1
|
Moir M, Butler H, Peter C, Dold T, Newman E. A test of the Grant-Stebbins pollinator-shift model of floral evolution. THE NEW PHYTOLOGIST 2025; 245:2322-2335. [PMID: 39794298 PMCID: PMC11798893 DOI: 10.1111/nph.20373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025]
Abstract
Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities. Because pollinators are often shared between populations, we investigated whether specific pollinators are responsible for driving floral divergence between them. Three distinct ecotypes were identified, each dominated by three different pollinators: bees, swallowtail butterflies, and long-proboscid flies. Across seven populations, we found a pattern of association between style length and the morphology of pollinators that visit the flowers most frequently and contact the reproductive parts most often. Furthermore, we found significant linear, quadratic and correlational selection on flower number, tepal length and style length within the butterfly- and bee-dominated populations. We also found partial evidence for divergent selection on these traits between experimental sites. Our findings suggest that a handful of key pollinators that vary in their importance have the potential to drive population-level divergence in floral traits, which may lead to pollination ecotype formation.
Collapse
Affiliation(s)
- Matthew Moir
- Department of BotanyRhodes UniversityMakhanda6140South Africa
| | - Hannah Butler
- Department of BotanyRhodes UniversityMakhanda6140South Africa
| | - Craig Peter
- Department of BotanyRhodes UniversityMakhanda6140South Africa
| | - Tony Dold
- Department of BotanyRhodes UniversityMakhanda6140South Africa
| | - Ethan Newman
- Department of BotanyRhodes UniversityMakhanda6140South Africa
| |
Collapse
|
2
|
Torres-Vanegas F, Temesvári V, Hildesheim LS, Rodríguez-Otero C, Müller V, Aukema E, Friberg M, Opedal ØH. Linking divergence in phenotypic selection on floral traits to divergence in local pollinator assemblages in a pollination-generalized plant. J Evol Biol 2024; 37:1312-1328. [PMID: 39288276 DOI: 10.1093/jeb/voae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Divergent patterns of phenotypic selection on floral traits can arise in response to interactions with functionally distinct pollinators. However, there are a limited number of studies that relate patterns of phenotypic selection on floral traits to variation in local pollinator assemblages in pollination-generalized plant species. We studied phenotypic selection on floral traits of Viscaria vulgaris, a plant that interacts with a broad range of diurnal and nocturnal pollinators, and related divergence in phenotypic selection on floral traits to the expected level of divergence in local pollinator assemblages. We detected phenotypic selection on floral traits involved in the attraction of pollinators and the mechanics of pollen removal and deposition, and demonstrated that floral traits are subject to spatiotemporal variation in the strength and direction of phenotypic selection. We revealed that diurnal and nocturnal pollinators, when considered in isolation, mediated divergent patterns of phenotypic selection on floral traits. Consistent with the Grant-Stebbins model, we observed that divergence in phenotypic selection on floral traits increased with the expected level of divergence in local pollinator assemblages. Thus, generalized plant-pollinator interactions can mediate phenotypic selection on floral traits, and distinct local pollinator assemblages can generate a geographic mosaic of divergent patterns of phenotypic selection. We underscore that these outcomes are not exclusive to specialized plant-pollinator interactions and can emerge at a local geographic scale.
Collapse
Affiliation(s)
- Felipe Torres-Vanegas
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Vanda Temesvári
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Laura S Hildesheim
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Vilhelmina Müller
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Easger Aukema
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Magne Friberg
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Øystein H Opedal
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Traine J, Rusman Q, Schiestl FP. Too hot to handle: temperature-induced plasticity influences pollinator behaviour and plant fitness. THE NEW PHYTOLOGIST 2024; 243:1571-1585. [PMID: 38922897 DOI: 10.1111/nph.19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.
Collapse
Affiliation(s)
- Juan Traine
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| |
Collapse
|
4
|
Dorey T, Frachon L, Rieseberg LH, Kreiner JM, Schiestl FP. Biotic interactions promote local adaptation to soil in plants. Nat Commun 2024; 15:5186. [PMID: 38890322 PMCID: PMC11189560 DOI: 10.1038/s41467-024-49383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Although different ecological factors shape adaptative evolution in natural habitats, we know little about how their interactions impact local adaptation. Here we used eight generations of experimental evolution with outcrossing Brassica rapa plants as a model system, in eight treatment groups that varied in soil type, herbivory (with/without aphids), and pollination mode (hand- or bumblebee-pollination), to study how biotic interactions affect local adaptation to soil. First, we show that several plant traits evolved in response to biotic interactions in a soil-specific way. Second, using a reciprocal transplant experiment, we demonstrate that significant local adaptation to soil-type evolved in the "number of open flowers", a trait used as a fitness proxy, but only in plants that evolved with herbivory and bee pollination. Whole genome re-sequencing of experimental lines revealed that biotic interactions caused a 10-fold increase in the number of SNPs across the genome with significant allele frequency change, and that alleles with opposite allele frequency change in different soil types (antagonistic pleiotropy) were most common in plants with an evolutionary history of herbivory and bee pollination. Our results demonstrate that the interaction with mutualists and antagonists can facilitate local adaptation to soil type through antagonistic pleiotropy.
