1
|
Hay EM, McGee MD, White CR, Chown SL. Body size shapes song in honeyeaters. Proc Biol Sci 2024; 291:20240339. [PMID: 38654649 PMCID: PMC11040244 DOI: 10.1098/rspb.2024.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Birdsongs are among the most distinctive animal signals. Their evolution is thought to be shaped simultaneously by habitat structure and by the constraints of morphology. Habitat structure affects song transmission and detectability, thus influencing song (the acoustic adaptation hypothesis), while body size and beak size and shape necessarily constrain song characteristics (the morphological constraint hypothesis). Yet, support for the acoustic adaptation and morphological constraint hypotheses remains equivocal, and their simultaneous examination is infrequent. Using a phenotypically diverse Australasian bird clade, the honeyeaters (Aves: Meliphagidae), we compile a dataset consisting of song, environmental, and morphological variables for 163 species and jointly examine predictions of these two hypotheses. Overall, we find that body size constrains song frequency and pace in honeyeaters. Although habitat type and environmental temperature influence aspects of song, that influence is indirect, likely via effects of environmental variation on body size, with some evidence that elevation constrains the evolution of song peak frequency. Our results demonstrate that morphology has an overwhelming influence on birdsong, in support of the morphological constraint hypothesis, with the environment playing a secondary role generally via body size rather than habitat structure. These results suggest that changing body size (a consequence of both global effects such as climate change and local effects such as habitat transformation) will substantially influence the nature of birdsong.
Collapse
Affiliation(s)
- Eleanor M. Hay
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Craig R. White
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Steven L. Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Sangster G, Marki PZ, Gaudin J, Irestedt M, Jonsson KA. A new genus for Pycnopygius cinereus/P. ixoides (Aves: Meliphagidae). Zootaxa 2023; 5330:147-150. [PMID: 38220876 DOI: 10.11646/zootaxa.5330.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 01/16/2024]
Affiliation(s)
- George Sangster
- Naturalis Biodiversity Center; Darwinweg 2; PO Box 9517; 2300 RA Leiden; the Netherlands.
| | - Petter Zahl Marki
- Division of Research and Innovation; University of Agder; Universitetsveien 25; 4630 Kristiansand; Norway.
| | - Jimmy Gaudin
- 34; avenue Antoine de Saint-Exupry; 17 000 La Rochelle; France.
| | - Martin Irestedt
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; P.O. Box 50007; SE-10405; Stockholm; Sweden.
| | - Knud A Jonsson
- Department of Bioinformatics and Genetics; Swedish Museum of Natural History; P.O. Box 50007; SE-10405; Stockholm; Sweden.
| |
Collapse
|
3
|
Miller AH, Stroud JT, Losos JB. The ecology and evolution of key innovations. Trends Ecol Evol 2023; 38:122-131. [PMID: 36220711 DOI: 10.1016/j.tree.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The idea of 'key innovations' has long been influential in theoretical and empirical approaches to understanding adaptive diversification. Despite originally revolving around traits inducing major ecological shifts, the key innovation concept itself has evolved, conflating lineage diversification with trait-dependent ecological shifts. In this opinion article we synthesize the history of the term, clarify the relationship between key innovations and adaptive radiation, and propose a return to the original concept of key innovations: the evolution of organismal features which permit a species to occupy a previously inaccessible ecological state. Ultimately, we suggest an integrative approach to studying key innovations, necessitating experimental approaches of form and function, natural history studies of resource use, and phylogenetic comparative perspectives.
Collapse
Affiliation(s)
- Aryeh H Miller
- Department of Biology, Washington University, St Louis, MO, USA.
| | - James T Stroud
- Department of Biology, Washington University, St Louis, MO, USA.
| | - Jonathan B Losos
- Department of Biology, Washington University, St Louis, MO, USA.
