| | - Nidarshani Wasana
- The School of Biological Sciences The University of Queensland St. Lucia, Qld 4072 Australia
| |
Collapse
|
13
|
Differential effects of steroid hormones on levels of broad-sense heritability in a wild bird: possible mechanism of environment × genetic variance interaction? Heredity (Edinb) 2022; 128:63-76. [PMID: 34921237 PMCID: PMC8733014 DOI: 10.1038/s41437-021-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Genetic variation is one of the key concepts in evolutionary biology and an important prerequisite of evolutionary change. However, we know very little about processes that modulate its levels in wild populations. In particular, we still are to understand why genetic variances often depend on environmental conditions. One of possible environment-sensitive modulators of observed levels of genetic variance are maternal effects. In this study we attempt to experimentally test the hypothesis that maternally transmitted agents (e.g. hormones) may influence the expression of genetic variance in quantitative traits in the offspring. We manipulated the levels of steroid hormones (testosterone and corticosterone) in eggs laid by blue tits in a wild population. Our experimental setup allowed for full crossing of genetic and rearing effects with the experimental manipulation. We observed that birds treated with corticosterone exhibited a significant decrease in broad-sense genetic variance of tarsus length, and an increase in this component in body mass on the 2nd day post-hatching. Our study indicates, that maternally transmitted substances such as hormones may have measurable impact on the levels of genetic variance and hence, on the evolutionary potential of quantitative traits.
Collapse
|
14
|
Dingemanse NJ, Araya-Ajoy YG, Westneat DF. Most published selection gradients are underestimated: Why this is and how to fix it. Evolution 2021; 75:806-818. [PMID: 33621355 DOI: 10.1111/evo.14198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Ecologists and evolutionary biologists routinely estimate selection gradients. Most researchers seek to quantify selection on individual phenotypes, regardless of whether fixed or repeatedly expressed traits are studied. Selection gradients estimated to address such questions are attenuated unless analyses account for measurement error and biological sources of within-individual variation. Estimates of standardized selection gradients published in Evolution between 2010 and 2019 were primarily based on traits measured once (59% of 325 estimates). We show that those are attenuated: bias increases with decreasing repeatability but differently for linear versus nonlinear gradients. Others derived individual-mean trait values prior to analyses (41%), typically using few repeats per individual, which does not remove bias. We evaluated three solutions, all requiring repeated measures: (i) correcting gradients derived from classic models using estimates of trait correlations and repeatabilities, (ii) multivariate mixed-effects models, previously used for estimating linear gradients (seven estimates, 2%), which we expand to nonlinear analyses, and (iii) errors-in-variables models that account for within-individual variance, and are rarely used in selection studies. All approaches produced accurate estimates regardless of repeatability and type of gradient, however, errors-in-variables models produced more precise estimates and may thus be preferable.
Collapse
Affiliation(s)
- Niels Jeroen Dingemanse
- Department of Biology, Ludwig-Maximilians-Universitat Munchen Department Biologie II, Planegg-Martinsried, Germany
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, 7012, Norway
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Sauve D, Friesen VL, Charmantier A. The Effects of Weather on Avian Growth and Implications for Adaptation to Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Climate change is forecasted to generate a range of evolutionary changes and plastic responses. One important aspect of avian responses to climate change is how weather conditions may change nestling growth and development. Early life growth is sensitive to environmental effects and can potentially have long-lasting effects on adult phenotypes and fitness. A detailed understanding of both how and when weather conditions affect the entire growth trajectory of a nestling may help predict population changes in phenotypes and demography under climate change. This review covers three main topics on the impacts of weather variation (air temperature, rainfall, wind speed, solar radiation) on nestling growth. Firstly, we highlight why understanding the effects of weather on nestling growth might be important in understanding adaptation to, and population persistence in, environments altered by climate change. Secondly, we review the documented effects of weather variation on nestling growth curves. We investigate both altricial and precocial species, but we find a limited number of studies on precocial species in the wild. Increasing temperatures and rainfall have mixed effects on nestling growth, while increasing windspeeds tend to have negative impacts on the growth rate of open cup nesting species. Thirdly, we discuss how weather variation might affect the evolution of nestling growth traits and suggest that more estimates of the inheritance of and selection acting on growth traits in natural settings are needed to make evolutionary predictions. We suggest that predictions will be improved by considering concurrently changing selection pressures like urbanization. The importance of adaptive plastic or evolutionary changes in growth may depend on where a species or population is located geographically and the species’ life-history. Detailed characterization of the effects of weather on growth patterns will help answer whether variation in avian growth frequently plays a role in adaption to climate change.
