1
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Al-Marsoummi S, Vomhof-DeKrey EE, Basson MD. Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:2238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Marc D. Basson
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
4
|
Lemattre C, Thevenon J, Duffourd Y, Nambot S, Haquet E, Vuadelle B, Genevieve D, Sarda P, Bruel AL, Kuentz P, Wells CF, Faivre L, Willems M. TBL1XR1 mutations in Pierpont syndrome are not restricted to the recurrent p.Tyr446Cys mutation. Am J Med Genet A 2018; 176:2813-2818. [PMID: 30365874 DOI: 10.1002/ajmg.a.40510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
Abstract
Pierpont syndrome is a rare and sporadic syndrome, including developmental delay, facial characteristics, and abnormal extremities. Recently, a recurrent de novo TBL1XR1 variant (c.1337A > G; p.Tyr446Cys) has been identified in eight patients by whole-exome sequencing. A dominant-negative effect of this mutation is strongly suspected, since patients with TBL1XR1 deletion and other variants predicting loss of function do not share the same phenotype. We report two patients with typical Pierpont-like syndrome features. Exome sequencing allowed identifying a de novo heterozygous missense TBL1XR1 variant in both patients, different from those already reported: p.Cys325Tyr and p.Tyr446His. The localization of these mutations and clinical features of Pierpont-like syndrome suggest that their functional consequences are comparable with the recurrent mutation previously described, and provided additional data to understand molecular mechanisms of TBL1XR1 anomalies.
Collapse
Affiliation(s)
- C Lemattre
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - J Thevenon
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France.,Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU, Grenoble, France
| | - Y Duffourd
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France.,Orphanomix, SATT Grand Est, Dijon, France.,UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Hôpital d'enfants, CHU, Dijon, France
| | - S Nambot
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France
| | - E Haquet
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | | | - D Genevieve
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - P Sarda
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - A L Bruel
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France
| | - P Kuentz
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France.,Laboratoire de Biologie Moléculaire, CHRU Saint-Jacques, Besançon, France
| | - C F Wells
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - L Faivre
- Equipe GAD, UMR1231, Université de Bourgogne Franche Comté, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, Hôpital d'enfants, CHU, Dijon, France
| | - M Willems
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| |
Collapse
|
5
|
Hyeon J, Lee B, Shin SH, Yoo HY, Kim SJ, Kim WS, Park WY, Ko YH. Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement. Mod Pathol 2018; 31:1418-1428. [PMID: 29765142 DOI: 10.1038/s41379-018-0064-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/10/2022]
Abstract
Gastric extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is a distinct entity in that Helicobacter pylori infection plays the most important causative role in the development of the disease. To investigate the genomic alteration in gastric marginal zone lymphoma that was resistant to the H. pylori eradication therapy, we analyzed 19 cases of the gastric marginal zone lymphoma using fluorescence in situ hybridization for MALT1, BCL10 rearrangement, and targeted sequencing using an Illumina platform. Major genetic alterations affected genes involved in nuclear factor (NF)-κB pathway activation and included MALT1 rearrangement (39%), and somatic mutations of TRAF3 (21%), TNFAIP3 (16%), and NOTCH1 (16%). In the MALT1 rearrangement-negative group, disruptive somatic mutations of TRAF3 were the most common alterations (4/12, 33%), followed by somatic mutations of TNFAIP3 (3/12, 25%), and NOTCH1 (3/12, 25%). The present study confirms that genes involved in activation of NF-κB-signaling pathways are a major driver in oncogenesis of H. pylori eradication-resistant gastric marginal zone lymphoma and revealed that TRAF3 mutation is a major contributor in MALT1 rearrangement-negative gastric marginal zone lymphoma.
Collapse
Affiliation(s)
- Jiyeon Hyeon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Boram Lee
- Samsung Genome Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - So-Hyun Shin
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Division of hematology-oncology, Department of Internal medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of hematology-oncology, Department of Internal medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.
