1
|
Whitcher C, Ron SR, Ayala-Varela F, Crawford AJ, Herrera-Alva V, Castillo-Urbina EF, Grazziotin F, Bowman RM, Lemmon AR, Lemmon EM. Evidence for ecological tuning of anuran biofluorescent signals. Nat Commun 2024; 15:8884. [PMID: 39406728 PMCID: PMC11480117 DOI: 10.1038/s41467-024-53111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Although biologists have described biofluorescence in a diversity of taxa, there have been few systematic efforts to document the extent of biofluorescence within a taxonomic group or investigate its general significance. Through a field survey across South America, we discover and document patterns of biofluorescence in tropical amphibians. We more than triple the number of anuran species that have been tested for this trait. We find evidence for ecological tuning (i.e., the specific adaptation of a signal to the environment in which it is received) of the biofluorescent signals. For 56.58% of species tested, the fluorescence excitation peak matches the wavelengths most abundant at twilight, the light environment in which most frogs are active. Additionally, biofluorescence emission spans both wavelengths of low availability in twilight and the peak sensitivity of green-sensitive rods in the anuran eye, likely increasing contrast of this signal for a conspecific receiver. We propose an expanded key for testing the ecological significance of biofluorescence in future studies, providing potential explanations for the other half of fluorescent signals not originally meeting formerly proposed criteria. With evidence of tuning to the ecology and sensory systems of frogs, our results suggest frog biofluorescence is likely functioning in anuran communication.
Collapse
Affiliation(s)
- Courtney Whitcher
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA.
| | - Santiago R Ron
- Museo de Zoología, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Bioloógicas, Quito, 170143, Ecuador
| | - Fernando Ayala-Varela
- Museo de Zoología, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Bioloógicas, Quito, 170143, Ecuador
| | - Andrew J Crawford
- Universidad de los Andes, Department of Biological Sciences, Bogotá, 111711, Colombia
| | - Valia Herrera-Alva
- Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Departamento de Herpetología, Lima, 15072, Perú
| | | | - Felipe Grazziotin
- Instituto Butantan, Laboratório de Coleções Zoológicas, São Paulo, 05345, Brazil
| | - Randi M Bowman
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| | - Alan R Lemmon
- Florida State University, Department of Scientific Computing, Tallahassee, FL, 32306, USA
| | - Emily Moriarty Lemmon
- Florida State University, Department of Biological Science, Tallahassee, FL, 32306, USA
| |
Collapse
|
2
|
Chung MHJ, Mahmud-Al-Hasan M, Jennions MD, Head ML. Effects of inbreeding and elevated rearing temperatures on strategic sperm investment. Behav Ecol 2024; 35:arae044. [PMID: 38903732 PMCID: PMC11187721 DOI: 10.1093/beheco/arae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Males often strategically adjust the number of available sperm based on the social context (i.e. sperm priming response), but it remains unclear how environmental and genetic factors shape this adjustment. In freshwater ecosystems, high ambient temperatures often lead to isolated pools of hotter water in which inbreeding occurs. Higher water temperatures and inbreeding can impair fish development, potentially disrupting sperm production. We used guppies (Poecilia reticulata) to investigate how developmental temperature (26 °C, 30 °C) and male inbreeding status (inbred, outbred) influence their sperm priming response. We also tested if sperm priming was affected by whether the female was a relative (sister) and whether she was inbred or outbred. There was no effect of rearing temperature; male inbreeding status alone determined the number of available sperm in response to female presence, her inbreeding status, and her relatedness. Inbred males produced significantly more sperm in the presence of an unrelated, outbred female than when no female was present. Conversely, outbred males did not alter the number of sperm available in response to female presence or relatedness. Moreover, inbred males produced marginally more sperm when exposed to an unrelated female that was outbred rather than inbred, but there was no difference when exposed to an inbred female that was unrelated versus related. Together, a sperm priming response was only observed in inbred males when exposed to an outbred female. Outbred females in our study were larger than inbred females, suggesting that inbred males strategically allocated ejaculate resources toward females in better condition.