| |
Collapse
|
4
|
Reeve AH, Willemoes M, Paul L, Nagombi E, Bodawatta KH, Ortvad TE, Maiah G, Jønsson KA. Satellite tracking resident songbirds in tropical forests. PLoS One 2022; 17:e0278641. [PMID: 36584181 PMCID: PMC9803307 DOI: 10.1371/journal.pone.0278641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/20/2022] [Indexed: 01/01/2023] Open
Abstract
Advances in tracking technology have helped elucidate the movements of the planet's largest and most mobile species, but these animals do not represent faunal diversity as a whole. Tracking a more diverse array of animal species will enable testing of broad ecological and evolutionary hypotheses and aid conservation efforts. Small and sedentary species of the tropics make up a huge part of earth's animal diversity and are therefore key to this endeavor. Here, we investigated whether modern satellite tracking is a viable means for measuring the fine-scale movement patterns of such animals. We fitted five-gram solar-powered transmitters to resident songbirds in the rainforests of New Guinea, and analyzed transmission data collected over four years to evaluate movement detection and performance over time. Based upon the distribution of location fixes, and an observed home range shift by one individual, there is excellent potential to detect small movements of a few kilometers. The method also has clear limitations: total transmission periods were often short and punctuated by lapses; precision and accuracy of location fixes was limited and variable between study sites. However, impending reductions in transmitter size and price will alleviate many issues, further expanding options for tracking earth's faunal diversity.
Collapse
Affiliation(s)
- Andrew Hart Reeve
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Mikkel Willemoes
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luda Paul
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Elizah Nagombi
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Troels Eske Ortvad
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gibson Maiah
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hewes AE, Cuban D, Groom DJE, Sargent AJ, Beltrán DF, Rico-Guevara A. Variable evidence for convergence in morphology and function across avian nectarivores. J Morphol 2022; 283:1483-1504. [PMID: 36062802 DOI: 10.1002/jmor.21513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
Nectar-feeding birds provide an excellent system in which to examine form-function relationships over evolutionary time. There are many independent origins of nectarivory in birds, and nectar feeding is a lifestyle with many inherent biophysical constraints. We review the morphology and function of the feeding apparatus, the locomotor apparatus, and the digestive and renal systems across avian nectarivores with the goals of synthesizing available information and identifying the extent to which different aspects of anatomy have morphologically and functionally converged. In doing so, we have systematically tabulated the occurrence of putative adaptations to nectarivory across birds and created what is, to our knowledge, the first comprehensive summary of adaptations to nectarivory across body systems and taxa. We also provide the first phylogenetically informed estimate of the number of times nectarivory has evolved within Aves. Based on this synthesis of existing knowledge, we identify current knowledge gaps and provide suggestions for future research questions and methods of data collection that will increase our understanding of the distribution of adaptations across bodily systems and taxa, and the relationship between those adaptations and ecological and evolutionary factors. We hope that this synthesis will serve as a landmark for the current state of the field, prompting investigators to begin collecting new data and addressing questions that have heretofore been impossible to answer about the ecology, evolution, and functional morphology of avian nectarivory.
Collapse
Affiliation(s)
- Amanda E Hewes
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - David Cuban
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - Derrick J E Groom
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Alyssa J Sargent
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| | - Diego F Beltrán
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, Washington, USA.,Burke Museum of Natural History and Culture, Seattle, Washington, USA
| |
Collapse
|
6
|
Hay EM, McGee MD, Chown SL. Geographic range size and speciation in honeyeaters. BMC Ecol Evol 2022; 22:86. [PMID: 35768772 PMCID: PMC9245323 DOI: 10.1186/s12862-022-02041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
7
|
García-Navas V, Tobias JA, Schweizer M, Wegmann D, Schodde R, Norman JA, Christidis L. Trophic niche shifts and phenotypic trait evolution are largely decoupled in Australasian parrots. BMC Ecol Evol 2021; 21:212. [PMID: 34837943 PMCID: PMC8626917 DOI: 10.1186/s12862-021-01940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Trophic shifts from one dietary niche to another have played major roles in reshaping the evolutionary trajectories of a wide range of vertebrate groups, yet their consequences for morphological disparity and species diversity differ among groups. METHODS Here, we use phylogenetic comparative methods to examine whether the evolution of nectarivory and other trophic shifts have driven predictable evolutionary pathways in Australasian psittaculid parrots in terms of ecological traits such as body size, beak shape, and dispersal capacity. RESULTS We found no evidence for an 'early-burst' scenario of lineage or morphological diversification. The best-fitting models indicate that trait evolution in this group is characterized by abrupt phenotypic shifts (evolutionary jumps), with no sign of multiple phenotypic optima correlating with different trophic strategies. Thus, our results point to the existence of weak directional selection and suggest that lineages may be evolving randomly or slowly toward adaptive peaks they have not yet reached. CONCLUSIONS This study adds to a growing body of evidence indicating that the relationship between avian morphology and feeding ecology may be more complex than usually assumed and highlights the importance of adding more flexible models to the macroevolutionary toolbox.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Doñana Biological Station EBD (CSIC), Seville, Spain.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal.