| | - Young-Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Basson MD, Wang Q, Chaturvedi LS, More S, Vomhof-DeKrey EE, Al-Marsoummi S, Sun K, Kuhn LA, Kovalenko P, Kiupel M. Schlafen 12 Interaction with SerpinB12 and Deubiquitylases Drives Human Enterocyte Differentiation. Cell Physiol Biochem 2018; 48:1274-1290. [PMID: 30045019 PMCID: PMC6123821 DOI: 10.1159/000492019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Human enterocytic differentiation is altered during development, fasting, adaptation, and bariatric surgery, but its intracellular control remains unclear. We hypothesized that Schlafen 12 (SLFN12) regulates enterocyte differentiation. METHODS We used laser capture dissection of epithelium, qRT-PCR, and immunohistochemistry to evaluate SLFN12 expression in biopsies of control and fasting human duodenal mucosa, and viral overexpression and siRNA to trace the SLFN12 pathway in human Caco-2 and HIEC6 intestinal epithelial cells. RESULTS Fasting human duodenal mucosa expressed less SLFN12 mRNA and protein, accompanied by decreases in enterocytic markers like sucrase-isomaltase. SLFN12 overexpression increased Caco-2 sucrase-isomaltase promoter activity, mRNA, and protein independently of proliferation, and activated the SLFN12 putative promoter. SLFN12 coprecipitated Serpin B12 (SERPB12). An inactivating SLFN12 point mutation prevented both SERPB12 binding and sucrase-isomaltase induction. SERPB12 overexpression also induced sucrase-isomaltase, while reducing SERPB12 prevented the SLFN12 effect on sucrase-isomaltase. Sucrase-isomaltase induction by both SLFN12 and SERPB12 was attenuated by reducing UCHL5 or USP14, and blocked by reducing both. SERPB12 stimulated USP14 but not UCHL5 activity. SERPB12 coprecipitated USP14 but not UCHL5. Moreover, SLFN12 increased protein levels of the sucrase-isomaltase-promoter-binding transcription factor cdx2 without altering Cdx2 mRNA. This was prevented by reducing UCHL5 and USP14. We further validated this pathway in vitro and in vivo. SLFN12 or SERPB12 overexpression induced sucrase-isomaltase in human non-malignant HIEC-6 enterocytes. CONCLUSIONS SLFN12 regulates human enterocytic differentiation by a pathway involving SERPB12, the deubiquitylases, and Cdx2. This pathway may be targeted to manipulate human enterocytic differentiation in mucosal atrophy, short gut or obesity.
Collapse
Affiliation(s)
- Marc D Basson
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Qinggang Wang
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Lakshmi S Chaturvedi
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
- Currently at Departments of Pharmaceutical Sciences and Biomedical Sciences-College of Pharmacy, Departments of Basic Sciences and Surgery-College of Medicine, California Northstate University, Cambridge, Massachusetts, USA
| | - Shyam More
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Emilie E Vomhof-DeKrey
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Sarmad Al-Marsoummi
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Kelian Sun
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
| | - Leslie A Kuhn
- Department of Biochemistry and Molecular Biology, Colleges of National Science, Human Medicine, Osteopathic Medicine and Engineering, Michigan State University, Cambridge, Massachusetts, USA
| | - Pavlo Kovalenko
- Departments of Surgery, Pathology, and Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Cambridge, Massachusetts, USA
- Currently at Sarepta Therapeutics, Cambridge, Massachusetts, USA
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, Lansing, Michigan, USA
| |
Collapse
|
7
|
The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 2017; 8:17038-17049. [PMID: 28152507 PMCID: PMC5370020 DOI: 10.18632/oncotarget.14928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ocular marginal zone lymphoma is a common type of low-grade B-cell lymphoma. To investigate the genomic changes that occur in ocular marginal zone lymphoma, we analyzed 10 cases of ocular marginal zone lymphoma using whole-genome and RNA sequencing and an additional 38 cases using targeted sequencing. Major genetic alterations affecting genes involved in nuclear factor (NF)-κB pathway activation (60%), chromatin modification and transcriptional regulation (44%), and B-cell differentiation (23%) were identified. In whole-genome sequencing, the 6q23.3 region containing TNFAIP3 was deleted in 5 samples (50%). In addition, 5 structural variation breakpoints in the first intron of IL20RA located in the 6q23.3 region was found in 3 samples (30%). In targeted sequencing, a disruptive mutation of TNFAIP3 was the most common alteration (54%), followed by mutations of TBL1XR1 (18%), cAMP response element binding proteins (CREBBP) (17%) and KMT2D (6%). All TBL1XR1 mutations were located within the WD40 domain, and TBL1XR1 mutants transfected into 293T cells increased TBL1XR1 binding with nuclear receptor corepressor (NCoR), leading to increased degradation of NCoR and the activation of NF-κB and JUN target genes. This study confirms genes involving in the activation of the NF-kB signaling pathway is the major driver in the oncogenesis of ocular MZL.