Collapse
|
16
|
Gauzere J, Pemberton JM, Morris S, Morris A, Kruuk LEB, Walling CA. The genetic architecture of maternal effects across ontogeny in the red deer. Evolution 2020; 74:1378-1391. [DOI: 10.1111/evo.14000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Alison Morris
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Loeske E. B. Kruuk
- Research School of Biology The Australian National University ACT 0200 Canberra Australia
| | - Craig A. Walling
- Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh EH9 3FL United Kingdom
| |
Collapse
|
17
|
Pick JL, Postma E, Tschirren B. The more you get, the more you give: Positive cascading effects shape the evolutionary potential of prenatal maternal investment. Evol Lett 2019; 3:412-423. [PMID: 31388450 PMCID: PMC6675147 DOI: 10.1002/evl3.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/19/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Maternal effects are prevalent in nature and significantly contribute to variation in phenotypic trait expression. However, little attention has been paid to the factors shaping variation in the traits mediating these effects (maternal effectors). Specific maternal effectors are often not identified, and typically they are assumed to be inherited in an additive genetic and autosomal manner. Given that these effectors can cause long‐lasting effects on offspring phenotype, it is likely that they may also affect themselves in the next generation. Although the existence of such cascading maternal effects has been discussed and modeled, empirical examples of such effects are rare, let alone quantitative estimates of their strength and evolutionary consequences. Here, we demonstrate that the investment a mother makes in her eggs positively affects the egg investment of her daughters. Through reciprocally crossing artificially selected lines for divergent prenatal maternal investment in Japanese quail (Coturnix japonica), we demonstrate that the size of eggs daughters lay resembles the egg size of their maternal line significantly more than that of their paternal line, highlighting that egg size is in part maternally inherited. Correspondingly, we find that variation in the daughters' egg size is in part determined by maternal identity, in addition to substantial additive genetic effects. Furthermore, this maternal variance in offspring egg size is fully explained by maternal egg size, demonstrating the presence of a positive cascading effect of maternal egg size on offspring egg size. Finally, we use an evolutionary model to quantify the consequences of covariance between cascading maternal and additive genetic effects for both maternal effector and offspring body mass evolution. Our study demonstrates that by amplifying the amount of variation available for selection to act on, positive cascading maternal effects can significantly enhance the evolutionary potential of maternal effectors and the offspring traits that they affect.
Collapse
Affiliation(s)
- Joel L Pick
- Department of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland.,Institute of Evolutionary Biology School of Biological Sciences, University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Erik Postma
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE United Kingdom
| | - Barbara Tschirren
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE United Kingdom
| |
Collapse
|
18
|
Regan CE, Tuke LA, Colpitts J, McLoughlin PD, Wilson AJ, Poissant J. Evolutionary quantitative genetics of juvenile body size in a population of feral horses reveals sexually antagonistic selection. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09988-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Troianou E, Huisman J, Pemberton JM, Walling CA. Estimating selection on the act of inbreeding in a population with strong inbreeding depression. J Evol Biol 2018; 31:1815-1827. [PMID: 30230082 PMCID: PMC6334283 DOI: 10.1111/jeb.13376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/05/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
Abstract
Inbreeding depression is widely regarded as a driving force in the evolution of dispersal, mate choice and sperm selection. However, due to likely costs of inbreeding avoidance, which are poorly understood, it is unclear to what extent selection to avoid inbreeding is expected in nature. Moreover, there are currently very few empirical estimates of the strength of selection against the act of inbreeding (mating with a relative), as opposed to the fitness costs of being inbred. Here, we use data from the individual-based study of red deer on the Scottish island of Rum, a strongly polygynous system which harbours a large inbreeding load, to estimate selection against the act of inbreeding for each sex. We use pedigree and genomic estimates of relatedness between individuals and measure fitness using both lifetime breeding success (number of calves born) and lifetime reproductive success (number of calves surviving to independence), with the latter incorporating inbreeding depression in calf survival. We find for both sexes that the repeatability of the act of inbreeding was low (< 0.1), suggesting little among-individual variation for this trait on which selection can act. Using the genomic measures, there was significant selection against the act of inbreeding in males, but not in females, and there was considerable uncertainty in the estimate in both sexes. We discuss possible explanations for these patterns and their implications for understanding the evolution of inbreeding avoidance in natural populations.
