1
|
Lattmann E, Guggiari T, Turko P, Levesque MP. Protocol for analysis of miRNAs in human melanoma cells. STAR Protoc 2025; 6:103861. [PMID: 40449003 DOI: 10.1016/j.xpro.2025.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025] Open
Abstract
MicroRNAs (miRNAs) significantly contribute to melanoma plasticity, a key factor in metastasis and therapy resistance. Here, we provide a protocol for analysis of miRNAs in human melanoma cells. We describe two approaches for plating cells, either using cell chambers or attaching cells to microscopy slides by means of centrifugation. We first focus on cell pretreatment and staining procedures using the RNAscope Plus small RNA-RNA high-definition (RNAscope Plus smRNA-RNA HD) assay. We then detail the quantitative analysis of miRNA expression and co-localization.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University of Zurich, University Hospital Zurich, 8952 Schlieren, Switzerland.
| | - Tessa Guggiari
- Department of Dermatology, University of Zurich, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, 8952 Schlieren, Switzerland.
| |
Collapse
|
2
|
Stoffel CI, Eichhoff O, Cheng PF, Seiler L, Tellenbach F, Dzung A, Chiovaro F, Dummer R, Levesque MP. Protein Kinase C Inhibition Overcomes Targeted Therapy Resistance in Cutaneous Melanoma. Exp Dermatol 2025; 34:e70093. [PMID: 40243348 DOI: 10.1111/exd.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
WNT5a expression is associated with a MAPK inhibitor resistant phenotype in melanoma driving cell polarity and invasion. No small molecules specifically targeting WNT5a are available. Promising results of targeting non-canonical WNT5a-dependent WNT signalling with a pan-PKC inhibitor in uveal melanoma prompted us to investigate the relevance of PKC inhibition in cutaneous melanoma. We revealed PKC signalling and WNT5a expression to be associated in a positive feedback loop, suggesting pan-PKC inhibitor as a potent inhibitor of WNT5a in cutaneous melanoma. Combinatorial PKC and MAPK pathway inhibition significantly reduced proliferation and invasion by induction of apoptosis in targeted therapy-resistant melanoma in vitro. In in vivo xenograft studies, we found less proliferation and apoptosis induction in the PKC inhibitor single and combination treatment group with MAPK pathway inhibitors than in the standard of care treatment group. Thus, targeting the non-canonical WNT signalling pathway via combinatorial PKC and MAPK pathway inhibition is beneficial for therapy-resistant cutaneous melanoma combating tumour heterogeneity in vivo. With our study, we are providing an alternate treatment strategy we think is worth investigating as future clinical interventions in cutaneous melanoma.
Collapse
Affiliation(s)
- Corinne I Stoffel
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ossia Eichhoff
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luzia Seiler
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Flavia Tellenbach
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Goetze S, van Drogen A, Albinus JB, Fort KL, Gandhi T, Robbiani D, Laforte V, Reiter L, Levesque MP, Xuan Y, Wollscheid B. Simultaneous targeted and discovery-driven clinical proteotyping using hybrid-PRM/DIA. Clin Proteomics 2024; 21:26. [PMID: 38565978 PMCID: PMC10988896 DOI: 10.1186/s12014-024-09478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland.
| | - Audrey van Drogen
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Jonas B Albinus
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
4
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Bunne C, Stark SG, Gut G, Del Castillo JS, Levesque M, Lehmann KV, Pelkmans L, Krause A, Rätsch G. Learning single-cell perturbation responses using neural optimal transport. Nat Methods 2023; 20:1759-1768. [PMID: 37770709 PMCID: PMC10630137 DOI: 10.1038/s41592-023-01969-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/23/2023] [Indexed: 09/30/2023]
Abstract
Understanding and predicting molecular responses in single cells upon chemical, genetic or mechanical perturbations is a core question in biology. Obtaining single-cell measurements typically requires the cells to be destroyed. This makes learning heterogeneous perturbation responses challenging as we only observe unpaired distributions of perturbed or non-perturbed cells. Here we leverage the theory of optimal transport and the recent advent of input convex neural architectures to present CellOT, a framework for learning the response of individual cells to a given perturbation by mapping these unpaired distributions. CellOT outperforms current methods at predicting single-cell drug responses, as profiled by scRNA-seq and a multiplexed protein-imaging technology. Further, we illustrate that CellOT generalizes well on unseen settings by (1) predicting the scRNA-seq responses of holdout patients with lupus exposed to interferon-β and patients with glioblastoma to panobinostat; (2) inferring lipopolysaccharide responses across different species; and (3) modeling the hematopoietic developmental trajectories of different subpopulations.
Collapse
Affiliation(s)
- Charlotte Bunne
- Department of Computer Science, ETH Zurich, Zürich, Switzerland
- AI Center, ETH Zurich, Zürich, Switzerland
| | - Stefan G Stark
- Department of Computer Science, ETH Zurich, Zürich, Switzerland
- AI Center, ETH Zurich, Zürich, Switzerland
- Medical Informatics Unit, University of Zurich Hospital, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Gabriele Gut
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | | | - Mitch Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zürich, Switzerland
| | - Kjong-Van Lehmann
- Department of Computer Science, ETH Zurich, Zürich, Switzerland.
- Cancer Research Center Cologne-Essen, Site: Center Integrated Oncology Aachen, Aachen, Germany.
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland.
| | - Andreas Krause
- Department of Computer Science, ETH Zurich, Zürich, Switzerland.
- AI Center, ETH Zurich, Zürich, Switzerland.
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zürich, Switzerland.
- AI Center, ETH Zurich, Zürich, Switzerland.
- Medical Informatics Unit, University of Zurich Hospital, Zürich, Switzerland.
- Swiss Institute of Bioinformatics, Zurich, Switzerland.
