1
|
Romero-Diaz C, Gómez Ramírez F, Aguilar P, Marešová P, Font E, Pérez I De Lanuza G. Climate and Socio-Sexual Environment Predict Interpopulation Variation in Chemical Signaling Glands in a Widespread Lizard. Integr Zool 2024. [PMID: 39647998 DOI: 10.1111/1749-4877.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024]
Abstract
Many animal species show considerable intraspecific phenotypic variation. For species with broad distributions, this variation may result from heterogeneity in the strength and agents of selection across environments and could contribute to reproductive isolation among populations. Here, we examined interpopulation variation in a morphological trait related to chemical communication, femoral pore number (FP), using 3437 individuals from 55 Pyrenean populations of the common wall lizard (Podarcis muralis). Specifically, we tested the relative roles of genetic relatedness and gene flow, and adaptation to local conditions in generating this variation, with particular interest in the influence of climate and the socio-sexual environment (i.e., the intensity of sexual selection, estimated using sexual size dimorphism [SSD] and adult sex ratio as proxy measures). We found significant interpopulation variation and sexual dimorphism in FP, as well as high genomic differentiation among populations driven by both geographic and environmental distances. Specifically, FP differences across populations were best predicted by a combination of positive allometry and the local intensity of sexual selection, as determined by SSD, or local climatic conditions. Higher FP in more male-competitive environments, or with higher temperature and vegetation complexity, is consistent with adaptation to maintaining signaling efficacy of territorial scent marks. These results suggest that adaptation to local conditions contributes to interpopulation divergence in FP and thus environmental changes can potentially impact the fine-tuning of chemical communication mediating social and sexual behavior.
Collapse
Affiliation(s)
- Cristina Romero-Diaz
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Fernando Gómez Ramírez
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Prem Aguilar
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Petra Marešová
- Department of Ethology and Companion Animal Science, Czech University of Life Sciences, Prague, Czech Republic
| | - Enrique Font
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Guillem Pérez I De Lanuza
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Feiner N, Yang W, Bunikis I, While GM, Uller T. Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. SCIENCE ADVANCES 2024; 10:eadk9315. [PMID: 38569035 PMCID: PMC10990284 DOI: 10.1126/sciadv.adk9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.
Collapse
Affiliation(s)
| | - Weizhao Yang
- Department of Biology, Lund University, Lund, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Murali G, Meiri S, Roll U. Chemical signaling glands are unlinked to species diversification in lizards. Evolution 2023; 77:1829-1841. [PMID: 37279331 DOI: 10.1093/evolut/qpad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.
Collapse
Affiliation(s)
- Gopal Murali
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Shai Meiri
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Beersheva, Sede-Boqer Campus, 8499000, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
4
|
de La Cruz F, Pérez i de Lanuza G, Font E. Signalling on islands: the case of Lilford’s wall lizard ( Podarcis lilfordi gigliolii) from Dragonera. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
AbstractStudies of the effects of insularity on animal signals are scarce, particularly in lizards. Here, we use Lilford’s wall lizard from Dragonera (Podarcis lilfordi gigliolii) to ask how island conditions have affected its repertoire of social signals, focusing on two visual signals shared by many Podarcis species: ultraviolet (UV)–blue-reflecting ventrolateral colour patches and visual displays. We examined whether the number or spectral characteristics of the UV–blue patches are associated with traits related to individual quality. We also used visual models to assess visual conspicuousness and to measure sexual dichromatism. We did not observe foot shakes or any other visual displays usually found in continental Podarcis. We found that none of the UV–blue patch variables covaried with morphometric variables indicative of fighting ability or body condition in males, suggesting that this coloration does not signal individual quality. We also found very little sexual dichromatism. In particular, the UV–blue patches of females seem over-expressed and more similar to those of males than those of continental Podarcis. Ancestral state reconstruction reveals that the lack of sexual dimorphism in the UV–blue patches is a derived condition for P. lilfordi gigliolii and other Podarcis living on small islands. Our results thus show a pattern of reduced social signalling in P. lilfordi gigliolii relative to mainland Podarcis, with some signals being lost or under-expressed (visual displays) and others losing their signalling function (UV–blue patches). We hypothesize that these changes are attributable to the high population density of P. lilfordi gigliolii, which discourages territorial behaviour and promotes extreme social tolerance, making most social signals unnecessary. More work will be needed to determine whether this is a common pattern in lizards inhabiting small and densely populated islands.