Collapse
Affiliation(s)
- Thomas Dorey
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Kopper C, Schönenberger J, Dellinger AS. High floral disparity without pollinator shifts in buzz-bee-pollinated Melastomataceae. THE NEW PHYTOLOGIST 2024. [PMID: 38634161 DOI: 10.1111/nph.19735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.
Collapse
Affiliation(s)
- Constantin Kopper
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| |
Collapse
|
6
|
Dorey T, Schiestl FP. Plant phenotypic plasticity changes pollinator-mediated selection. Evolution 2022; 76:2930-2944. [PMID: 36250479 DOI: 10.1111/evo.14634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 01/22/2023]
Abstract
Many organisms change their phenotype in response to the environment, a phenomenon called phenotypic plasticity. Although plasticity can dramatically change the phenotype of an organism, we hardly understand how this can affect biotic interactions and the resulting phenotypic selection. Here, we use fast cycling Brassica rapa plants in an experiment in the greenhouse to study the link between plasticity and selection. We detected strong plasticity in morphology, nectar, and floral scent in response to different soil types and aphid herbivory. We found positive selection on nectar and morphological traits in hand- and bumblebee-pollinated plants. Bumblebee-mediated selection on a principal component representing plant height, flower number, and flowering time (mPC3) differed depending on soil type and herbivory. For plants growing in richer soil, selection was stronger in the absence of herbivores, whereas for plants growing in poorer soil selection was stronger with herbivory. We showed that bumblebees visited tall plants with many flowers overproportionally in plants in poor soil with herbivory (i.e., when tall plants were rare), thus causing stronger positive selection on this trait combination. We suggest that with strong plasticity under most stressful conditions, pollinator-mediated selection may promote adaptation to local environmental factors given sufficient heritability of the traits under selection.
Collapse
Affiliation(s)
- Thomas Dorey
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, CH-8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, CH-8008, Switzerland
| |
Collapse
|
7
|
Eisen KE, Ma R, Raguso RA. Among- and within-population variation in morphology, rewards, and scent in a hawkmoth-pollinated plant. AMERICAN JOURNAL OF BOTANY 2022; 109:1794-1810. [PMID: 35762273 DOI: 10.1002/ajb2.16030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Floral scent is a complex trait that mediates many plant-insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. METHODS We used a greenhouse common garden experiment to investigate variation in floral scent at three scales-within plants, among plants, and among populations-and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation in Oenothera cespitosa subsp. marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. RESULTS Multiple analytical approaches demonstrated substantial variation among and within populations in compound-specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine-derived compounds, and hypanthium length are consistent with a long-tongued moth pollination syndrome. CONCLUSIONS The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Rong Ma
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
9
|
Ghaninia M, Zhou Y, Knauer AC, Schiestl FP, Sharpee TO, Smith BH. Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants and bees. PLoS One 2022; 17:e0270358. [PMID: 35830455 PMCID: PMC9278781 DOI: 10.1371/journal.pone.0270358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Animals use odors in many natural contexts, for example, for finding mates or food, or signaling danger. Most analyses of natural odors search for either the most meaningful components of a natural odor mixture, or they use linear metrics to analyze the mixture compositions. However, we have recently shown that the physical space for complex mixtures is ‘hyperbolic’, meaning that there are certain combinations of variables that have a disproportionately large impact on perception and that these variables have specific interpretations in terms of metabolic processes taking place inside the flower and fruit that produce the odors. Here we show that the statistics of odorants and odorant mixtures produced by inflorescences (Brassica rapa) are also better described with a hyperbolic rather than a linear metric, and that combinations of odorants in the hyperbolic space are better predictors of the nectar and pollen resources sought by bee pollinators than the standard Euclidian combinations. We also show that honey bee and bumble bee antennae can detect most components of the B. rapa odor space that we tested, and the strength of responses correlates with positions of odorants in the hyperbolic space. In sum, a hyperbolic representation can be used to guide investigation of how information is represented at different levels of processing in the CNS.