- Department of Biology, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
6
|
Lattmann E, Lapaire V, Levesque MP. Isolation and detection of extracellular vesicles from melanoma cells and liquid biopsies using size-exclusion chromatography and nano-flow cytometry. STAR Protoc 2023; 4:102365. [PMID: 37421613 PMCID: PMC10339257 DOI: 10.1016/j.xpro.2023.102365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 07/10/2023] Open
Abstract
Characterization of extracellular vesicles (EVs) holds great promise for biomarker discovery and understanding of diseases, including melanoma, the deadliest skin cancer type. Here, we describe a size-exclusion chromatography method to isolate and concentrate EVs from patient material including (1) patient-derived melanoma cell line supernatants and (2) plasma and serum biopsies. Additionally, we provide a protocol to analyze EVs by nano-flow cytometry. EV suspensions obtained with the presented protocol can be used for several downstream analyses including RNA sequencing and proteomics.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, ZH 8952, Switzerland.
| | - Valérie Lapaire
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, ZH 8952, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, ZH 8952, Switzerland.
| |
Collapse
|
7
|
Langenbach M, Giesler S, Richtsfeld S, Costa-Pereira S, Rindlisbacher L, Wertheimer T, Braun LM, Andrieux G, Duquesne S, Pfeifer D, Woessner NM, Menssen HD, Taromi S, Duyster J, Börries M, Brummer T, Blazar BR, Minguet S, Turko P, Levesque MP, Becher B, Zeiser R. MDM2 Inhibition Enhances Immune Checkpoint Inhibitor Efficacy by Increasing IL15 and MHC Class II Production. Mol Cancer Res 2023; 21:849-864. [PMID: 37071397 PMCID: PMC10524444 DOI: 10.1158/1541-7786.mcr-22-0898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The treatment of patients with metastatic melanoma with immune checkpoint inhibitors (ICI) leads to impressive response rates but primary and secondary resistance to ICI reduces progression-free survival. Novel strategies that interfere with resistance mechanisms are key to further improve patient outcome during ICI therapy. P53 is often inactivated by mouse-double-minute-2 (MDM2), which may decrease immunogenicity of melanoma cells. We analyzed primary patient-derived melanoma cell lines, performed bulk sequencing analysis of patient-derived melanoma samples, and used melanoma mouse models to investigate the role of MDM2-inhibition for enhanced ICI therapy. We found increased expression of IL15 and MHC-II in murine melanoma cells upon p53 induction by MDM2-inhibition. MDM2-inhibitor induced MHC-II and IL15-production, which was p53 dependent as Tp53 knockdown blocked the effect. Lack of IL15-receptor in hematopoietic cells or IL15 neutralization reduced the MDM2-inhibition/p53-induction-mediated antitumor immunity. P53 induction by MDM2-inhibition caused anti-melanoma immune memory as T cells isolated from MDM2-inhibitor-treated melanoma-bearing mice exhibited anti-melanoma activity in secondary melanoma-bearing mice. In patient-derived melanoma cells p53 induction by MDM2-inhibition increased IL15 and MHC-II. IL15 and CIITA expressions were associated with a more favorable prognosis in patients bearing WT but not TP53-mutated melanoma. IMPLICATIONS MDM2-inhibition represents a novel strategy to enhance IL15 and MHC-II-production, which disrupts the immunosuppressive tumor microenvironment. On the basis of our findings, a clinical trial combining MDM2-inhibition with anti-PD-1 immunotherapy for metastatic melanoma is planned.
Collapse
Affiliation(s)
- Marlene Langenbach
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Sophie Giesler
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Richtsfeld
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sara Costa-Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tobias Wertheimer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas M. Braun
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Duquesne
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nadine M. Woessner
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Sanaz Taromi
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Börries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Robert Zeiser
- Department of Medicine I - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Live slow-frozen human tumor tissues viable for 2D, 3D, ex vivo cultures and single-cell RNAseq. Commun Biol 2022; 5:1144. [PMID: 36307545 PMCID: PMC9616892 DOI: 10.1038/s42003-022-04025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Biobanking of surplus human healthy and disease-derived tissues is essential for diagnostics and translational research. An enormous amount of formalin-fixed and paraffin-embedded (FFPE), Tissue-Tek OCT embedded or snap-frozen tissues are preserved in many biobanks worldwide and have been the basis of translational studies. However, their usage is limited to assays that do not require viable cells. The access to intact and viable human material is a prerequisite for translational validation of basic research, for novel therapeutic target discovery, and functional testing. Here we show that surplus tissues from multiple solid human cancers directly slow-frozen after resection can subsequently be used for different types of methods including the establishment of 2D, 3D, and ex vivo cultures as well as single-cell RNA sequencing with similar results when compared to freshly analyzed material. Fresh vs. slow-frozen tissues from various malignancies are compared for the establishment of 2D, 3D and ex vivo cultures, as well as for scRNAseq analysis, and found to be comparable and suitable for cancer research.
Collapse
|
9
|
Amweg A, Tusup M, Cheng P, Picardi E, Dummer R, Levesque MP, French LE, Guenova E, Läuchli S, Kundig T, Mellett M, Pascolo S. The A to I editing landscape in melanoma and its relation to clinical outcome. RNA Biol 2022; 19:996-1006. [PMID: 35993275 PMCID: PMC9415457 DOI: 10.1080/15476286.2022.2110390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.