Collapse
Affiliation(s)
- Ferran de La Cruz
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia , APDO 22085, 46071 , Spain
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Campus de Vairão, Universidade do Porto , 4485-661 , Portugal
| | - Guillem Pérez i de Lanuza
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia , APDO 22085, 46071 , Spain
| | - Enrique Font
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia , APDO 22085, 46071 , Spain
| |
Collapse
|
5
|
Large scale phenotypic characterisation of Hierophis viridiflavus (Squamata: Serpentes): climatic and environmental drivers suggest the role of evolutionary processes in a polymorphic species. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
AbstractColour variability is largely widespread in the animal world as it is tightly associated with fitness and survivorship. Therefore, the drivers and implications of such variability have been of great interest for zoologists in the past decades. Reptiles are excellent models to investigate colour variations and expression under different conditions. Here, we focused on melanism occurrence in the two main lineages of Hierophis viridiflavus at the scale of the species distribution, by extracting available data from iNaturalist, a citizen science network, with the aim of detecting any pure effect of climate or local habitat on colour expression. Our analyses highlighted that habitat does not explain differences in phenotypes, whereas marked effects of geographic and climatic variables were detected. However, the observed climatic effects could be a proxy of the geographical distribution of the two groups, and thus the high occurrence of bright colourations in western populations of the eastern lineage could be addressed to an ongoing event of asymmetric gene flow in contact zones. The current distribution of phenotypes could be the outcome of the evolutionary history of the species combined with the geological history of the Mediterranean region. This investigation, though, is only preliminary and molecular analyses on highly variable regions of the genome are mandatory to address this issue.
Collapse
|
6
|
Raya-García E, Suazo-Ortuño I, Campos-García J, Martín J, Alvarado-Díaz J, Mendoza-Ramírez E. Chemical signal divergence among populations influences behavioral discrimination in the whiptail lizard Aspidoscelis lineattissimus (squamata: teiidae). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02931-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Abalos J, Pérez i de Lanuza G, Bartolomé A, Liehrmann O, Laakkonen H, Aubret F, Uller T, Carazo P, Font E. No evidence for differential sociosexual behavior and space use in the color morphs of the European common wall lizard ( Podarcis muralis). Ecol Evol 2020; 10:10986-11005. [PMID: 33144943 PMCID: PMC7593164 DOI: 10.1002/ece3.6659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Explaining the evolutionary origin and maintenance of color polymorphisms is a major challenge in evolutionary biology. Such polymorphisms are commonly thought to reflect the existence of alternative behavioral or life-history strategies under negative frequency-dependent selection. The European common wall lizard Podarcis muralis exhibits a striking ventral color polymorphism that has been intensely studied and is often assumed to reflect alternative reproductive strategies, similar to the iconic "rock-paper-scissors" system described in the North American lizard Uta stansburiana. However, available studies so far have ignored central aspects in the behavioral ecology of this species that are crucial to assess the existence of alternative reproductive strategies. Here, we try to fill this gap by studying the social behavior, space use, and reproductive performance of lizards showing different color morphs, both in a free-ranging population from the eastern Pyrenees and in ten experimental mesocosm enclosures. In the natural population, we found no differences between morphs in site fidelity, space use, or male-female spatial overlap. Likewise, color morph was irrelevant to sociosexual behavior, space use, and reproductive success within experimental enclosures. Our results contradict the commonly held hypothesis that P. muralis morphs reflect alternative behavioral strategies, and suggest that we should instead turn our attention to alternative functional explanations.
