1
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
2
|
Lear L, Hesse E, Buckling A. Disturbances can facilitate prior invasions more than subsequent invasions in microbial communities. Ecol Lett 2024; 27:e14493. [PMID: 39140430 DOI: 10.1111/ele.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after. Invader success and impact on community composition was greatest when the invasion immediately followed the disturbance. However, the subsequent invasions had negligible success or impact. Pre-disturbance, invader success and impact was greatest when the invader was added just before the disturbance. Importantly, however, the first three pre-disturbance invasion events had significantly greater success than the last three post-disturbance invasions. Moreover, these findings were consistent across a range of propagule pressures. Overall, we demonstrate that timing is highly important for both the success and impact on community composition of an invader, with both being lower as time since disturbance progresses.
Collapse
Affiliation(s)
- Luke Lear
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
3
|
Lear L, Inamine H, Shea K, Buckling A. Diversity loss from multiple interacting disturbances is regime-dependent. Ecol Lett 2023; 26:2056-2065. [PMID: 37847646 DOI: 10.1111/ele.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Anthropogenic activities expose many ecosystems to multiple novel disturbances simultaneously. Despite this, how biodiversity responds to simultaneous disturbances remains unclear, with conflicting empirical results on their interactive effects. Here, we experimentally test how one disturbance (an invasive species) affects the diversity of a community over multiple levels of another disturbance regime (pulse mortality). Specifically, we invade stably coexisting bacterial communities under four different pulse frequencies, and compare their final resident diversity to uninvaded communities under the same pulse mortality regimes. Our experiment shows that the disturbances synergistically interact, such that the invader significantly reduces resident diversity at high pulse frequency, but not at low. This work therefore highlights the need to study simultaneous disturbance effects over multiple disturbance regimes as well as to carefully document unmanipulated disturbances, and may help explain the conflicting results seen in previous multiple-disturbance work.
Collapse
Affiliation(s)
- Luke Lear
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Hidetoshi Inamine
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Angus Buckling
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
4
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
5
|
Lear L, Hesse E, Newsome L, Gaze W, Buckling A, Vos M. The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa. Evol Appl 2023; 16:1377-1389. [PMID: 37492145 PMCID: PMC10363854 DOI: 10.1111/eva.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Anthropogenic metal pollution can result in co-selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal-polluted environments can select for the increased production of siderophore molecules to detoxify non-ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within-host pathogen growth, and are consequently a virulence factor. Anthropogenic methods to remediate environmental metal contamination commonly involve amendment with lime-containing materials. However, whether this reduces in situ co-selection for antibiotic resistance and siderophore-mediated virulence remains unknown. Here, using microcosms containing non-sterile metal-contaminated river water and sediment, we test whether liming reduces co-selection for these pathogenicity traits in the opportunistic pathogen Pseudomonas aeruginosa. To account for the effect of environmental structure, which is known to impact siderophore production, microcosms were incubated under either static or shaking conditions. Evolved P. aeruginosa populations had greater fitness in the presence of toxic concentrations of copper than the ancestral strain and showed increased resistance to the clinically relevant antibiotics apramycin, cefotaxime and trimethoprim, regardless of lime addition or environmental structure. Although we found virulence to be significantly associated with siderophore production, neither virulence nor siderophore production significantly differed between the four treatments. Furthermore, liming did not mitigate metal-imposed selection for antibiotic resistance or virulence in P. aeruginosa. Consequently, metal-contaminated environments may select for antibiotic resistance and virulence traits even when treated with lime.
Collapse
Affiliation(s)
- Luke Lear
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Elze Hesse
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Laura Newsome
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterPenrynUK
| | - William Gaze
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolPenrynUK
| | - Angus Buckling
- College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolPenrynUK
| |
Collapse
|
6
|
Wang M, Zhang W, Zhao J, Yang Z, Guo X, Ji H. Distinct structural strategies with similar functional responses of abundant and rare subcommunities regarding heavy metal pollution in the Beiyun river basin. CHEMOSPHERE 2022; 309:136659. [PMID: 36202374 DOI: 10.1016/j.chemosphere.2022.136659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bacteria within a metacommunity could be partitioned into different subcommunities ecological assemblages in light of potential importance for the community function. It is unknown how abundant and rare microbial subcommunities in urban river sediments respond to heavy metal pollutants. Using high-throughput sequencing, we analyzed these response patterns in the heavliy polluted (Beijing, China). We found that this river faces substantial ecological risks, owing to high rates of Cd and Hg pollution from urban activities. Surprisingly, abundant and rare subcommunity structures showed opposite responses to heavy metals. Abundant taxa, such as Crenarchaeota and Euryarchaeota, are resistant to heavy metal pollution through the synergistic of ammonia nitrogen (NH4+-N) and total phosphorus (TP). By contrast, rare taxa, such as Verrucomicrobia, Fibrobacteres, Berkelbacteria, and Euryarchaeota, had a high synergy with NH4+-N and TP with high a resilience to heavy metal pollution. However, the functions of both abundant and rare subcommunities showed a similar response to heavy metal pollutants, especially in denitrification processes. The abundant taxa responded to heavy metal pollution through methanogenesis by CO2 reduction with H2, human pathogens nosocomia, sulfate respiration, photoheterotrophy, and dark sulfide oxidation synergy with NH4+-N and TP. The rare taxa responded to heavy metals through methanogenesis by CO2 reduction with H2, cellulolysis, sulfate respiration, intracellular parasites, nitrate reduction and plant pathogen. We observed distinct patterns between the structural and functional responses of microbial subcommunities to heavy metal pollutants. Our findings support the concept that denitrification processes are sensitive to but not inhibited by high levels of heavy metals pollution. We propose that the structures and functions of the abundant and rare microbial subcommunities could inform the management of pollutants in heavily polluted urban river ecosystems at fine geographical scales.