| | - Joseph A Tobias
- Department of Life Sciences (Silwood Park), Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Richard Schodde
- Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, Australia
| | | | - Les Christidis
- Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
8
|
Beltrán DF, Shultz AJ, Parra JL. Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution 2021; 75:1665-1680. [PMID: 34037257 DOI: 10.1111/evo.14277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
A fascinating pattern in nature is the uneven distribution of biodiversity among clades, some with low species richness and phenotypic variation in contrast to others with remarkable species richness and phenotypic diversity. In animals, communication signals are crucial for intra- and interspecific interactions and are likely an important factor in speciation. However, evidence for the association between the evolution of such signals and speciation is mixed. In hummingbirds, plumage coloration is an important communication signal, particularly for mate selection. Here, using reflectance data for 237 hummingbird species (∼66% of total diversity), we demonstrate that color evolution rates are associated with speciation rates, and that differences among feather patches are consistent with an interplay between natural and sexual selection. We found that female color evolution rates of multiple plumage elements, including the gorget, were similar to those of males. Although male color evolution in this patch was associated with speciation, female gorget color evolution was not. In other patches, the relationship between speciation and color evolution rates was pervasive between sexes. We anticipate that future studies on animal communication will likely find that evolution of signaling traits of both sexes has played a vital role in generating signal and species diversity.
Collapse
Affiliation(s)
- Diego F Beltrán
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia.,Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, California, 90007, USA
| | - Juan L Parra
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
9
|
Skeels A, Dinnage R, Medina I, Cardillo M. Ecological interactions shape the evolution of flower color in communities across a temperate biodiversity hotspot. Evol Lett 2021; 5:277-289. [PMID: 34136275 PMCID: PMC8190448 DOI: 10.1002/evl3.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.
Collapse
Affiliation(s)
- Alexander Skeels
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichCH‐8092Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute for ForestSnow and Landscape WSLBirmensdorfCH‐8903Switzerland
| | - Russell Dinnage
- Institute for Applied EcologyUniversity of CanberraCanberraACT 2617Australia
| | - Iliana Medina
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- School of BioSciencesUniversity of MelbourneMelbourneVIC 3010Australia
| | - Marcel Cardillo
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
| |
Collapse
|
10
|
Eliason CM, McCullough JM, Andersen MJ, Hackett SJ. Accelerated Brain Shape Evolution Is Associated with Rapid Diversification in an Avian Radiation. Am Nat 2021; 197:576-591. [PMID: 33908824 DOI: 10.1086/713664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNiche expansion is a critical step in the speciation process. Large brains linked to improved cognitive ability may enable species to expand their niches and forage in new ways, thereby promoting speciation. Despite considerable work on ecological divergence in brain size and its importance in speciation, relatively little is known about how brain shape relates to behavioral, ecological, and taxonomic diversity at macroevolutionary scales. This is due in part to inherent challenges with quantifying brain shape across many species. Here we present a novel, semiautomated approach for rapidly phenotyping brain shape using semilandmarks derived from X-ray computed microtomography scans. We then test its utility by parsing evolutionary trends within a diverse radiation of birds: kingfishers (Aves: Alcedinidae). Multivariate comparative analyses reveal that rates of brain shape evolution (but not beak shape) are positively correlated with lineage diversification rates. Distinct brain shapes are further associated with changes in body size and foraging behavior, suggesting both allometric and ecological constraints on brain shape evolution. These results are in line with the idea of brains acting as a "master regulator" of critical processes governing speciation, such as dispersal, foraging behavior, and dietary niche.