Collapse
Affiliation(s)
- Meng-Han Joseph Chung
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mahmud-Al-Hasan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
3
|
Hemingson CR, Cowman PF, Bellwood DR. Analysing biological colour patterns from digital images: An introduction to the current toolbox. Ecol Evol 2024; 14:e11045. [PMID: 38500859 PMCID: PMC10945235 DOI: 10.1002/ece3.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
Understanding the numerous roles that colouration serves in the natural world has remained a central focus in many evolutionary and ecological studies. However, to accurately characterise and then compare colours or patterns among individuals or species has been historically challenging. In recent years, there have been a myriad of new resources developed that allow researchers to characterise biological colours and patterns, specifically from digital imagery. However, each resource has its own strengths and weaknesses, answers a specific question and requires a detailed understanding of how it functions to be used properly. These nuances can make navigating this emerging field rather difficult. Herein, we evaluate several new techniques for analysing biological colouration, with a specific focus on digital images. First, we introduce fundamental background knowledge about light and perception to be considered when designing and implementing a study of colouration. We then show how numerous modifications can be made to images to ensure consistent formatting prior to analysis. After, we describe many of the new image analysis approaches and their respective functions, highlighting the type of research questions that they can address. We demonstrate how these various techniques can be brought together to examine novel research questions and test specific hypotheses. Finally, we outline potential future directions in colour pattern studies. Our goal is to provide a starting point and pathway for researchers wanting to study biological colour patterns from digital imagery.
Collapse
Affiliation(s)
- Christopher R. Hemingson
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Peter F. Cowman
- Biodiversity and Geosciences Program, Queensland Museum TropicsTownsvilleQueenslandAustralia
| | - David R. Bellwood
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
4
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Salgado D, Mariluz BR, Araujo M, Lorena J, Perez LN, Ribeiro RDL, Sousa JDF, Schneider PN. Light-induced shifts in opsin gene expression in the four-eyed fish Anableps anableps. Front Neurosci 2022; 16:995469. [PMID: 36248668 PMCID: PMC9556854 DOI: 10.3389/fnins.2022.995469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate eye is a complex process orchestrated by several conserved transcriptional and signaling regulators. Aside from partial or complete loss, examples of exceptional modifications to this intricate organ are scarce. The unique eye of the four-eyed fish Anableps anableps is composed of duplicated corneas and pupils, as well as specialized retina regions associated with simultaneous aerial and aquatic vision. In a previous transcriptomic study of the A. anableps developing eye we identified expression of twenty non-visual and eleven visual opsin genes. Here, we surveyed the expression territories of three non-visual melanopsins genes (opn4×1, opn4×2, opn4m3), one teleost multiple tissue opsin (tmt1b) and two visual opsins (lws and rh2-1) in dorsal and ventral retinas. Our data showed that asymmetry of non-visual opsin expression is only established after birth. During embryonic development, while inside pregnant females, the expression of opn4×1, opn4×2, and tmt1b spans the whole retina. In juvenile fish (post birth), the expression of opn4×1, opn4×2, opn4m3, and tmt1b genes becomes restricted to the ventral retina, which receives aerial light. Raising juvenile fish in clear water instead of the murky waters found in its natural habitat is sufficient to change gene expression territories of opn4×1, opn4×2, opn4m3, tmt1b, and rh2-1, demonstrating that different lighting conditions can shift opsin expression and potentially contribute to changes in spectral sensitivity in the four eyed fish.
Collapse
Affiliation(s)
- Daniele Salgado
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Bertha R. Mariluz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Maysa Araujo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jamily Lorena
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Louise N. Perez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | | | - Josane de F. Sousa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Patricia N. Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Patricia N. Schneider,
| |
Collapse
|
6
|
Owens GL, Veen T, Moxley DR, Arias-Rodriguez L, Tobler M, Rennison DJ. Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish. Mol Ecol 2021; 31:946-958. [PMID: 34784095 DOI: 10.1111/mec.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studied Poecilia mexicana populations that have repeatedly adapted to extreme sulphidic (H2 S-containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium-wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Thor Veen
- Quest University, Squamish, British Columbia, Canada
| | - Dylan R Moxley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Diana J Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Raad G, Serra F, Martin L, Derieppe MA, Gilleron J, Costa VL, Pisani DF, Amri EZ, Trabucchi M, Grandjean V. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. eLife 2021; 10:61736. [PMID: 33783350 PMCID: PMC8051948 DOI: 10.7554/elife.61736] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a growing societal scourge. Recent studies have uncovered that paternal excessive weight induced by an unbalanced diet affects the metabolic health of offspring. These reports mainly employed single-generation male exposure. However, the consequences of multigenerational unbalanced diet feeding on the metabolic health of progeny remain largely unknown. Here, we show that maintaining paternal Western diet feeding for five consecutive generations in mice induces an enhancement in fat mass and related metabolic diseases over generations. Strikingly, chow-diet-fed progenies from these multigenerational Western-diet-fed males develop a 'healthy' overweight phenotype characterized by normal glucose metabolism and without fatty liver that persists for four subsequent generations. Mechanistically, sperm RNA microinjection experiments into zygotes suggest that sperm RNAs are sufficient for establishment but not for long-term maintenance of epigenetic inheritance of metabolic pathologies. Progressive and permanent metabolic deregulation induced by successive paternal Western-diet-fed generations may contribute to the worldwide epidemic of metabolic diseases.