Collapse
Affiliation(s)
- Eva Troianou
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Jisca Huisman
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Josephine M. Pemberton
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Craig A. Walling
- Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
20
|
Thomson CE, Hadfield JD. No evidence for sibling or parent-offspring coadaptation in a wild population of blue tits, despite high power. Evolution 2018; 73:28-41. [PMID: 30417945 PMCID: PMC6587764 DOI: 10.1111/evo.13642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
Parent and offspring behaviors are expected to act as both the agents and targets of selection. This may generate parent-offspring coadaptation in which parent and offspring behaviors become genetically correlated in a way that increases inclusive fitness. Cross-fostering has been used to study parent-offspring coadaptation, with the prediction that offspring raised by non-relatives, or parents raising non-relatives, should suffer fitness costs. Using long-term data from more than 400 partially crossed broods of blue tits (Cyanistes caeruleus), we show that there is no difference in mass or survival between crossed and non-crossed chicks. However, previous studies for which the evidence for parent-offspring coadaptation is strongest compare chicks from fully crossed broods with those from non-crossed broods. When parent-offspring coadaptation acts at the level of the brood then partial cross-fostering experiments are not expected to show evidence of coadaptation. To test this, we performed an additional experiment (163 broods) in which clutches were either fully crossed, non-crossed, or partially crossed. In agreement with the long-term data, there was no evidence for parent-offspring coadaptation on offspring fitness despite high power. In addition there was no evidence of effects on parental fitness, nor evidence of sibling coadaptation, although the power of these tests was more modest.
Collapse
Affiliation(s)
- Caroline E Thomson
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom.,Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Jarrod D Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
21
|
Thomson CE, Winney IS, Salles OC, Pujol B. A guide to using a multiple-matrix animal model to disentangle genetic and nongenetic causes of phenotypic variance. PLoS One 2018; 13:e0197720. [PMID: 30312317 PMCID: PMC6193571 DOI: 10.1371/journal.pone.0197720] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Non-genetic influences on phenotypic traits can affect our interpretation of genetic variance and the evolutionary potential of populations to respond to selection, with consequences for our ability to predict the outcomes of selection. Long-term population surveys and experiments have shown that quantitative genetic estimates are influenced by nongenetic effects, including shared environmental effects, epigenetic effects, and social interactions. Recent developments to the "animal model" of quantitative genetics can now allow us to calculate precise individual-based measures of non-genetic phenotypic variance. These models can be applied to a much broader range of contexts and data types than used previously, with the potential to greatly expand our understanding of nongenetic effects on evolutionary potential. Here, we provide the first practical guide for researchers interested in distinguishing between genetic and nongenetic causes of phenotypic variation in the animal model. The methods use matrices describing individual similarity in nongenetic effects, analogous to the additive genetic relatedness matrix. In a simulation of various phenotypic traits, accounting for environmental, epigenetic, or cultural resemblance between individuals reduced estimates of additive genetic variance, changing the interpretation of evolutionary potential. These variances were estimable for both direct and parental nongenetic variances. Our tutorial outlines an easy way to account for these effects in both wild and experimental populations. These models have the potential to add to our understanding of the effects of genetic and nongenetic effects on evolutionary potential. This should be of interest both to those studying heritability, and those who wish to understand nongenetic variance.