Collapse
Affiliation(s)
- Min Wang
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Wei Zhang
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Junying Zhao
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Zirou Yang
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China.
| | - Hongbing Ji
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
7
|
O'Brien S, Baumgartner M, Hall AR. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:256-266. [PMID: 34447576 PMCID: PMC8385247 DOI: 10.1093/emph/eoab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Background and objectives Slowing the spread of antimicrobial resistance is urgent if we are to continue treating infectious diseases successfully. There is increasing evidence microbial interactions between and within species are significant drivers of resistance. On one hand, cross-protection by resistant genotypes can shelter susceptible microbes from the adverse effects of antibiotics, reducing the advantage of resistance. On the other hand, antibiotic-mediated killing of susceptible genotypes can alleviate competition and allow resistant strains to thrive (competitive release). Here, by observing interactions both within and between species in microbial communities sampled from humans, we investigate the potential role for cross-protection and competitive release in driving the spread of ampicillin resistance in the ubiquitous gut commensal and opportunistic pathogen Escherichia coli. Methodology Using anaerobic gut microcosms comprising E.coli embedded within gut microbiota sampled from humans, we tested for cross-protection and competitive release both within and between species in response to the clinically important beta-lactam antibiotic ampicillin. Results While cross-protection gave an advantage to antibiotic-susceptible E.coli in standard laboratory conditions (well-mixed LB medium), competitive release instead drove the spread of antibiotic-resistant E.coli in gut microcosms (ampicillin boosted growth of resistant bacteria in the presence of susceptible strains). Conclusions and implications Competition between resistant strains and other members of the gut microbiota can restrict the spread of ampicillin resistance. If antibiotic therapy alleviates competition with resident microbes by killing susceptible strains, as here, microbiota-based interventions that restore competition could be a key for slowing the spread of resistance. Lay Summary Slowing the spread of global antibiotic resistance is an urgent task. In this paper, we ask how interactions between microbial species drive the spread of resistance. We show that antibiotic killing of susceptible microbes can free up resources for resistant microbes and allow them to thrive. Therefore, we should consider microbes in light of their social interactions to understand the spread of resistance.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK.,Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumgartner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Alex R Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Hesse E, O'Brien S, Luján AM, Sanders D, Bayer F, van Veen EM, Hodgson DJ, Buckling A. Stress causes interspecific facilitation within a compost community. Ecol Lett 2021; 24:2169-2177. [PMID: 34259374 DOI: 10.1111/ele.13847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
Ecological theory predicts interactions between species to become more positive under abiotic stress, while competition should prevail in more benign environments. However, experimental tests of this stress gradient hypothesis in natural microbial communities are lacking. We test this hypothesis by measuring interactions between 10 different members of a bacterial community inhabiting potting compost in the presence or absence of toxic copper stress. We found that copper stress caused significant net changes in species interaction signs, shifting the net balance towards more positive interactions. This pattern was at least in part driven by copper-sensitive isolates - that produced relatively small amounts of metal-detoxifying siderophores - benefitting from the presence of other species that produce extracellular detoxifying agents. As well as providing support for the stress gradient hypothesis, our results highlight the importance of community-wide public goods in shaping microbial community composition.