Collapse
Affiliation(s)
- Javier Abalos
- Ethology LabInstituto Cavanilles de Biodiversidad y Biología EvolutivaUniversitat de ValènciaValènciaSpain
| | - Guillem Pérez i de Lanuza
- Ethology LabInstituto Cavanilles de Biodiversidad y Biología EvolutivaUniversitat de ValènciaValènciaSpain
- CIBIO/InBIOCentro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoPortoPortugal
| | - Alicia Bartolomé
- Ethology LabInstituto Cavanilles de Biodiversidad y Biología EvolutivaUniversitat de ValènciaValènciaSpain
| | | | | | - Fabien Aubret
- SETEStation d’Ecologie Théorique et ExpérimentaleUMR5321Centre National de la Recherche ScientifiqueParisFrance
| | | | - Pau Carazo
- Ethology LabInstituto Cavanilles de Biodiversidad y Biología EvolutivaUniversitat de ValènciaValènciaSpain
| | - Enrique Font
- Ethology LabInstituto Cavanilles de Biodiversidad y Biología EvolutivaUniversitat de ValènciaValènciaSpain
| |
Collapse
|
8
|
Yang W, Feiner N, Laakkonen H, Sacchi R, Zuffi MAL, Scali S, While GM, Uller T. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 2020; 74:1289-1300. [PMID: 32396671 DOI: 10.1111/evo.14001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Hybrid zones provide insights into the evolution of reproductive isolation. Sexual selection can contribute to the evolution of reproductive barriers, but it remains poorly understood how sexual traits impact gene flow in secondary contact. Here, we show that a recently evolved suite of sexual traits that function in male-male competition mediates gene flow between two lineages of wall lizards (Podarcis muralis). Gene flow was relatively low and asymmetric in the presence of exaggerated male morphology and coloration compared to when the lineages share the ancestral phenotype. Putative barrier loci were enriched in genomic regions that were highly differentiated between the two lineages and showed low concordance between the transects. The exception was a consistently low genetic exchange around ATXN1, a gene that modulates social behavior. We suggest that this gene may contribute to the male mate preferences that are known to cause lineage-assortative mating in this species. Although female choice modulates the degree of reproductive isolation in a variety of taxa, wall lizards demonstrate that both male-male competition and male mate choice can contribute to the extent of gene flow between lineages.
Collapse
Affiliation(s)
- Weizhao Yang
- Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Nathalie Feiner
- Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Hanna Laakkonen
- Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, 27100, Italy
| | - Marco A L Zuffi
- Museum Natural History, University of Pisa, Pisa, 56011, Italy
| | - Stefano Scali
- Museum of Natural History of Milan, Milano, 20121, Italy
| | - Geoffrey M While
- School of Biology, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, 223 62, Sweden
| |
Collapse
|
9
|
McEntee JP, Burleigh JG, Singhal S. Dispersal Predicts Hybrid Zone Widths across Animal Diversity: Implications for Species Borders under Incomplete Reproductive Isolation. Am Nat 2020; 196:9-28. [PMID: 32552108 DOI: 10.1086/709109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hybrid zones occur as range boundaries for many animal taxa. One model for how hybrid zones form and stabilize is the tension zone model, a version of which predicts that hybrid zone widths are determined by a balance between random dispersal into hybrid zones and selection against hybrids. Here, we examine whether random dispersal and proxies for selection against hybrids (genetic distances between hybridizing pairs) can explain variation in hybrid zone widths across 131 hybridizing pairs of animals. We show that these factors alone can explain ∼40% of the variation in zone width among animal hybrid zones, with dispersal explaining far more of the variation than genetic distances. Patterns within clades were idiosyncratic. Genetic distances predicted hybrid zone widths particularly well for reptiles, while this relationship was opposite tension zone predictions in birds. Last, the data suggest that dispersal and molecular divergence set lower bounds on hybrid zone widths in animals, indicating that there are geographic restrictions on hybrid zone formation. Overall, our analyses reinforce the fundamental importance of dispersal in hybrid zone formation and more generally in the ecology of range boundaries.
