1
|
Sagar HSSC, Anand A, Persche ME, Pidgeon AM, Zuckerberg B, Şekercioğlu ÇH, Buřivalová Z. Global analysis of acoustic frequency characteristics in birds. Proc Biol Sci 2024; 291:20241908. [PMID: 39501883 PMCID: PMC11538988 DOI: 10.1098/rspb.2024.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Animal communication plays a crucial role in biology, yet the wide variability in vocalizations is not fully understood. Previous studies in birds have been limited in taxonomic and analytical breadth. Here, we analyse an extensive dataset of >140 000 recordings of vocalizations from 8450 bird species, representing nearly every avian order and family, under a structural causal model framework, to explore the influence of eco-evolutionary traits on acoustic frequency characteristics. We find that body mass, beak size, habitat associations and geography influence acoustic frequency characteristics, with varying degrees of interaction with song acquisition type. We find no evidence for the influence of vegetation density, sexual dimorphism, range size and competition on our measures of acoustic frequency characteristics. Our results, built on decades of researchers' empirical observations collected across the globe, provide a new breadth of evidence about how eco-evolutionary processes shape bird communication.
Collapse
Affiliation(s)
- H. S. Sathya Chandra Sagar
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| | - Akash Anand
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Maia E. Persche
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Anna M. Pidgeon
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Benjamin Zuckerberg
- School of Biological Sciences, The University of Utah, Salt LakeUT 84112, USA
| | | | - Zuzana Buřivalová
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| |
Collapse
|
2
|
|
3
|
Li D, Davis JE, Sun Y, Wang G, Nabi G, Wingfield JC, Lei F. Coping with extremes: convergences of habitat use, territoriality, and diet in summer but divergences in winter between two sympatric snow finches on the Qinghai-Tibet Plateau. Integr Zool 2020; 15:533-543. [PMID: 32627943 DOI: 10.1111/1749-4877.12462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the Qinghai-Tibet Plateau, extreme environmental conditions have imposed intense selective pressure on the evolution of phenotypic traits of wild animals. To date, limited information is available on behavioral and ecological traits concerning niche differentiation among sympatric animals on the Qinghai-Tibet Plateau, especially during winter when the environments are most severe. Here, we studied the seasonal variations in habitat occurrence, territorial behavior, and diet in two sympatric snow finches (the white-rumped snow finch, Onychostruthus taczanowskii, WRSF; and the rufous-necked snow finch, Pyrgilauda ruficollis, RNSF) to determine convergence and divergence of ecological traits in such severe climatic conditions. Our results showed that: (i) WRSF occupied rural areas as a dominant species throughout the annual cycle while RNSF occupied the rural areas in summer and then shifted to human-occupied areas in winter and spring; (ii) WRSFs exhibited robust aggressive behavior and territoriality during winter relative to RNSFs; (iii) the diets of both species varied with the season but did not vary between species except that WRSF ate significantly more seeds but RNSF consumed more starchy material derived from human food waste during winter. Therefore, the separations in the spatial niche and territoriality between WRSF and RNSF, especially in winter, may contribute to alleviating the pressure of interspecific competition, and promoting the coexistence of the two sympatric snow finches in the extreme environments on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Jason E Davis
- Department of Biology, Radford University, Radford, Virginia, USA
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei Province, China
| | - Gang Wang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, USA
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Kirschel ANG, Nwankwo EC, Seal N, Grether GF. Time spent together and time spent apart affect song, feather colour and range overlap in tinkerbirds. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Most studies on the processes driving evolutionary diversification highlight the importance of genetic drift in geographical isolation and natural selection across ecological gradients. Direct interactions among related species have received much less attention, but they can lead to character displacement, with recent research identifying patterns of displacement attributed to either ecological or reproductive processes. Together, these processes could explain complex, trait-specific patterns of diversification. Few studies, however, have examined the possible effects of these processes together or compared the divergence in multiple traits between interacting species among contact zones. Here, we show how traits of two Pogoniulus tinkerbird species vary among regions across sub-Saharan Africa. However, in addition to variation between regions consistent with divergence in refugial isolation, both song and morphology diverge between the species where they coexist. In West Africa, where the species are more similar in plumage, there is possible competitive or reproductive exclusion. In Central and East Africa, patterns of variation are consistent with agonistic character displacement. Molecular analyses support the hypothesis that differences in the age of interaction among regions can explain why species have evolved phenotypic differences and coexist in some regions but not others. Our findings suggest that competitive interactions between species and the time spent interacting, in addition to the time spent in refugial isolation, play important roles in explaining patterns of species diversification.
Collapse
Affiliation(s)
- Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nadya Seal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Hackworth ZJ, Cox JJ, Felch JM, Weegman MD. A Growing Conspiracy: Recolonization of Common Ravens (Corvus corax) in Central and Southern Appalachia, USA. SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Zachary J. Hackworth
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40546
| | - John J. Cox
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40546
| | - Joshua M. Felch
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40546
| | - Mitch D. Weegman
- School of Natural Resources, University of Missouri, Columbia, MO 65211
| |
Collapse
|
6
|
Laiolo P, Pato J, Obeso JR. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecol Lett 2018; 21:1022-1032. [DOI: 10.1111/ele.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 03/21/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| | - Joaquina Pato
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO, CSIC, PA); Oviedo University; 33600 Mieres Spain
| |
Collapse
|
7
|
Lipshutz SE. Interspecific competition, hybridization, and reproductive isolation in secondary contact: missing perspectives on males and females. Curr Zool 2018; 64:75-88. [PMID: 29492041 PMCID: PMC5809030 DOI: 10.1093/cz/zox060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/15/2017] [Indexed: 12/26/2022] Open
Abstract
Research on sexual selection and hybridization has focused on female mate choice and male-male competition. While the evolutionary outcomes of interspecific female preference have been well explored, we are now gaining a better understanding of the processes by which male-male competition between species in secondary contact promotes reproductive isolation versus hybridization. What is relatively unexplored is the interaction between female choice and male competition, as they can oppose one another or align with similar outcomes for reproductive isolation. The role of female-female competition in hybridization is also not well understood, but could operate similarly to male-male competition in polyandrous and other systems where costs to heterospecific mating are low for females. Reproductive competition between either sex of sympatric species can cause the divergence and/or convergence of sexual signals and recognition, which in turn influences the likelihood for interspecific mating. Future work on species interactions in secondary contact should test the relative influences of both mate choice and competition for mates on hybridization outcomes, and should not ignore the possibilities that females can compete over mating resources, and males can exercise mate choice.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Ecology and Evolutionary Biology, Division of Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|