Collapse
Affiliation(s)
- Elze Hesse
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Siobhan O'Brien
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Adela M Luján
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK.,CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Dirk Sanders
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Florian Bayer
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Eleanor M van Veen
- Camborne School of Mines, CEMPS, University of Exeter, Penryn Campus, Cornwall, UK
| | - Dave J Hodgson
- CEC, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Angus Buckling
- CEC & ESI, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| |
Collapse
|
9
|
Simonet C, McNally L. Kin selection explains the evolution of cooperation in the gut microbiota. Proc Natl Acad Sci U S A 2021; 118:e2016046118. [PMID: 33526674 PMCID: PMC8017935 DOI: 10.1073/pnas.2016046118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through the secretion of "public goods" molecules, microbes cooperatively exploit their habitat. This is known as a major driver of the functioning of microbial communities, including in human disease. Understanding why microbial species cooperate is therefore crucial to achieve successful microbial community management, such as microbiome manipulation. A leading explanation is that of Hamilton's inclusive-fitness framework. A cooperator can indirectly transmit its genes by helping the reproduction of an individual carrying similar genes. Therefore, all else being equal, as relatedness among individuals increases, so should cooperation. However, the predictive power of relatedness, particularly in microbes, is surrounded by controversy. Using phylogenetic comparative analyses across the full diversity of the human gut microbiota and six forms of cooperation, we find that relatedness is predictive of the cooperative gene content evolution in gut-microbe genomes. Hence, relatedness is predictive of cooperation over broad microbial taxonomic levels that encompass variation in other life-history and ecology details. This supports the generality of Hamilton's central insights and the relevance of relatedness as a key parameter of interest to advance microbial predictive and engineering science.
Collapse
Affiliation(s)
- Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Luke McNally
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
10
|
Cyriaque V, Géron A, Billon G, Nesme J, Werner J, Gillan DC, Sørensen SJ, Wattiez R. Metal-induced bacterial interactions promote diversity in river-sediment microbiomes. FEMS Microbiol Ecol 2020; 96:5826176. [PMID: 32343356 DOI: 10.1093/femsec/fiaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Anthropogenic metal contamination results in long-term environmental selective pressure with unclear impacts on bacterial communities, which comprise key players in ecosystem functioning. Since metal contamination poses serious toxicity and bioaccumulation issues, assessing their impact on environmental microbiomes is important to respond to current environmental and health issues. Despite elevated metal concentrations, the river sedimentary microbiome near the MetalEurop foundry (France) shows unexpected higher diversity compared with the upstream control site. In this work, a follow-up of the microbial community assembly during a metal contamination event was performed in microcosms with periodic renewal of the supernatant river water. Sediments of the control site were gradually exposed to a mixture of metals (Cd, Cu, Pb and Zn) in order to reach similar concentrations to MetalEurop sediments. Illumina sequencing of 16S rRNA gene amplicons was performed. Metal-resistant genes, czcA and pbrA, as well as IncP plasmid content, were assessed by quantitative PCR. The outcomes of this study support previous in situ observations showing that metals act as community assembly managers, increasing diversity. This work revealed progressive adaptation of the sediment microbiome through the selection of different metal-resistant mechanisms and cross-species interactions involving public good-providing bacteria co-occurring with the rest of the community.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | - Augustin Géron
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 Place du Parc, 7000 Mons, Belgium.,Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling,FK9 4LA, UK
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE - LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, D-18119 Rostock, Germany
| | - David C Gillan
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
11
|
Evolution of diversity explains the impact of pre-adaptation of a focal species on the structure of a natural microbial community. ISME JOURNAL 2020; 14:2877-2889. [PMID: 32884114 DOI: 10.1038/s41396-020-00755-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Rapid within-species evolution can alter community structure, yet the mechanisms underpinning this effect remain unknown. Populations that rapidly evolve large amounts of phenotypic diversity are likely to interact with more species and have the largest impact on community structure. However, the evolution of phenotypic diversity is, in turn, influenced by the presence of other species. Here, we investigate how microbial community structure changes as a consequence of rapidly evolved within-species diversity using Pseudomonas fluorescens as a focal species. Evolved P. fluorescens populations showed substantial phenotypic diversification in resource-use (and correlated genomic change) irrespective of whether they were pre-adapted in isolation or in a community context. Manipulating diversity revealed that more diverse P. fluorescens populations had the greatest impact on community structure, by suppressing some bacterial taxa, but facilitating others. These findings suggest that conditions that promote the evolution of high within-population diversity should result in a larger impact on community structure.
Collapse
|
12
|
Lear L, Hesse E, Shea K, Buckling A. Disentangling the mechanisms underpinning disturbance-mediated invasion. Proc Biol Sci 2020; 287:20192415. [PMID: 31992171 PMCID: PMC7015320 DOI: 10.1098/rspb.2019.2415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Disturbances can play a major role in biological invasions: by destroying biomass, they alter habitat and resource abundances. Previous field studies suggest that disturbance-mediated invader success is a consequence of resource influxes, but the importance of other potential covarying causes, notably the opening up of habitats, have yet to be directly tested. Using experimental populations of the bacterium Pseudomonas fluorescens, we determined the relative importance of disturbance-mediated habitat opening and resource influxes, plus any interaction between them, for invader success of two ecologically distinct morphotypes. Resource addition increased invasibility, while habitat opening had little impact and did not interact with resource addition. Both invaders behaved similarly, despite occupying different ecological niches in the microcosms. Treatment also affected the composition of the resident population, which further affected invader success. Our results provide experimental support for the observation that resource input is a key mechanism through which disturbance increases invasibility.