Collapse
|
10
|
Donihue CM, Herrel A, Martín J, Foufopoulos J, Pafilis P, Baeckens S. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J Anim Ecol 2020; 89:1458-1467. [DOI: 10.1111/1365-2656.13205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Colin M. Donihue
- Department of Biology Washington University St. Louis MI USA
- Département Adaptations du Vivant UMR 7179 CNRS/MNHN Paris France
| | - Anthony Herrel
- Département Adaptations du Vivant UMR 7179 CNRS/MNHN Paris France
- Department of Biology University of Antwerp Wilrijk Belgium
- Department of Biology, Evolutionary Morphology of Vertebrates Ghent University Ghent Belgium
| | - José Martín
- Department of Evolutionary Ecology Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Johannes Foufopoulos
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Panayiotis Pafilis
- Department of Biology National and Kapodistrian University of Athens Athens Greece
| | - Simon Baeckens
- Department of Biology University of Antwerp Wilrijk Belgium
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| |
Collapse
|
11
|
Hamilton K, Goulet CT, Johnstone CP, Chapple DG. Does geographical isolation influence group recognition and social preference in an invasive lizard? J Zool (1987) 2019. [DOI: 10.1111/jzo.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Katelyn Hamilton
- School of Biological Sciences Monash University Clayton Vic Australia
| | - Celine T. Goulet
- School of Biological Sciences Monash University Clayton Vic Australia
| | | | - David G. Chapple
- School of Biological Sciences Monash University Clayton Vic Australia
| |
Collapse
|
12
|
Mangiacotti M, Pezzi S, Fumagalli M, Coladonato AJ, d'Ettorre P, Leroy C, Bonnet X, Zuffi MAL, Scali S, Sacchi R. Seasonal Variations in Femoral Gland Secretions Reveals some Unexpected Correlations Between Protein and Lipid Components in a Lacertid Lizard. J Chem Ecol 2019; 45:673-683. [PMID: 31407198 DOI: 10.1007/s10886-019-01092-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
Animals modulate intraspecific signal shape and intensity, notably during reproductive periods. Signal variability typically follows a seasonal scheme, traceable through the expression of visual, acoustic, chemical and behavioral patterns. The chemical channel is particularly important in lizards, as demonstrated by well-developed epidermal glands in the cloacal region that secrete lipids and proteins recognized by conspecifics. In males, the seasonal pattern of gland activity is underpinned by variation of circulating androgens. Changes in the composition of lipid secretions convey information about the signaler's quality (e.g., size, immunity). Presumably, individual identity is associated with a protein signature present in the femoral secretions, but this has been poorly investigated. For the first time, we assessed the seasonal variability of the protein signal in relation to plasma testosterone level (T), glandular activity and the concentration of provitamin D3 in the lipid fraction. We sampled 174 male common wall lizards (Podarcis muralis) over the entire activity season. An elevation of T was observed one to two months before the secretion peak of lipids during the mating season; such expected delay between hormonal fluctuation and maximal physiological response fits well with the assumption that provitamin D3 indicates individual quality. One-dimensional electrophoretic analysis of proteins showed that gel bands were preserved over the season with an invariant region; a result in agreement with the hypothesis that proteins are stable identity signals. However, the relative intensity of bands varied markedly, synchronously with that of lipid secretion pattern. These variations of protein secretion suggest additional roles of proteins, an issue that requires further studies.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy.
- Museo di Storia Naturale di Milano, Corso Venezia 55, Milan, Italy.
| | - Stefano Pezzi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L. Spallanzani", Unit of Biochemistry, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Alan Jioele Coladonato
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| | - Patrizia d'Ettorre
- LEEC Laboratoire d'Ethologie Expérimentale et Comparée, Université Paris 13, Sorbonne Paris Cité, 93430, Villetaneuse, France
| | - Chloé Leroy
- LEEC Laboratoire d'Ethologie Expérimentale et Comparée, Université Paris 13, Sorbonne Paris Cité, 93430, Villetaneuse, France
| | - Xavier Bonnet
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - Université de La Rochelle, 405 Route de La Canauderie, 79360, Villiers-en-Bois, France
| | - Marco A L Zuffi
- Museo di Storia Naturale dell'Università di Pisa, Via Roma 79, I-56011, Calci, PI, Italy
| | - Stefano Scali
- Museo di Storia Naturale di Milano, Corso Venezia 55, Milan, Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| |
Collapse
|
13
|
Mangiacotti M, Fumagalli M, Cagnone M, Viglio S, Bardoni AM, Scali S, Sacchi R. Morph-specific protein patterns in the femoral gland secretions of a colour polymorphic lizard. Sci Rep 2019; 9:8412. [PMID: 31182789 PMCID: PMC6557888 DOI: 10.1038/s41598-019-44889-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/27/2019] [Indexed: 01/04/2023] Open
Abstract
Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy.