Collapse
Affiliation(s)
- Austeja Amweg
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| |
Collapse
|
10
|
Mesenchymal-Stromal Cell-like Melanoma-Associated Fibroblasts Increase IL-10 Production by Macrophages in a Cyclooxygenase/Indoleamine 2,3-Dioxygenase-Dependent Manner. Cancers (Basel) 2021; 13:cancers13246173. [PMID: 34944793 PMCID: PMC8699649 DOI: 10.3390/cancers13246173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Melanoma is the deadliest form of skin cancer, and the number of newly diagnosed cases is on the rise. In recent years, it has become evident that melanoma-associated fibroblasts (MAFs), which surround the melanoma cells, play a key role in tumor growth and its ability to evade immune attack. We found that MAFs resemble bone marrow mesenchymal stromal cells (MSCs), and on the basis of this, we looked for effects that they might have on macrophages. Like MSCs, MAFs cause macrophages to produce IL-10, an anti-inflammatory agent. IL-10 contributes to cancer growth by suppressing natural anti-cancer immunity and can also interfere with anti-melanoma immunotherapies. Our findings may open new avenues for the development of anti-melanoma treatments based on MAF-macrophage interactions. Abstract Melanoma-associated fibroblasts (MAFs) are integral parts of melanoma, providing a protective network for melanoma cells. The phenotypical and functional similarities between MAFs and mesenchymal stromal cells (MSCs) prompted us to investigate if, similarly to MSCs, MAFs are capable of modulating macrophage functions. Using immunohistochemistry, we showed that MAFs and macrophages are in intimate contact within the tumor stroma. We then demonstrated that MAFs indeed are potent inducers of IL-10 production in various macrophage types in vitro, and this process is greatly augmented by the presence of treatment-naïve and chemotherapy-treated melanoma cells. MAFs derived from thick melanomas appear to be more immunosuppressive than those cultured from thin melanomas. The IL-10 increasing effect is mediated, at least in part, by cyclooxygenase and indoleamine 2,3-dioxygenase. Our data indicate that MAF-induced IL-10 production in macrophages may contribute to melanoma aggressiveness, and targeting the cyclooxygenase and indoleamine 2,3-dioxygenase pathways may abolish MAF–macrophage interactions.
Collapse
|
11
|
Saltari A, Dzung A, Quadri M, Tiso N, Facchinello N, Hernández-Barranco A, Garcia-Silva S, Nogués L, Stoffel CI, Cheng PF, Turko P, Eichhoff OM, Truzzi F, Marconi A, Pincelli C, Peinado H, Dummer R, Levesque MP. Specific Activation of the CD271 Intracellular Domain in Combination with Chemotherapy or Targeted Therapy Inhibits Melanoma Progression. Cancer Res 2021; 81:6044-6057. [PMID: 34645608 PMCID: PMC9397645 DOI: 10.1158/0008-5472.can-21-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
CD271 (NGFR) is a neurotrophin receptor that belongs to the tumor necrosis receptor (TNFR) family. Upon ligand binding, CD271 can mediate either survival or cell death. Although the role of CD271 as a marker of tumor-initiating cells is still a matter of debate, its role in melanoma progression has been well documented. Moreover, CD271 has been shown to be upregulated after exposure to both chemotherapy and targeted therapy. In this study, we demonstrate that activation of CD271 by a short β-amyloid-derived peptide (Aβ(25-35)) in combination with either chemotherapy or MAPK inhibitors induces apoptosis in 2D and 3D cultures of eight melanoma cell lines. This combinatorial treatment significantly reduced metastasis in a zebrafish xenograft model and led to significantly decreased tumor volume in mice. Administration of Aβ(25-35) in ex vivo tumors from immunotherapy- and targeted therapy-resistant patients significantly reduced proliferation of melanoma cells, showing that activation of CD271 can overcome drug resistance. Aβ(25-35) was specific to CD271-expressing cells and induced CD271 cleavage and phosphorylation of JNK (pJNK). The direct protein-protein interaction of pJNK with CD271 led to PARP1 cleavage, p53 and caspase activation, and pJNK-dependent cell death. Aβ(25-35) also mediated mitochondrial reactive oxygen species (mROS) accumulation, which induced CD271 overexpression. Finally, CD271 upregulation inhibited mROS production, revealing the presence of a negative feedback loop in mROS regulation. These results indicate that targeting CD271 can activate cell death pathways to inhibit melanoma progression and potentially overcome resistance to targeted therapy. SIGNIFICANCE: The discovery of a means to specifically activate the CD271 death domain reveals unknown pathways mediated by the receptor and highlights new treatment possibilities for melanoma.
Collapse
Affiliation(s)
- Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Marika Quadri
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Nicola Facchinello
- Laboratory of Developmental Genetics, Department of Biology University of Padova, Padova, Italy
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susana Garcia-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Corinne Isabelle Stoffel
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Ossia M. Eichhoff
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland.,Corresponding Author: Mitchell P. Levesque, Department of Dermatology, University Hospital of Zurich, Wagistrasse 18, Zurich 8952, Switzerland. E-mail:
| |
Collapse
|
12
|
Campbell NR, Rao A, Hunter MV, Sznurkowska MK, Briker L, Zhang M, Baron M, Heilmann S, Deforet M, Kenny C, Ferretti LP, Huang TH, Perlee S, Garg M, Nsengimana J, Saini M, Montal E, Tagore M, Newton-Bishop J, Middleton MR, Corrie P, Adams DJ, Rabbie R, Aceto N, Levesque MP, Cornell RA, Yanai I, Xavier JB, White RM. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev Cell 2021; 56:2808-2825.e10. [PMID: 34529939 DOI: 10.1016/j.devcel.2021.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Melanomas can have multiple coexisting cell states, including proliferative (PRO) versus invasive (INV) subpopulations that represent a "go or grow" trade-off; however, how these populations interact is poorly understood. Using a combination of zebrafish modeling and analysis of patient samples, we show that INV and PRO cells form spatially structured heterotypic clusters and cooperate in the seeding of metastasis, maintaining cell state heterogeneity. INV cells adhere tightly to each other and form clusters with a rim of PRO cells. Intravital imaging demonstrated cooperation in which INV cells facilitate dissemination of less metastatic PRO cells. We identified the TFAP2 neural crest transcription factor as a master regulator of clustering and PRO/INV states. Isolation of clusters from patients with metastatic melanoma revealed a subset with heterotypic PRO-INV clusters. Our data suggest a framework for the co-existence of these two divergent cell populations, in which heterotypic clusters promote metastasis via cell-cell cooperation.