Collapse
|
11
|
Evolution of the locomotor skeleton in Anolis lizards reflects the interplay between ecological opportunity and phylogenetic inertia. Nat Commun 2021; 12:1525. [PMID: 33750763 PMCID: PMC7943571 DOI: 10.1038/s41467-021-21757-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Anolis lizards originated in continental America but have colonized the Greater Antillean islands and recolonized the mainland, resulting in three major groups (Primary and Secondary Mainland and Greater Antillean). The adaptive radiation in the Greater Antilles has famously resulted in the repeated evolution of ecomorphs. Yet, it remains poorly understood to what extent this island radiation differs from diversification on the mainland. Here, we demonstrate that the evolutionary modularity between girdles and limbs is fundamentally different in the Greater Antillean and Primary Mainland Anolis. This is consistent with ecological opportunities on islands driving the adaptive radiation along distinct evolutionary trajectories. However, Greater Antillean Anolis share evolutionary modularity with the group that recolonized the mainland, demonstrating a persistent phylogenetic inertia. A comparison of these two groups support an increased morphological diversity and faster and more variable evolutionary rates on islands. These macroevolutionary trends of the locomotor skeleton in Anolis illustrate that ecological opportunities on islands can have lasting effects on morphological diversification.
Collapse
|
12
|
Kennedy JD, Marki PZ, Fjeldså J, Rahbek C. The association between morphological and ecological characters across a global passerine radiation. J Anim Ecol 2020; 89:1094-1108. [PMID: 31873967 DOI: 10.1111/1365-2656.13169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 01/02/2023]
Abstract
Strong relationships between morphological and ecological characters are commonly predicted to reflect the association between form and function, with this hypothesis being well supported in restricted taxonomic and geographical contexts. Conversely, among broader sets of species, ecological variables have been shown to have limited power to explain morphological variation. To understand these apparent discrepancies, for a large and globally distributed passerine radiation, we test whether (a) the character states of four ecological variables (foraging mode, diet, strata and habitat) have different morphological optima, (b) ecological variables explain substantial variance in morphology and (c) ecological character states can be accurately predicted from morphology. We collected 10 linear morphological measurements for 782 species of corvoid passerines, and assessed (a) the fit of models of continuous trait evolution with different morphological optima for each ecological character state, (b) variation in morphological traits among ecological character states using phylogenetically corrected regressions and (c) the accuracy of morphological traits in predicting species-level membership of ecological character states using linear discriminant analysis (LDA). Models of morphological evolution with different ecological optima were well supported across numerous morphological axes, corresponding with significant differences in trait distributions among ecological character states. LDA also showed that membership of the ecological categories can be predicted with relatively high accuracy by morphology. In contrast to these findings, ecological variables explain limited amounts of variation in morphological traits. For a global radiation of passerine birds, we confirm that the generation of morphological variation is generally consistent with ecological selection pressures, but that ecological characters are of limited utility in explaining morphological differences among species. Although selection towards different optima means that membership of ecological character states tend to be well predicted by morphology, the overall morphospace of individual ecological character states tend to be broad, implying that morphology can evolve in multiple ways in response to similar selection pressures. Extensive variation in morphological adaptations among similar ecological strategies is likely to be a widespread phenomenon across the tree of life.
Collapse
Affiliation(s)
- Jonathan D Kennedy
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Petter Z Marki
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Life Sciences, Imperial College London, Ascot, UK.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Pauw A. A Bird's-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectarivorous birds and bird-pollinated plants are linked by a network of interactions. Here I ask how these interactions influence evolution and community composition. I find near complete evidence for the effect of birds on plant evolution. Experiments show the process in action—birds select among floral phenotypes in a population—and comparative studies find the resulting pattern—bird-pollinated species have long-tubed, red flowers with large nectar volumes. Speciation is accomplished in one “magical” step when adaptation for bird pollination brings about divergent morphology and reproductive isolation. In contrast, evidence that plants drive bird evolution is fragmentary. Studies of selection on population-level variation are lacking, but the resulting pattern is clear—nectarivorous birds have evolved a remarkable number of times and often have long bills and brush-tipped or tubular tongues. At the level of the ecological guild, birds select among plant species via an effect on seed set and thus determine plant community composition. Plants simultaneously influence the relative fitness of bird species and thus determine the composition of the bird guild. Interaction partners may give one guild member a constant fitness advantage, resulting in competitive exclusion and community change, or may act as limiting resources that depress the fitness of frequent species, thus stabilizing community composition and allowing the coexistence of diversity within bird and plant guilds.
Collapse
Affiliation(s)
- Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|