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L.Spallanzani", Unit of Biochemistry, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Stefano Scali
- Museo di Storia Naturale di Milano, Corso Venezia 55, 20121, Milan, Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| |
Collapse
|
14
|
Ortega J, Martín J, Crochet PA, López P, Clobert J. Seasonal and interpopulational phenotypic variation in morphology and sexual signals of Podarcis liolepis lizards. PLoS One 2019; 14:e0211686. [PMID: 30875384 PMCID: PMC6419997 DOI: 10.1371/journal.pone.0211686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Widespread species often show extensive phenotypic variation due to the contrasting abiotic and biotic factors that shape selective pressures in different environments. In this context, the gradual and predictable patterns of variation in climatic and environmental conditions found in mountain areas offer a great opportunity to explore intraspecific phenotypic variation. For instance, temperature is negatively correlated with altitude and virtually all aspects of the behavior and physiology of ectotherms are sensitive to body temperature. In this work, we tested the hypothesis that morphology, dorsal and ventral coloration and the chemical profile of femoral secretions show interpopulational and seasonal variation in the lacertid lizard (Podarcis liolepis). We compared lizards from three populations inhabiting lowland and highland habitats in the French Pyrenees that were closely related genetically. We found that highland lizards were larger, stockier, had longer heads and more femoral pores and had a darker dorsal coloration than lowland ones. In addition, we detected interpopulational differences in both the abundance and the richness of chemical compounds in the glandular secretions, and we also found seasonal variation in the overall chemical composition. Dorsal and ventral coloration differed seasonally and between populations. Ventral and dorsal brightness were higher in lowland than in highland lizards in the reproductive season whereas the reversed trend was found in the non-reproductive season but only for dorsal brightness. In addition, all lizards had browner dorsal coloration in the non-reproductive season, and lowland lizards were greener in the reproductive season. By integrating information from both visual and chemical systems, our works offers a comprehensive view of how these lizards communicate in a multimodal context.
Collapse
Affiliation(s)
- Jesús Ortega
- Department of Evolutionary Ecology, National Museum of Natural Sciences, C.S.I.C., Madrid, Spain
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - José Martín
- Department of Evolutionary Ecology, National Museum of Natural Sciences, C.S.I.C., Madrid, Spain
| | - Pierre-André Crochet
- Centre d’Ecologie Fonctionnelle et Evolutive, Montpellier, CNRS-UMR 5175, France
| | - Pilar López
- Department of Evolutionary Ecology, National Museum of Natural Sciences, C.S.I.C., Madrid, Spain
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale, Moulis, France
| |
Collapse
|
15
|
First experimental evidence that proteins from femoral glands convey identity-related information in a lizard. Acta Ethol 2019. [DOI: 10.1007/s10211-018-00307-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Yang W, While GM, Laakkonen H, Sacchi R, Zuffi MAL, Scali S, Salvi D, Uller T. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol Ecol 2018; 27:4213-4224. [DOI: 10.1111/mec.14861] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Weizhao Yang
- Department of Biology; Lund University; Lund Sweden
| | - Geoffrey M. While
- School of Biological Sciences; University of Tasmania; Hobart Tasmania Australia
| | | | - Roberto Sacchi
- Department of Earth and Environmental Sciences; University of Pavia; Pavia Italy
| | | | | | - Daniele Salvi
- Department of Health, Life and Environmental Sciences; University of L'Aquila; L'Aquila Italy
- CIBIO-InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; University of Porto; Vairão Portugal
| | - Tobias Uller
- Department of Biology; Lund University; Lund Sweden
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| |
Collapse
|
17
|
De-Lima AKS, Domingos FMCB, Chaves SB, Pic-Taylor A, Sebben A, Klaczko J. A new scent organ for Gymnodactylus lizards (Squamata: Phyllodactylidae) and an updated evolutionary scenario for the origin of squamate epidermal glands. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Anderson Kennedy Soares De-Lima
- Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | | | - Sacha Braun Chaves
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Aline Pic-Taylor
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Antonio Sebben
- Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Julia Klaczko
- Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
18
|
Jara M, Frias-De-Diego A, García-Roa R, Saldarriaga-Córdoba M, Harvey LP, Hickcox RP, Pincheira-Donoso D. The Macroecology of Chemical Communication in Lizards: Do Climatic Factors Drive the Evolution of Signalling Glands? Evol Biol 2018; 45:259-267. [PMID: 30147195 PMCID: PMC6096677 DOI: 10.1007/s11692-018-9447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/06/2018] [Indexed: 11/02/2022]