Collapse
Affiliation(s)
- Nathaniel R Campbell
- Weill Cornell/Rockefeller Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anjali Rao
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda V Hunter
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Luzia Briker
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Maomao Zhang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Silja Heilmann
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxime Deforet
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin Kenny
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lorenza P Ferretti
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland; Department of Molecular Mechanisms of Disease, University of Zürich, Zurich, Switzerland
| | - Ting-Hsiang Huang
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Perlee
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Massimo Saini
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Emily Montal
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohita Tagore
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research at St. James's, University of Leeds School of Medicine, Leeds, UK
| | - Mark R Middleton
- Oxford NIHR Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Pippa Corrie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Roy Rabbie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Experimental Cancer Genetics, the Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zurich, Switzerland
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joao B Xavier
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
13
|
Diener J, Baggiolini A, Pernebrink M, Dalcher D, Lerra L, Cheng PF, Varum S, Häusel J, Stierli S, Treier M, Studer L, Basler K, Levesque MP, Dummer R, Santoro R, Cantù C, Sommer L. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun 2021; 12:5056. [PMID: 34417458 PMCID: PMC8379183 DOI: 10.1038/s41467-021-25326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Arianna Baggiolini
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Damian Dalcher
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Luigi Lerra
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Phil F Cheng
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Sandra Varum
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Jessica Häusel
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Mathias Treier
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konrad Basler
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Mitchell P Levesque
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Reinhard Dummer
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Raffaella Santoro
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Zürich, Switzerland.
| |
Collapse
|
14
|
Tusup M, Cheng PF, Picardi E, Raziunaite A, Dummer R, Levesque MP, French LE, Guenova E, Kundig TM, Pascolo S. Evaluation of the Interplay between the ADAR Editome and Immunotherapy in Melanoma. Noncoding RNA 2021; 7:ncrna7010005. [PMID: 33445472 PMCID: PMC7838980 DOI: 10.3390/ncrna7010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background: RNA editing is a highly conserved posttranscriptional mechanism that contributes to transcriptome diversity. In mammals, it includes nucleobase deaminations that convert cytidine (C) into uridine (U) and adenosine (A) into inosine (I). Evidence from cancer studies indicates that RNA-editing enzymes promote certain mechanisms of tumorigenesis. On the other hand, recoding editing in mRNA can generate mutations in proteins that can participate in the Major Histocompatibility Complex (MHC) ligandome and can therefore be recognized by the adaptive immune system. Anti-cancer treatment based on the administration of immune checkpoint inhibitors enhance these natural anti-cancer immune responses. Results: Based on RNA-Seq datasets, we evaluated the editome of melanoma cell lines generated from patients pre- and post-immunotherapy with immune checkpoint inhibitors. Our results reveal a differential editing in Arthrobacter luteus (Alu) sequences between samples pre-therapy and relapses during therapy with immune checkpoint inhibitors. Conclusion: These data pave the way towards the development of new diagnostics and therapies targeted to editing that could help in preventing relapses during immunotherapies.
Collapse
Affiliation(s)
- Marina Tusup
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Phil F. Cheng
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, 70121 Bari, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, 70126 Bari, Italy
| | - Austeja Raziunaite
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Lars E. French
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Department of Dermatology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas M. Kundig
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland; (M.T.); (P.F.C.); (A.R.); (R.D.); (M.P.L.); (L.E.F.); (E.G.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Activation of RAS Signalling is Associated with Altered Cell Adhesion in Phaeochromocytoma. Int J Mol Sci 2020; 21:ijms21218072. [PMID: 33138083 PMCID: PMC7663737 DOI: 10.3390/ijms21218072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are neuroendocrine catecholamine-producing tumours that may progress into inoperable metastatic disease. Treatment options for metastatic disease are limited, indicating a need for functional studies to identify pharmacologically targetable pathophysiological mechanisms, which require biologically relevant experimental models. Recently, a human progenitor phaeochromocytoma cell line named “hPheo1” was established, but its genotype has not been characterised. Performing exome sequencing analysis, we identified a KIF1B T827I mutation, and the oncogenic NRAS Q61K mutation. While KIF1B mutations are recurring somatic events in PPGLs, NRAS mutations have hitherto not been detected in PPGLs. Therefore, we aimed to assess its implications for the hPheo1 cell line, and possible relevance for the pathophysiology of PPGLs. We found that transient downregulation of NRAS in hPheo1 led to elevated expression of genes associated with cell adhesion, and enhanced adhesion to hPheo1 cells’ extracellular matrix. Analyses of previously published mRNA data from two independent PPGL patient cohorts (212 tissue samples) revealed a subcluster of PPGLs featuring hyperactivated RAS pathway-signalling and under-expression of cell adhesion-related gene expression programs. Thus, we conclude that NRAS activity in hPheo1 decreases adhesion to their own extracellular matrix and mirrors a transcriptomic RAS-signalling-related phenomenon in PPGLs.
Collapse
|
16
|
Lazar I, Fabre B, Feng Y, Khateb A, Turko P, Martinez Gomez JM, Frederick DT, Levesque MP, Feld L, Zhang G, Zhang T, James B, Shklover J, Avitan-Hersh E, Livneh I, Scortegagna M, Brown K, Larsson O, Topisirovic I, Wolfenson H, Herlyn M, Flaherty K, Dummer R, Ronai ZA. SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Mol Cancer Res 2020; 18:1560-1573. [PMID: 32571981 PMCID: PMC7541784 DOI: 10.1158/1541-7786.mcr-20-0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.