Collapse
|
8
|
Zhou L, Zheng H, Huang X, Zhu L, Wu S, Zeng C, Yang L, Chen S, Luo G, Du X, Li Y. Different genetic alteration of A20
in a Sézary syndrome case with Vα2-Jα22
T cell clone. Asia Pac J Clin Oncol 2017; 14:e116-e123. [PMID: 28296250 DOI: 10.1111/ajco.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Lingling Zhou
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Haitao Zheng
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Xin Huang
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Lihua Zhu
- Department of Rheumatism and Immunology; First Affiliated Hospital; Jinan University; Guangzhou China
| | - Suijing Wu
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Lijian Yang
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Gengxin Luo
- Department of Hematology; First Affiliated Hospital; Jinan University; Guangzhou China
| | - Xin Du
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
- Department of Hematology; First Affiliated Hospital; Jinan University; Guangzhou China
| |
Collapse
|
9
|
Heinen CA, Jongejan A, Watson PJ, Redeker B, Boelen A, Boudzovitch-Surovtseva O, Forzano F, Hordijk R, Kelley R, Olney AH, Pierpont ME, Schaefer GB, Stewart F, van Trotsenburg ASP, Fliers E, Schwabe JWR, Hennekam RC. A specific mutation in TBL1XR1 causes Pierpont syndrome. J Med Genet 2016; 53:330-7. [PMID: 26769062 PMCID: PMC4853543 DOI: 10.1136/jmedgenet-2015-103233] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/14/2015] [Indexed: 12/30/2022]
Abstract
Background The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome. Methods We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function. Results We identified a single heterozygous missense variant, c.1337A>C (p.Tyr446Cys), in transducin β-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. mRNA expression is lower in lymphocytes of two patients compared with the four controls. The mutant TBL1XR1 protein assembled correctly into the nuclear receptor corepressor (NCoR)/ silencing mediator for retinoid and thyroid receptors (SMRT) complex, suggesting a dominant-negative mechanism. This contrasts with loss-of-function germline TBL1XR1 deletions and other TBL1XR1 mutations that have been implicated in autism. However, autism is not present in individuals with Pierpont syndrome. Conclusions This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 can cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.
Collapse
Affiliation(s)
- Charlotte A Heinen
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands Department of Paediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Watson
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester, UK
| | - Bert Redeker
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Boudzovitch-Surovtseva
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Roel Hordijk
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Richard Kelley
- Division of Metabolism, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ann H Olney
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Centre, Omaha, Nebraska, USA
| | - Mary Ella Pierpont
- Division of Genetics, Children's Hospitals and Clinics of Minnesota, University of Minnesota, Minneapolis, Minnesota, USA
| | - G Bradley Schaefer
- Division of Medical Genetics, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Fiona Stewart
- Division of Medical Genetics, Belfast City Hospital, Belfast, Ireland
| | - A S Paul van Trotsenburg
- Department of Paediatric Endocrinology, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - John W R Schwabe
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Leicester, UK
| | - Raoul C Hennekam
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kiel MJ, Sahasrabuddhe AA, Rolland DCM, Velusamy T, Chung F, Schaller M, Bailey NG, Betz BL, Miranda RN, Porcu P, Byrd JC, Medeiros LJ, Kunkel SL, Bahler DW, Lim MS, Elenitoba-Johnson KSJ. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome. Nat Commun 2015; 6:8470. [PMID: 26415585 PMCID: PMC4598843 DOI: 10.1038/ncomms9470] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Sézary syndrome (SS) is an aggressive leukaemia of mature T cells with poor prognosis and limited options for targeted therapies. The comprehensive genetic alterations underlying the pathogenesis of SS are unknown. Here we integrate whole-genome sequencing (n=6), whole-exome sequencing (n=66) and array comparative genomic hybridization-based copy-number analysis (n=80) of primary SS samples. We identify previously unknown recurrent loss-of-function aberrations targeting members of the chromatin remodelling/histone modification and trithorax families, including ARID1A in which functional loss from nonsense and frameshift mutations and/or targeted deletions is observed in 40.3% of SS genomes. We also identify recurrent gain-of-function mutations targeting PLCG1 (9%) and JAK1, JAK3, STAT3 and STAT5B (JAK/STAT total ∼11%). Functional studies reveal sensitivity of JAK1-mutated primary SS cells to JAK inhibitor treatment. These results highlight the complex genomic landscape of SS and a role for inhibition of JAK/STAT pathways for the treatment of SS. Sézary syndrome is a T cell malignancy that has been poorly characterized at the genome level. In this study, Kiel et al. perform whole-genome analyses and identify mutations in the JAK–STAT pathway and show that primary cells are sensitive to JAK inhibitors.
Collapse
Affiliation(s)
- Mark J Kiel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Anagh A Sahasrabuddhe
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Delphine C M Rolland
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Fuzon Chung
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Matthew Schaller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nathanael G Bailey
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Bryan L Betz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pierluigi Porcu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - David W Bahler
- Department of Pathology, The University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Center for Personalized Diagnostics, Perelman School of Medicine at University of Pennsylvania., Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Allergen-specific IgE responses are found in pre-Sézary syndrome patients and in erythrodermic atopic patients but not in true Sézary syndrome patients. J Am Acad Dermatol 2015; 72:352-3. [DOI: 10.1016/j.jaad.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
|