Abstract
Chemical communication plays a pivotal role in shaping sexual and ecological interactions among animals. In lizards, fundamental mechanisms of sexual selection such as female mate choice have rarely been shown to be influenced by quantitative phenotypic traits (e.g., ornaments), while chemical signals have been found to potentially influence multiple forms of sexual and social interactions, including mate choice and territoriality. Chemical signals in lizards are secreted by glands primarily located on the edge of the cloacae (precloacal glands, PG) and thighs (femoral glands), and whose interspecific and interclade number ranges from 0 to > 100. However, elucidating the factors underlying the evolution of such remarkable variation remains an elusive endeavour. Competing hypotheses suggest a dominant role for phylogenetic conservatism (i.e., species within clades share similar numbers of glands) or for natural selection (i.e., their adaptive diversification results in deviating numbers of glands from ancestors). Using the prolific Liolaemus lizard radiation from South America (where PG vary from 0 to 14), we present one of the largest-scale tests of both hypotheses to date. Based on climatic and phylogenetic modelling, we show a clear role for both phylogenetic inertia and adaptation underlying gland variation: (i) solar radiation, net primary productivity, topographic heterogeneity and precipitation range have a significant effect on PG variation, (ii) humid and cold environments tend to concentrate species with a higher number of glands, (iii) there is a strong phylogenetic signal that tends to conserve the number of PG within clades. Collectively, our study confirms that the inertia of niche conservatism can be broken down by the need of species facing different selection regimes to adjust their glands to suit the demands of their specific environments.
Collapse
Affiliation(s)
- Manuel Jara
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL UK
- Present Address: Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA
| | - Alba Frias-De-Diego
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL UK
| | - Roberto García-Roa
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL UK
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Lilly P. Harvey
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Rachel P. Hickcox
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL UK
| | - Daniel Pincheira-Donoso
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Brayford Campus, Lincoln, LN6 7DL UK
| |
Collapse
|
19
|
García-Roa R, Megía-Palma R, Ortega J, Jara M, López P, Martín J. Interpopulational and seasonal variation in the chemical signals of the lizard Gallotia galloti. PeerJ 2017; 5:e3992. [PMID: 29230352 PMCID: PMC5721911 DOI: 10.7717/peerj.3992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022] Open
Abstract
Communicative traits are strikingly diverse and may vary among populations of the same species. Within a population, these traits may also display seasonal variation. Chemical signals play a key role in the communication of many taxa. However, we still know far too little about chemical communication in some vertebrate groups. In lizards, only a few studies have examined interpopulational variation in the composition of chemical cues and signals and only one study has explored the seasonal effects. Here we sampled three subspecies of the Tenerife lizards (Gallotia galloti) and analyze the lipophilic fraction of their femoral gland secretions to characterize the potential interpopulational variation in the chemical signals. In addition, we assessed whether composition of these secretions differed between the reproductive and the non-reproductive season. We analyzed variations in both the overall chemical profile and the abundance of the two main compounds (cholesterol and vitamin E). Our results show interpopulational and seasonal differences in G. gallotia chemical profiles. These findings are in accordance with the high interpopulational variability of compounds observed in lizard chemical signals and show that their composition is not only shaped by selective factors linked to reproductive season.
Collapse
Affiliation(s)
- Roberto García-Roa
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| | - Rodrigo Megía-Palma
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| | - Jesús Ortega
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| | - Manuel Jara
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Pilar López
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| | - José Martín
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
20
|
García-Roa R, Carazo P. Digest: Chemical communication and sexual selection in lizards. Evolution 2017; 71:2535-2536. [PMID: 28940364 DOI: 10.1111/evo.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto García-Roa
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Pau Carazo
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|