Collapse
Affiliation(s)
- Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Yuansheng Zhou
- The Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, CA, United States of America
- University of California, San Diego, La Jolla, CA, United States of America
| | - Anina C. Knauer
- Institute of Systematic and Evolutionary Botany University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Florian P. Schiestl
- Institute of Systematic and Evolutionary Botany University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Tatyana O. Sharpee
- The Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, CA, United States of America
- University of California, San Diego, La Jolla, CA, United States of America
- * E-mail: (TOS); , (BHS)
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- * E-mail: (TOS); , (BHS)
| |
Collapse
|
10
|
Gómez JM, González-Megías A, Narbona E, Navarro L, Perfectti F, Armas C. Phenotypic plasticity guides Moricandia arvensis divergence and convergence across the Brassicaceae floral morphospace. THE NEW PHYTOLOGIST 2022; 233:1479-1493. [PMID: 34657297 DOI: 10.1111/nph.17807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Many flowers exhibit phenotypic plasticity. By inducing the production of several phenotypes, plasticity may favour the rapid exploration of different regions of the floral morphospace. We investigated how plasticity drives Moricandia arvensis, a species displaying within-individual floral polyphenism, across the floral morphospace of the entire Brassicaceae family. We compiled the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 species to construct a family-wide floral morphospace. We assessed the disparity between the two M. arvensis floral morphs (as the distance between the phenotypic spaces occupied by each morph) and compared it with the family-wide disparity. We measured floral divergence by comparing disparity with the most common ancestor, and estimated the convergence of each floral morph with other species belonging to the same pollination niches. Moricandia arvensis exhibits a plasticity-mediated floral disparity greater than that found between species, genera and tribes. The novel phenotype of M. arvensis moves outside the region occupied by its ancestors and relatives, crosses into a new region where it encounters a different pollination niche, and converges with distant Brassicaceae lineages. Our study suggests that phenotypic plasticity favours floral divergence and rapid appearance of convergent flowers, a process which facilitates the evolution of generalist pollination systems.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, E-18071, Granada, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, E-36310, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Genética, Universidad de Granada, E-18071, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
| |
Collapse
|
11
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Qi X, An H, Hall TE, Di C, Blischak PD, McKibben MTW, Hao Y, Conant GC, Pires JC, Barker MS. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. THE NEW PHYTOLOGIST 2021; 230:372-386. [PMID: 33452818 DOI: 10.1111/nph.17194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication. In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties of Brassica rapa. Like all 'diploid' flowering plants, B. rapa has a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivated B. rapa accessions. Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four major B. rapa crop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non-paleologs. Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication of B. rapa and provide support for its importance in the success of modern agriculture.
Collapse
Affiliation(s)
- Xinshuai Qi
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tara E Hall
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Chenlu Di
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Paul D Blischak
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
13
|
Phillips RD, Peakall R, van der Niet T, Johnson SD. Niche Perspectives on Plant-Pollinator Interactions. TRENDS IN PLANT SCIENCE 2020; 25:779-793. [PMID: 32386827 DOI: 10.1016/j.tplants.2020.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 05/03/2023]
Abstract
Ecological niches are crucial for species coexistence and diversification, but the niche concept has been underutilized in studying the roles of pollinators in plant evolution and reproduction. Pollination niches can be objectively characterized using pollinator traits, abundance, and distributions, as well as network topology. We review evidence that floral traits represent adaptations to pollination niches, where tradeoffs in trait deployment reinforce niche specialization. In turn, specialized pollination niches potentially increase speciation rates, foster species coexistence, and constrain species range limits. By linking studies of adaptation with those on speciation and coexistence, the pollination niche provides an organizing principle for research on plant reproduction, and conceptually unites these studies with fields of biology where the niche perspective is already firmly established.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Ecology, Environment, and Evolution, La Trobe University, VIC 3086, Australia; Kings Park Science, Department of Biodiversity, Conservation, and Attractions, WA 6005, Australia; Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville 3209, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
14
|
Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol Lett 2020; 4:266-277. [PMID: 32547786 PMCID: PMC7293086 DOI: 10.1002/evl3.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a “black box.” Here, we integrate ecological networks and fitness landscapes to examine how changes in food‐web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Christopher J Greyson-Gaito