Collapse
Affiliation(s)
- Caroline E. Thomson
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Isabel S. Winney
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Océane C. Salles
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
| | - Benoit Pujol
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), Université Fédérale Toulouse, Midi-Pyrénées, CNRS, ENSFEA, IRD, UPS, France
- Laboratoire d’Excellence “CORAIL”, Perpignan, France
| |
Collapse
|
22
|
Ramakers JJC, Culina A, Visser ME, Gienapp P. Environmental coupling of heritability and selection is rare and of minor evolutionary significance in wild populations. Nat Ecol Evol 2018; 2:1093-1103. [PMID: 29915341 PMCID: PMC6027994 DOI: 10.1038/s41559-018-0577-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/15/2018] [Indexed: 01/01/2023]
Abstract
Predicting the rate of adaptation to environmental change in wild populations is important for understanding evolutionary change. However, predictions may be unreliable if the two key variables affecting the rate of evolutionary change-heritability and selection-are both affected by the same environmental variable. To determine how general such an environmentally induced coupling of heritability and selection is, and how this may influence the rate of adaptation, we made use of freely accessible, open data on pedigreed wild populations to answer this question at the broadest possible scale. Using 16 populations from 10 vertebrate species, which provided data on 50 traits (relating to body mass, morphology, physiology, behaviour and life history), we found evidence for an environmentally induced relationship between heritability and selection in only 6 cases, with weak evidence that this resulted in an increase or decrease in the expected selection response. We conclude that such a coupling of heritability and selection is unlikely to strongly affect evolutionary change, even though both heritability and selection are commonly postulated to be dependent on the environment.
Collapse
Affiliation(s)
- Jip J C Ramakers
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands.
| | - Antica Culina
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| |
Collapse
|
23
|
Rollinson N, Rowe L. Oxygen Limitation at the Larval Stage and the Evolution of Maternal Investment per Offspring in Aquatic Environments. Am Nat 2018; 191:604-619. [DOI: 10.1086/696857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Pujol B, Blanchet S, Charmantier A, Danchin E, Facon B, Marrot P, Roux F, Scotti I, Teplitsky C, Thomson CE, Winney I. The Missing Response to Selection in the Wild. Trends Ecol Evol 2018; 33:337-346. [PMID: 29628266 PMCID: PMC5937857 DOI: 10.1016/j.tree.2018.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/28/2023]
Abstract
Although there are many examples of contemporary directional selection, evidence for responses to selection that match predictions are often missing in quantitative genetic studies of wild populations. This is despite the presence of genetic variation and selection pressures – theoretical prerequisites for the response to selection. This conundrum can be explained by statistical issues with accurate parameter estimation, and by biological mechanisms that interfere with the response to selection. These biological mechanisms can accelerate or constrain this response. These mechanisms are generally studied independently but might act simultaneously. We therefore integrated these mechanisms to explore their potential combined effect. This has implications for explaining the apparent evolutionary stasis of wild populations and the conservation of wildlife. Recent discoveries at the intersection of quantitative genetics and evolutionary ecology are challenging our views on the potential of wild populations to respond to selection. Multiple biological mechanisms can disconnect genetic variation from the response to selection in the wild. We highlight areas for future research. We provide an integrative framework that can be used to qualitatively assess the combined influence of these mechanisms on the response to selection.
Collapse
Affiliation(s)
- Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France.