Collapse
Affiliation(s)
- Georges Raad
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Fabrizio Serra
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jérôme Gilleron
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes (7), Nice, France
| | - Vera L Costa
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | | | | | - Michele Trabucchi
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| | - Valerie Grandjean
- Université Côte d'Azur, Inserm, C3M, TeamControl of Gene Expression (10), Nice, France
| |
Collapse
|
8
|
Chang CH, Wang YC, Shao YT, Liu SH. Phylogenetic analysis and ontogenetic changes in the cone opsins of the western mosquitofish (Gambusia affinis). PLoS One 2020; 15:e0240313. [PMID: 33048954 PMCID: PMC7553354 DOI: 10.1371/journal.pone.0240313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
To convert external light into internal neural signal, vertebrates rely on a special group of proteins, the visual opsins. Four of the five types of visual opsins—short-wavelength sensitive 1 (Sws1), short-wavelength sensitive 2 (Sws2), medium-wavelength sensitive (Rh2), and long-wavelength sensitive (Lws)—are expressed in cone cells for scotopic vision, with the fifth, rhodopsin (Rh1), being expressed in rod cells for photopic vision. Fish often display differing ontogenetic cone opsin expression profiles, which may be related to dietary and/or habitat ontogenetic shift. The western mosquitofish (Gambusia affinis) is an aggressive invader that has successfully colonized every continent except Antarctica. The strong invasiveness of this species may be linked to its visual acuity since it can inhabit turbid waters better than other fishes. By genome screening and transcriptome analysis, we identify seven cone opsin genes in the western mosquitofish, including one sws1, two sws2, one rh2, and three lws. The predicted maximal absorbance wavelength (λmax) values of the respective proteins are 353 nm for Sws1, 449 nm for Sws2a, 408 nm for Sws2b, 516 nm for Rh2-1, 571 nm for Lws-1, and 519 nm for Lws-3. Retention of an intron in the lws-r transcript likely renders this visual opsin gene non-functional. Our real-time quantitative PCR demonstrates that adult male and female western mosquitofish do not differ in their cone opsin expression profiles, but we do reveal an ontogenetic shift in cone opsin expression. Compared to adults, larvae express proportionally more sws1 and less lws-1, suggesting that the western mosquitofish is more sensitive to shorter wavelengths in the larval stage, but becomes more sensitive to longer wavelengths in adulthood.
Collapse
Affiliation(s)
- Chia-Hao Chang
- TIGP Biodiversity Program, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung City, Taiwan
| | - Yi Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung City, Taiwan
- * E-mail: ,
| |
Collapse
|
9
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
10
|
Sibeaux A, Cole GL, Endler JA. The relative importance of local and global visual contrast in mate choice. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Cole GL, Lynn JCB, Kranz AM, Endler JA. Colour‐based foraging diverges after multiple generations under different light environments. Ethology 2019. [DOI: 10.1111/eth.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gemma L. Cole
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Jessica C. B. Lynn
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - Alexandrea M. Kranz
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Science Deakin University Geelong Victoria Australia
| |
Collapse
|
12
|
|
13
|
Kranz AM, Cole GL, Singh P, Endler JA. Colour pattern component phenotypic divergence can be predicted by the light environment. J Evol Biol 2018; 31:1459-1476. [PMID: 29947081 DOI: 10.1111/jeb.13342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 11/29/2022]
Abstract
The sensory drive hypothesis predicts that across different light environments sexually selected colour patterns will change to increase an animal's visual communication efficiency within different habitats. This is because individuals with more efficient signal components are likely to have more successful matings and hence produce more offspring. However, how colour pattern signals change over multiple generations under different light environmental conditions has not been tested experimentally. Here, we manipulated colour pattern signal efficiency by providing different ambient light environments over multiple generations to examine whether male colour pattern components change within large replicated populations of guppies (Poecilia reticulata). We report that colour patches change within populations over time and are phenotypically different among our three different light environments. Visual modelling suggests that the majority of these changes can be understood by considering the chroma, hue and luminance of each colour patch as seen by female guppies under each light environment. Taken together, our results support the hypothesis that different environmental conditions during signal reception can directly or indirectly drive the phenotypic diversification of visual signals within species.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - Gemma L Cole
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - Priti Singh
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3216, Australia
| |
Collapse
|