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Arezoo Sotoodeh
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Brendan Locke
- Department of Biological Sciences Humboldt State University Arcata California 95521
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland
| |
Collapse
|
15
|
Leal RLB, Moreira MM, Pinto AR, de Oliveira Ferreira J, Rodriguez-Girones M, Freitas L. Temporal changes in the most effective pollinator of a bromeliad pollinated by bees and hummingbirds. PeerJ 2020; 8:e8836. [PMID: 32257647 PMCID: PMC7102499 DOI: 10.7717/peerj.8836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
A generalist pollination system may be characterized through the interaction of a plant species with two or more functional groups of pollinators. The spatiotemporal variation of the most effective pollinator is the factor most frequently advocated to explain the emergence and maintenance of generalist pollination systems. There are few studies merging variation in floral visitor assemblages and the efficacy of pollination by different functional groups. Thus, there are gaps in our knowledge about the variation in time of pollinator efficacy and frequency of generalist species. In this study, we evaluated the pollination efficacy of the floral visitors of Edmundoa lindenii (Bromeliaceae) and their frequency of visits across four reproductive events. We analyzed the frequency of the three groups of floral visitors (large bees, small bees, and hummingbirds) through focal observations in the reproductive events of 2015, 2016, 2017, and 2018. We evaluated the pollination efficacy (fecundity after one visit) through selective exposure treatments and the breeding system by manual pollinations. We tested if the reproductive success after natural pollination varied between the reproductive events and also calculated the pollen limitation index. E. lindenii is a self-incompatible and parthenocarpic species, requiring the action of pollinators for sexual reproduction. Hummingbirds had higher efficacy than large bees and small bees acted only as pollen larcenists. The relative frequency of the groups of floral visitors varied between the reproductive events. Pollen limitation has occurred only in the reproductive event of 2017, when visits by hummingbirds were scarce and reproductive success after natural pollination was the lowest. We conclude that hummingbirds and large bees were the main and the secondary pollinators of E. lindenii, respectively, and that temporal variations in the pollinator assemblages had effects on its reproductive success. Despite their lower pollination efficacy, large bees ensured seed set when hummingbirds failed. Thus, we provide evidence that variable pollination environments may favor generalization, even under differential effectiveness of pollinator groups if secondary pollinators provide reproductive assurance.
Collapse
Affiliation(s)
| | - Marina Muniz Moreira
- Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Alessandra Ribeiro Pinto
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Jantzen F, Lynch JH, Kappel C, Höfflin J, Skaliter O, Wozniak N, Sicard A, Sas C, Adebesin F, Ravid J, Vainstein A, Hilker M, Dudareva N, Lenhard M. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. THE NEW PHYTOLOGIST 2019; 224:1349-1360. [PMID: 31400223 DOI: 10.1111/nph.16103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.
Collapse
Affiliation(s)
- Friederike Jantzen
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Jona Höfflin
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Oded Skaliter
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Natalia Wozniak
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Adrien Sicard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Sas
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| | - Funmilayo Adebesin
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jasmin Ravid
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Alexander Vainstein
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, 76100, Rehovot, Israel
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Ramos SE, Schiestl FP. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 2019; 364:193-196. [DOI: 10.1126/science.aav6962] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 11/02/2022]
Abstract
Pollination and herbivory are both key drivers of plant diversity but are traditionally studied in isolation from each other. We investigated real-time evolutionary changes in plant traits over six generations by using fast-cycling Brassica rapa plants and manipulating the presence and absence of bumble bee pollinators and leaf herbivores. We found that plants under selection by bee pollinators evolved increased floral attractiveness, but this process was compromised by the presence of herbivores. Plants under selection from both bee pollinators and herbivores evolved higher degrees of self-compatibility and autonomous selfing, as well as reduced spatial separation of sexual organs (herkogamy). Overall, the evolution of most traits was affected by the interaction of bee pollination and herbivory, emphasizing the importance of the cross-talk between both types of interactions for plant evolution.
Collapse
|
18
|
Eisen KE. Digest: Experimental evolution provides a window into the evolution of generalized pollination. Evolution 2018; 72:2825-2827. [PMID: 30374977 DOI: 10.1111/evo.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022]
Abstract
Do plants with multiple pollinators evolve unique trait combinations or intermediate phenotypes compared to plants with one pollinator? Using experimental evolution, Schiestl et al. (2018) found that plants pollinated by bumblebees and hoverflies evolved trait values not observed in plants pollinated by one taxon, which provides evidence for the existence of a unique generalized pollination phenotype.
Collapse
|