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Station d'Ecologie Théorique Expérimentale (SETE), CNRS UMR 5321, Université Paul Sabatier, 09200 Moulis, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS UMR 5175, 34293 Montpellier, France; Département des Sciences Biologiques, Université du Québec à Montréal, CP 888 Succursale Centre-Ville, H3P 3P8 QC, Canada; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Benoit Facon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Institut National de la Recherche Agronomique (INRA), Saint Pierre, Réunion, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Pascal Marrot
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Ivan Scotti
- INRA Unité de Recherche 0629 Ecologie des Forêts Méditerranéennes, 84914 Avignon, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Céline Teplitsky
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS UMR 5175, 34293 Montpellier, France; Muséum National d'Histoire Naturelle, CNRS UMR 7204 Centre d'Écologie et des Sciences de la Conservation (CESCO), 75005 Paris, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Caroline E Thomson
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| | - Isabel Winney
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 31062 Toulouse, France; Groupement de Recherche de l'Institut Ecologie et Environnement 6448, Génétique Quantitative dans les Populations Naturelles (GQPN), c/o EDB, 31062 Toulouse, France
| |
Collapse
|
25
|
Morrissey MB, Janeiro MJ, Sparks AM, White S, Pigeon G, Teplitsky C, Réale D, Milot E. Into the wild-WAMBAM goes to Canada. Mol Ecol 2018; 27:1098-1102. [PMID: 29411456 DOI: 10.1111/mec.14510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
Abstract
The sixth Wild Animal Models Bi-Annual Meeting was held in July 2017 in Québec, with 42 participants. This report documents the evolution of questions asked and approaches used in evolutionary quantitative genetic studies of wild populations in recent decades, and how these questions and approaches were represented at the recent meeting. We explore how ideas from previous meetings in this series have developed to their present states, and consider how the format of the meetings may be particularly useful at fostering the rapid development and proliferation of ideas and approaches.
Collapse
Affiliation(s)
| | - Maria João Janeiro
- School of Biology, University of St Andrews, St Andrews, UK.,CESAM, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Alexandra M Sparks
- Institutes of Evolutionary Biology, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen White
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | - Gabriel Pigeon
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Céline Teplitsky
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec À Montréal, Montréal, QC, Canada
| | - Emmanuel Milot
- Department of chemistry, biochemistry and physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
26
|
de Villemereuil P. Quantitative genetic methods depending on the nature of the phenotypic trait. Ann N Y Acad Sci 2018; 1422:29-47. [PMID: 29363777 DOI: 10.1111/nyas.13571] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Abstract
A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression.
Collapse
|
27
|
Affiliation(s)
- Caroline E. Thomson
- Department of Zoology Edward Grey Institute University of Oxford Oxford OX1 3PS UK
- Evolution and Biology Diversity University of Toulouse Paul Sabatier Building 4R1, 118 Route de Narbonne, 31062 Toulouse Cedex 09 France
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH8 9YL UK
| |
Collapse
|
28
|
Fisher DN, Boutin S, Dantzer B, Humphries MM, Lane JE, McAdam AG. Multilevel and sex-specific selection on competitive traits in North American red squirrels. Evolution 2017; 71:1841-1854. [PMID: 28543051 DOI: 10.1111/evo.13270] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Individuals often interact more closely with some members of the population (e.g., offspring, siblings, or group members) than they do with other individuals. This structuring of interactions can lead to multilevel natural selection, where traits expressed at the group-level influence fitness alongside individual-level traits. Such multilevel selection can alter evolutionary trajectories, yet is rarely quantified in the wild, especially for species that do not interact in clearly demarcated groups. We quantified multilevel natural selection on two traits, postnatal growth rate and birth date, in a population of North American red squirrels (Tamiasciurus hudsonicus). The strongest level of selection was typically within-acoustic social neighborhoods (within 130 m of the nest), where growing faster and being born earlier than nearby litters was key, while selection on growth rate was also apparent both within-litters and within-study areas. Higher population densities increased the strength of selection for earlier breeding, but did not influence selection on growth rates. Females experienced especially strong selection on growth rate at the within-litter level, possibly linked to the biased bequeathal of the maternal territory to daughters. Our results demonstrate the importance of considering multilevel and sex-specific selection in wild species, including those that are territorial and sexually monomorphic.
Collapse
Affiliation(s)
- David N Fisher
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbour, Michigan, 48109.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbour, Michigan, 48109
| | - Murray M Humphries
- Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec, H9 × 3V9, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Andrew G McAdam
- Department for Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|