Collapse
Affiliation(s)
- Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Bertrand Fabre
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ali Khateb
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Patrick Turko
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Lea Feld
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Gao Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jeny Shklover
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Emily Avitan-Hersh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Gerald Bronfman Department of Oncology, Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Haguy Wolfenson
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | | | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
17
|
Banik I, Cheng PF, Dooley CM, Travnickova J, Merteroglu M, Dummer R, Patton EE, Busch-Nentwich EM, Levesque MP. NRAS Q61K melanoma tumor formation is reduced by p38-MAPK14 activation in zebrafish models and NRAS-mutated human melanoma cells. Pigment Cell Melanoma Res 2020; 34:150-162. [PMID: 32910840 DOI: 10.1111/pcmr.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Oncogenic BRAF and NRAS mutations drive human melanoma initiation. We used transgenic zebrafish to model NRAS-mutant melanoma, and the rapid tumor onset allowed us to study candidate tumor suppressors. We identified P38α-MAPK14 as a potential tumor suppressor in The Cancer Genome Atlas melanoma cohort of NRAS-mutant melanomas, and overexpression significantly increased the time to tumor onset in transgenic zebrafish with NRAS-driven melanoma. Pharmacological activation of P38α-MAPK14 using anisomycin reduced in vitro viability of melanoma cultures, which we confirmed by stable overexpression of p38α. We observed that the viability of MEK inhibitor resistant melanoma cells could be reduced by combined treatment of anisomycin and MEK inhibition. Our study demonstrates that activating the p38α-MAPK14 pathway in the presence of oncogenic NRAS abrogates melanoma in vitro and in vivo. SIGNIFICANCE: The significance of our study is in the accountability of NRAS mutations in melanoma. We demonstrate here that activation of p38α-MAPK14 pathway can abrogate NRAS-mutant melanoma which is contrary to the previously published role of p38α-MAPK14 pathway in BRAF mutant melanoma. These results implicate that BRAF and NRAS-mutant melanoma may not be identical biologically. We also demonstrate the translational benefit of our study by using a small molecule compound-anisomycin (already in use for other diseases in clinical trials) to activate p38α-MAPK14 pathway.
Collapse
Affiliation(s)
- Ishani Banik
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christopher M Dooley
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jana Travnickova
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Munise Merteroglu
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Reinhard Dummer
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elizabeth E Patton
- MRC Human Genetics Unit and Cancer Research, UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
18
|
García-Martín AB, Zwicky P, Gruber T, Matti C, Moalli F, Stein JV, Francisco D, Enzmann G, Levesque MP, Hewer E, Lyck R. VLA-4 mediated adhesion of melanoma cells on the blood-brain barrier is the critical cue for melanoma cell intercalation and barrier disruption. J Cereb Blood Flow Metab 2019; 39:1995-2010. [PMID: 29762071 PMCID: PMC6775593 DOI: 10.1177/0271678x18775887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoma is the most aggressive skin cancer in humans. One severe complication is the formation of brain metastasis, which requires extravasation of melanoma cells across the tight blood-brain barrier (BBB). Previously, VLA-4 has been assigned a role for the adhesive interaction of melanoma cells with non-BBB endothelial cells. However, the role of melanoma VLA-4 for breaching the BBB remained unknown. In this study, we used a mouse in vitro BBB model and imaged the shear resistant arrest of melanoma cells on the BBB. Similar to effector T cells, inflammatory conditions of the BBB increased the arrest of melanoma cells followed by a unique post-arrest behavior lacking immediate crawling. However, over time, melanoma cells intercalated into the BBB and compromised its barrier properties. Most importantly, antibody ablation of VLA-4 abrogated melanoma shear resistant arrest on and intercalation into the BBB and protected the BBB from barrier breakdown. A tissue microarray established from human brain metastasis revealed that indeed a majority of 92% of all human melanoma brain metastases stained VLA-4 positive. We propose VLA-4 as a target for the inhibition of brain metastasis formation in the context of personalized medicine identifying metastasizing VLA-4 positive melanoma.
Collapse
Affiliation(s)
| | - Pascale Zwicky
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christoph Matti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Aloia A, Müllhaupt D, Chabbert CD, Eberhart T, Flückiger-Mangual S, Vukolic A, Eichhoff O, Irmisch A, Alexander LT, Scibona E, Frederick DT, Miao B, Tian T, Cheng C, Kwong LN, Wei Z, Sullivan RJ, Boland GM, Herlyn M, Flaherty KT, Zamboni N, Dummer R, Zhang G, Levesque MP, Krek W, Kovacs WJ. A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of BRAF-mutated Melanoma to MAPK Inhibitors. Clin Cancer Res 2019; 25:6852-6867. [PMID: 31375515 DOI: 10.1158/1078-0432.ccr-19-0253] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Treatment of BRAFV600E -mutant melanomas with MAPK inhibitors (MAPKi) results in significant tumor regression, but acquired resistance is pervasive. To understand nonmutational mechanisms underlying the adaptation to MAPKi and to identify novel vulnerabilities of melanomas treated with MAPKi, we focused on the initial response phase during treatment with MAPKi. EXPERIMENTAL DESIGN By screening proteins expressed on the cell surface of melanoma cells, we identified the fatty acid transporter CD36 as the most consistently upregulated protein upon short-term treatment with MAPKi. We further investigated the effects of MAPKi on fatty acid metabolism using in vitro and in vivo models and analyzing patients' pre- and on-treatment tumor specimens. RESULTS Melanoma cells treated with MAPKi displayed increased levels of CD36 and of PPARα-mediated and carnitine palmitoyltransferase 1A (CPT1A)-dependent fatty acid oxidation (FAO). While CD36 is a useful marker of melanoma cells during adaptation and drug-tolerant phases, the upregulation of CD36 is not functionally involved in FAO changes that characterize MAPKi-treated cells. Increased FAO is required for BRAFV600E -mutant melanoma cells to survive under the MAPKi-induced metabolic stress prior to acquiring drug resistance. The upfront and concomitant inhibition of FAO, glycolysis, and MAPK synergistically inhibits tumor cell growth in vitro and in vivo. CONCLUSIONS Thus, we identified a clinically relevant therapeutic approach that has the potential to improve initial responses and to delay acquired drug resistance of BRAFV600E -mutant melanoma.
