1
|
Chuong CM, Wu P, Yu Z, Liang YC, Widelitz RB. Organizational principles of integumentary organs: Maximizing variations for effective adaptation. Dev Biol 2025; 522:171-195. [PMID: 40113027 DOI: 10.1016/j.ydbio.2025.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The integument serves as the interface between an organism and its environment. It primarily comprises ectoderm-derived epithelium and mesenchyme derived from various embryonic sources. These integumentary organs serve as a barrier defining the physiological boundary between the internal and exterior environments and fulfill diverse functions. How does the integument generate such a large diversity? Here, we attempt to decipher the organizational principles. We focus on amniotes and use appendage follicles as the primary examples. The integument begins as a simple planar sheet of coupled epithelial and mesenchymal cells, then becomes more complex through the following patterning processes. 1) De novo Turing periodic patterning process: This process converts the integument into multiple skin appendage units. 2) Adaptive patterning process: Dermal muscle, blood vessels, adipose tissue, and other components are assembled and organized around appendage follicles when present. 3) Cyclic renewal: Skin appendage follicles contain stem cells and their niches, enabling physiological molting and regeneration in the adult animal. 4) Spatial variations: Multiple appendage units allow modulation of shape, size, keratin types, and color patterns of feathers and hairs across the animal's surface. 5) Temporal phenotypic plasticity: Cyclic renewal permits temporal transition of appendage phenotypes, i.e. regulatory patterning or integumentary metamorphosis, throughout an animal's lifetime. The diversities in (4) and (5) can be generated epigenetically within the same animal. Over the evolutionary timescale, different species can modulate the number, size, and distributions of existing ectodermal organs in the context of micro-evolution, allowing effective adaptation to new climates as seen in the variation of hair length among mammals. Novel ectodermal organs can also emerge in the context of macro-evolution, enabling animals to explore new ecological niches, as seen in the emergence of feathers on dinosaurs. These principles demonstrate how multi-scale organ adaption in the amniotes can maximize diverse and flexible integumentary organ phenotypes, producing a vast repertoire for natural selection and thereby providing effective adaptation and evolutionary advantages.
Collapse
Affiliation(s)
- Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
2
|
Jiang TX, Wu P, Li A, Widelitz RB, Chuong CM. Wound-Induced Regeneration in Feather Follicles: A Stepwise Strategy to Regenerate Stem Cells. J Dev Biol 2025; 13:10. [PMID: 40265368 PMCID: PMC12015844 DOI: 10.3390/jdb13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic stem cell niche. During normal feather cycling, growth-phase proximal follicle collar bulge stem cells adopt a ring configuration. At the resting and initiation phases, these stem cells descend to the dermal papilla to form papillary ectoderm and ascend to the proximal follicle in a new growth phase. Plucking resting-phase feathers accelerates papillary ectoderm cell activation. Plucking growth-phase feathers depletes collar bulge stem cells; however, a blastema reforms the collar bulge stem cells, expressing KRT15, LGR6, Sox9, integrin-α6, and tenascin C. Removing the follicle base and dermal papilla prevents feather regeneration. Yet, transplanting an exogenous dermal papilla to the follicle base can induce re-epithelialization from the lower follicle sheath, followed by feather regeneration. Thus, there is a stepwise regenerative strategy using stem cells located in the collar bulge, papillary ectoderm, and de-differentiated lower follicle sheath to generate new feathers after different levels of injuries. This adaptable regenerative mechanism is based on the hierarchy of stem cell regenerative capacity and underscores the remarkable resilience of feather follicle regenerative abilities.
Collapse
Affiliation(s)
- Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| |
Collapse
|
3
|
Urban CA, Legendre LJ, Clarke JA. Description of natal down of the ostrich (Struthio camelus) and comparison with common quail (Coturnix coturnix): Developmental and evolutionary implications. J Anat 2023; 243:1007-1023. [PMID: 37515428 PMCID: PMC10641043 DOI: 10.1111/joa.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Natal down is a feather stage that differs in both form and function from the definitive feathers of adult birds. It has a simpler structure that has been speculated to be similar to the body coverings of non-avian dinosaurs. However, inference of the evolution of natal down has been limited by our understanding of its structural variation in extant birds. Most descriptive work has focused on neognathous birds, limiting our knowledge of the full diversity of feathers in extant taxa. Here, we describe the natal down of a post-hatch ostrich (Struthio camelus) and compare it to that of a post-hatch quail (Coturnix coturnix). We confirm the presence of featherless spaces (apteria) in S. camelus and the lack of barbules on the tips of natal down in both species. We also find differences between dorsal and ventral natal down structures, such as barbule density in S. camelus and the extent of the bare portion of the barb in both species. Surprisingly, we do not find that the neoptiles of either species follow the ideal morphologies for increasing insulation. Finally, we hypothesize that the different barb types present in S. camelus natal down result from a large addition of new barb ridges during development, which is not known except in feathers with a rachis. These results have implications for our understanding of how structure informs function and development in understudied feather types, such as those shared by non-avian dinosaurs.
Collapse
Affiliation(s)
- Carmen A Urban
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lucas J Legendre
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Julia A Clarke
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
5
|
Chen CK, Juan WT, Liang YC, Wu P, Chuong CM. Making region-specific integumentary organs in birds: evolution and modifications. Curr Opin Genet Dev 2021; 69:103-111. [PMID: 33780743 DOI: 10.1016/j.gde.2021.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Birds are the most diversified terrestrial vertebrates due to highly diverse integumentary organs that enable robust adaptability to various eco-spaces. Here we show that this complexity is built upon multi-level regional specifications. Across-the-body (macro-) specification includes the evolution of beaks and feathers as new integumentary organs that are formed with regional specificity. Within-an-organ (micro-) specification involves further modifications of organ shapes. We review recent progress in elucidating the molecular mechanisms underlying feather diversification as an example. (1) β-Keratin gene clusters are regulated by typical enhancers or high order chromatin looping to achieve macro- and micro-level regional specification, respectively. (2) Multi-level symmetry-breaking of feather branches confers new functional forms. (3) Complex color patterns are produced by combinations of macro-patterning and micro-patterning processes. The integration of these findings provides new insights toward the principle of making a robustly adaptive bio-interface.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Tau Juan
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|