Collapse
Affiliation(s)
- Luke Lear
- Department of Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Elze Hesse
- Department of Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
13
|
Lewis RW, Islam A, Opdahl L, Davenport JR, Sullivan TS. Comparative Genomics, Siderophore Production, and Iron Scavenging Potential of Root Zone Soil Bacteria Isolated from 'Concord' Grape Vineyards. MICROBIAL ECOLOGY 2019; 78:699-713. [PMID: 30770943 DOI: 10.1007/s00248-019-01324-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Iron (Fe) deficiency in crop production is a worldwide problem which often results in chlorosis in grapevines, particularly in calcareous soils. Siderophores secreted by microorganisms and Strategy II plants can chelate Fe and other metals in soil solution, and siderophore-Fe complexes can then be utilized by plants and microbes. Plants may also shift rhizosphere conditions to favor siderophore-producing microbes, which can increase plant available Fe. Between-row cover crops (barley, rye, wheat, wheat/vetch) were planted as living mulch to address grapevine chlorosis by enhancing soil health in two vineyards in central Washington. The objectives of the current study were to (1) enrich for siderophore-producing organisms from within the indigenous rooting zone community of 'Concord' grapevines, and (2) perform comparative genomics on putative siderophore producing organisms to assess potentially important Fe acquisition-related functional domains and protein families. A high-throughput, chrome azurol S (CAS)-based enrichment assay was used to select siderophore-producing microbes from 'Concord' grapevine root zone soil. Next-generation whole genome sequencing allowed the assembly and annotation of ten full genomes. Phylogenetic analysis revealed two distinct clades among the genomes using the 40 nearest neighbors available in the public database, all of which were of the Pseudomonas genus. Significant differences in functional domain abundances were observed between the clades including iron acquisition and metabolism of amino acids, carbon, nitrogen, phosphate, and sulfur. Diverse mechanisms of Fe uptake and siderophore production/uptake were identified in the protein families of the genomes. The sequenced organisms are likely pseudomonads which are well-suited for iron scavenging, suggesting a potential role in Fe turnover in vineyard systems.
Collapse
Affiliation(s)
- Ricky W Lewis
- Department of Crop and Soil Sciences, Washington State University, PO Box 646420, Pullman, WA, USA
| | - Anjuman Islam
- Department of Crop and Soil Sciences, Washington State University, PO Box 646420, Pullman, WA, USA
| | - Lee Opdahl
- Department of Crop and Soil Sciences, Washington State University, PO Box 646420, Pullman, WA, USA
| | - Joan R Davenport
- Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA, USA
| | - Tarah S Sullivan
- Department of Crop and Soil Sciences, Washington State University, PO Box 646420, Pullman, WA, USA.
| |
Collapse
|
14
|
Hesse E, Padfield D, Bayer F, van Veen EM, Bryan CG, Buckling A. Anthropogenic remediation of heavy metals selects against natural microbial remediation. Proc Biol Sci 2019; 286:20190804. [PMID: 31213187 PMCID: PMC6599979 DOI: 10.1098/rspb.2019.0804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In an era of unprecedented environmental change, there have been increasing ecological and global public health concerns associated with exposure to anthropogenic pollutants. While there is a pressing need to remediate polluted ecosystems, human intervention might unwittingly oppose selection for natural detoxification, which is primarily carried out by microbes. We test this possibility in the context of a ubiquitous chemical remediation strategy aimed at targeting metal pollution: the addition of lime-containing materials. Here, we show that raising pH by liming decreased the availability of toxic metals in acidic mine-degraded soils, but as a consequence selected against microbial taxa that naturally remediate soil through the production of metal-binding siderophores. Our results therefore highlight the crucial need to consider the eco-evolutionary consequences of human environmental strategies on microbial ecosystem services and other traits.
Collapse
Affiliation(s)
- Elze Hesse
- 1 ESI and CEC, Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Daniel Padfield
- 1 ESI and CEC, Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Florian Bayer
- 1 ESI and CEC, Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Eleanor M van Veen
- 2 Camborne School of Mines, CEMPS, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Christopher G Bryan
- 2 Camborne School of Mines, CEMPS, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Angus Buckling
- 1 ESI and CEC, Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| |
Collapse
|
15
|
Estrela S, Libby E, Van Cleve J, Débarre F, Deforet M, Harcombe WR, Peña J, Brown SP, Hochberg ME. Environmentally Mediated Social Dilemmas. Trends Ecol Evol 2019; 34:6-18. [DOI: 10.1016/j.tree.2018.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|