Collapse
Affiliation(s)
- Andrea Aloia
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Daniela Müllhaupt
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ana Vukolic
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ossia Eichhoff
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Leila T Alexander
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ernesto Scibona
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Paulitschke V, Eichhoff O, Gerner C, Paulitschke P, Bileck A, Mohr T, Cheng PF, Leitner A, Guenova E, Saulite I, Freiberger SN, Irmisch A, Knapp B, Zila N, Chatziisaak T, Stephan J, Mangana J, Kunstfeld R, Pehamberger H, Aebersold R, Dummer R, Levesque MP. Proteomic identification of a marker signature for MAPKi resistance in melanoma. EMBO J 2019; 38:e95874. [PMID: 31267558 PMCID: PMC6669927 DOI: 10.15252/embj.201695874] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
MAPK inhibitors (MAPKi) show outstanding clinical response rates in melanoma patients harbouring BRAF mutations, but resistance is common. The ability of melanoma cells to switch from melanocytic to mesenchymal phenotypes appears to be associated with therapeutic resistance. High-throughput, subcellular proteome analyses and RNAseq on two panels of primary melanoma cells that were either sensitive or resistant to MAPKi revealed that only 15 proteins were sufficient to distinguish between these phenotypes. The two proteins with the highest discriminatory power were PTRF and IGFBP7, which were both highly upregulated in the mesenchymal-resistant cells. Proteomic analysis of CRISPR/Cas-derived PTRF knockouts revealed targets involved in lysosomal activation, endocytosis, pH regulation, EMT, TGFβ signalling and cell migration and adhesion, as well as a significantly reduced invasive index and ability to form spheres in 3D culture. Overexpression of PTRF led to MAPKi resistance, increased cell adhesion and sphere formation. In addition, immunohistochemistry of patient samples showed that PTRF expression levels were a significant biomarker of poor progression-free survival, and IGFBP7 levels in patient sera were shown to be higher after relapse.
Collapse
Affiliation(s)
- Verena Paulitschke
- Department of DermatologyMedical University of ViennaViennaAustria
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Ossia Eichhoff
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Philipp Paulitschke
- Institute of PhysicsCenter for NanoScienceLudwig Maximilians UniversityMunichGermany
| | - Andrea Bileck
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Thomas Mohr
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaViennaAustria
| | - Phil F Cheng
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Emmanuella Guenova
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Ieva Saulite
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Sandra N Freiberger
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Anja Irmisch
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Bernhard Knapp
- Department of StatisticsProtein Informatics GroupUniversity of OxfordOxfordUK
| | - Nina Zila
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Jürgen Stephan
- Institute of PhysicsCenter for NanoScienceLudwig Maximilians UniversityMunichGermany
| | - Joanna Mangana
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Rainer Kunstfeld
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Reinhard Dummer
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| | - Mitchell P Levesque
- Department of DermatologyUniversity of Zurich HospitalUniversity of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Brüggen MC, Mangana J, Irmisch A, French LE, Levesque MP, Cheng PF, Dummer R. Methadone-Not a magic bullet in melanoma therapy. Exp Dermatol 2019; 27:694-696. [PMID: 29577418 DOI: 10.1111/exd.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
Abstract
Methadone (Met) mainly acts as a μ-opioid receptor agonist. Recent evidence pointing towards the role of Met in sensitization of certain cancer cell lines to chemotherapeutic agents has promoted the hypothesis that Met may be a useful adjuvant to cancer chemotherapy. We wanted to address whether Met has, alone or in combination with a chemotherapeutic agent, an effect on melanoma cell viability in vitro. Only a small fraction (4.3%) of our 102 melanoma biobank cell lines with RNA-sequencing data showed expression of the main receptor for Met (OPRM1). We assessed the viability of melanoma cell lines with high, medium or low/no OPRM1 expression (OPRM1high , OPRM1med , OPRM1neg ) 72 hours after treatment with Met alone or combined with cisplatin (Cis). Our analyses show that Met alone did not affect cell viability. While Cis/Met treatment did not have an effect on viability of OPRM1med or OPRM1neg cell lines, it resulted in a slightly decreased cell viability of OPRM1high cells. Clinically, concurrent temozolomide/Met treatment did not have an effect in our single-case report of a patient suffering from uveal melanoma. Taken together, our findings do not provide evidence for recommending Met as an adjuvant to chemotherapy in patients with melanoma.
Collapse
Affiliation(s)
- Marie-Charlotte Brüggen
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Anja Irmisch
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Poźniak J, Nsengimana J, Laye JP, O'Shea SJ, Diaz JMS, Droop AP, Filia A, Harland M, Davies JR, Mell T, Randerson-Moor JA, Muralidhar S, Hogan SA, Freiberger SN, Levesque MP, Cook GP, Bishop DT, Newton-Bishop J. Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma. Cancer Res 2019; 79:2684-2696. [PMID: 30773503 PMCID: PMC6544535 DOI: 10.1158/0008-5472.can-18-2864] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with "low", "intermediate", and "high" immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. SIGNIFICANCE: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival.See related commentary by Anichini, p. 2457.
Collapse
Affiliation(s)
- Joanna Poźniak
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Jonathan P Laye
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sally J O'Shea
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Faculty of Medicine and Health, University College Cork, Cork, Ireland
- Mater Private Hospital Cork, Citygate, Mahon, Cork, Ireland
| | - Joey Mark S Diaz
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Alastair P Droop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Medical Research Council (MRC) Medical Bioinformatics Centre, University of Leeds, Leeds, United Kingdom
| | - Anastasia Filia
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Centre for Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John R Davies
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Tracey Mell
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | | | - Sathya Muralidhar
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sabrina A Hogan
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Sandra Nicole Freiberger
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Graham P Cook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
23
|
Flørenes VA, Flem-Karlsen K, McFadden E, Bergheim IR, Nygaard V, Nygård V, Farstad IN, Øy GF, Emilsen E, Giller-Fleten K, Ree AH, Flatmark K, Gullestad HP, Hermann R, Ryder T, Wernhoff P, Mælandsmo GM. A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases. Transl Oncol 2019; 12:951-958. [PMID: 31096111 PMCID: PMC6520638 DOI: 10.1016/j.tranon.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.
Collapse
Affiliation(s)
- Vivi Ann Flørenes
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karine Flem-Karlsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Erin McFadden
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Riise Bergheim
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vegard Nygård
- Department of Core Facilities, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Nina Farstad
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karianne Giller-Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, N-1478 Lørenskog, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kjersti Flatmark
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Hans Petter Gullestad
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Robert Hermann
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Truls Ryder
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Patrik Wernhoff
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
24
|
Pich C, Meylan P, Mastelic-Gavillet B, Nguyen TN, Loyon R, Trang BK, Moser H, Moret C, Goepfert C, Hafner J, Levesque MP, Romero P, Jandus C, Michalik L. Induction of Paracrine Signaling in Metastatic Melanoma Cells by PPARγ Agonist Rosiglitazone Activates Stromal Cells and Enhances Tumor Growth. Cancer Res 2018; 78:6447-6461. [PMID: 30185551 DOI: 10.1158/0008-5472.can-18-0912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023]
Abstract
In addition to improving insulin sensitivity in type 2 diabetes, the thiazolidinedione family of compounds and the pharmacologic activation of their best-characterized target PPARγ have been proposed as a therapeutic option for cancer treatment. In this study, we reveal a new mode of action for the thiazolidinedione rosiglitazone that can contribute to tumorigenesis. Rosiglitazone activated a tumorigenic paracrine communication program in a subset of human melanoma cells that involves the secretion of cytokines, chemokines, and angiogenic factors. This complex blend of paracrine signals activated nonmalignant fibroblasts, endothelial cells, and macrophages in a tumor-friendly way. In agreement with these data, rosiglitazone promoted human melanoma development in xenografts, and tumors exposed to rosiglitazone exhibited enhanced angiogenesis and inflammation. Together, these findings establish an important tumorigenic action of rosiglitazone in a subset of melanoma cells. Although studies conducted on cohorts of diabetic patients report overall benefits of thiazolidinediones in cancer prevention, our data suggest that exposure of established tumors to rosiglitazone may be deleterious.Significance: These findings uncover a novel mechanism by which the thiazolidinedione compound rosiglitazone contributes to tumorigenesis, thus highlighting a potential risk associated with its use in patients with established tumors. Cancer Res; 78(22); 6447-61. ©2018 AACR.
Collapse
Affiliation(s)
- Christine Pich
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Patrick Meylan
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Beatris Mastelic-Gavillet
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Thanh Nhan Nguyen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Romain Loyon
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Bao Khanh Trang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Hélène Moser
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Catherine Moret
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christine Goepfert
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Raaijmakers MIG, Widmer DS, Narechania A, Eichhoff O, Freiberger SN, Wenzina J, Cheng PF, Mihic-Probst D, Desalle R, Dummer R, Levesque MP. Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget 2018; 7:77163-77174. [PMID: 27791198 PMCID: PMC5363577 DOI: 10.18632/oncotarget.12848] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022] Open
Abstract
Acquired chemotherapeutic resistance of cancer cells can result from a Darwinistic evolution process in which heterogeneity plays an important role. In order to understand the impact of genetic heterogeneity on acquired resistance and second line therapy selection in metastatic melanoma, we sequenced the exomes of 27 lesions which were collected from 3 metastatic melanoma patients treated with targeted or non-targeted inhibitors. Furthermore, we tested the impact of a second NRAS mutation in 7 BRAF inhibitor resistant early passage cell cultures on the selection of second line therapies.We observed a rapid monophyletic evolution of melanoma subpopulations in response to targeted therapy that was not observed in non-targeted therapy. We observed the acquisition of NRAS mutations in the BRAF mutated patient treated with a BRAF inhibitor in 1 of 5 of his post-resistant samples. In an additional cohort of 5 BRAF-inhibitor treated patients we detected 7 NRAS mutations in 18 post-resistant samples. No NRAS mutations were detected in pre-resistant samples. By sequencing 65 single cell clones we prove that NRAS mutations co-occur with BRAF mutations in single cells. The double mutated cells revealed a heterogeneous response to MEK, ERK, PI3K, AKT and multi RTK - inhibitors.We conclude that BRAF and NRAS co-mutations are not mutually exclusive. However, the sole finding of double mutated cells in a resistant tumor is not sufficient to determine follow-up therapy. In order to target the large pool of heterogeneous cells in a patient, we think combinational therapy targeting different pathways will be necessary.
Collapse
Affiliation(s)
| | - Daniel S Widmer
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland
| | | | - Ossia Eichhoff
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland
| | - Sandra N Freiberger
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland.,Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, Austria
| | - Judith Wenzina
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland.,Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, Austria
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland
| | - Daniela Mihic-Probst
- Department of Pathology, University of Zurich, University Hospital Zürich, Switzerland
| | - Rob Desalle
- American Museum of Natural History, New York, New York, USA
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zürich, Switzerland
| |
Collapse
|
26
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
27
|
Abstract
Progress in understanding and treating metastatic melanoma is the result of decades of basic and translational research as well as the development of better in vitro tools for modeling the disease. Here, we review the latest therapeutic options for metastatic melanoma and the known genetic and non-genetic mechanisms of resistance to these therapies, as well as the in vitro toolbox that has provided the greatest insights into melanoma progression. These include next-generation sequencing technologies and more complex 2D and 3D cell culture models to functionally test the data generated by genomics approaches. The combination of hypothesis generating and hypothesis testing paradigms reviewed here will be the foundation for the next phase of metastatic melanoma therapies in the coming years.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW With incidence of melanoma growing worldwide and new therapies prolonging the survival of patients with advanced disease, complex medical care is needed. RECENT FINDINGS Best care of complicated melanoma cases is achieved in specialized referral centers. Aims to provide optimized melanoma therapy, best patient-reported treatment outcome, and successful clinical and translational research, necessitate a dedicated interdisciplinary team. SUMMARY We report on critical aspects of the interaction between patients, medical care givers, clinical trial and biobanking teams, and emphasize the importance of interdisciplinary tumor boards. Specialized skin cancer nurses and local patient advocacy groups should be involved in patient care and could be the binding link between the patients and the treatment team.
Collapse
|
29
|
Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, Seeli-Maduz F, Fuchs B. Explant culture of sarcoma patients' tissue. J Transl Med 2016; 96:752-62. [PMID: 27111283 DOI: 10.1038/labinvest.2016.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/08/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023] Open
Abstract
Human sarcomas comprise a heterogeneous group of rare tumors that affect soft tissues and bone. Due to the scarcity and heterogeneity of these diseases, patient-derived cells that can be used for preclinical research are limited. In this study, we investigated whether the tissue explant technique can be used to obtain sarcoma cell lines from fresh as well as viable frozen tissue obtained from 8 out of 12 soft tissue and 9 out of 13 bone tumor entities as defined by the World Health Organization. The success rate, defined as the percent of samples that yielded sufficient numbers of outgrowing cells to be frozen, and the time to freeze were determined for a total of 734 sarcoma tissue specimens. In 552 cases (75%) enough cells were obtained to be frozen at early passage. Success rates were higher in bone tumors (82%) compared with soft tissue tumors (68%), and the mean time to freezing was lower in bone tumors (65 days) compared with soft tissue tumors (84 days). Overall, from 40% of the tissues cells could be frozen at early passage within <2 month after tissue removal. Comparable results as with fresh tissue were obtained after explant of viable frozen patient-derived material. In a selected number of bone and soft tissue sarcoma entities, conventional karyotyping and/or FISH (fluorescence in situ hybridization) analysis revealed a high amount (>60%) of abnormal cells in 41% of analyzed samples, especially in bone sarcomas (osteosarcoma and Ewing sarcoma). In conclusion, the explant technique is well suited to establish patient-derived cell lines for a large majority of bone and soft tissue sarcoma entities with adequate speed. This procedure thus opens the possibility for molecular analysis and drug testing for therapeutic decision making even during patient treatment.
Collapse
Affiliation(s)
- Roman Muff
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Sander M Botter
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Knut Husmann
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Joelle Tchinda
- Oncology Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philomina Selvam
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Franziska Seeli-Maduz
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Bruno Fuchs
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Widmer DS, Eichhoff OM, Dummer R, Levesque MP. Melanoma's next top model, it is in the air. Exp Dermatol 2015; 24:659-60. [PMID: 25977109 DOI: 10.1111/exd.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Daniel S Widmer
- Department of Dermatology, University Hospital of Zürich and University of Zürich, Zürich, Switzerland
| | - Ossia M Eichhoff
- Department of Dermatology, University Hospital of Zürich and University of Zürich, Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zürich and University of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zürich and University of Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biol 2015; 16:42. [PMID: 25885555 PMCID: PMC4378455 DOI: 10.1186/s13059-015-0594-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most fatal skin cancer displaying a high degree of molecular heterogeneity. Phenotype switching is a mechanism that contributes to melanoma heterogeneity by altering transcription profiles for the transition between states of proliferation/differentiation and invasion/stemness. As phenotype switching is reversible, epigenetic mechanisms, like DNA methylation, could contribute to the changes in gene expression. Results Integrative analysis of methylation and gene expression datasets of five proliferative and five invasion melanoma cell cultures reveal two distinct clusters. SOX9 is methylated and lowly expressed in the highly proliferative group. SOX9 overexpression results in decreased proliferation but increased invasion in vitro. In a B16 mouse model, sox9 overexpression increases the number of lung metastases. Transcriptional analysis of SOX9-overexpressing melanoma cells reveals enrichment in epithelial to mesenchymal transition (EMT) pathways. Survival analysis of The Cancer Genome Atlas melanoma dataset shows that metastatic patients with high expression levels of SOX9 have significantly worse survival rates. Additional survival analysis on the targets of SOX9 reveals that most SOX9 downregulated genes have survival benefit for metastatic patients. Conclusions Our genome-wide DNA methylation and gene expression study of 10 early passage melanoma cell cultures reveals two phenotypically distinct groups. One of the genes regulated by DNA methylation between the two groups is SOX9. SOX9 induces melanoma cell invasion and metastasis and decreases patient survival. A number of genes downregulated by SOX9 have a negative impact on patient survival. In conclusion, SOX9 is an important gene involved in melanoma invasion and negatively impacts melanoma patient survival. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0594-4) contains supplementary material, which is available to authorized users.
Collapse
|