1
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Qin Z, Cao H, Ni C, Han L, Wang R, Blasig R, Haseloff R, Qin Y, Lan J, Lou X, Ma P, Yao X, Wang L, Wang F, Zhu L, Lei N, Blasig IE. Claudin-12 deficiency inhibits tumor growth by impairing transendothelial migration of myeloid-derived suppressor cells. Cancer Res 2022; 82:2472-2484. [PMID: 35580275 DOI: 10.1158/0008-5472.can-21-3896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Migration of myeloid-derived suppressor cells (MDSCs) out of the circulation, across vascular walls, and into tumor is crucial for their immunosuppressive activity. A deeper understanding of critical junctional molecules and the regulatory mechanisms that mediate the extravasation of MDSCs could identify approaches to overcome cancer immunosuppression. In this study we used mice deficient in tight-junction protein Claudin-12 (Cldn12) compared to wild-type mice and found that loss of host Cldn12 inhibited the growth of transplanted tumors, reduced intratumoral accumulation of MDSCs, increased anti-tumor immune responses, and decreased tumor vescular density. Further studies revealed that Cldn12 expression on the cell surface of both MDSCs and endothelial cells is required for MDSCs transit across tumor vascular endothelial cells (ECs). Importantly, expression of Cldn12 in MDSCs was modulated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in an AKT-dependent manner. Therefore, our results indicate that Cldn12 could serve as a promising target for restoring the anti-tumor response by interfering with MDSCs transendothelial migration.
Collapse
Affiliation(s)
- Zhihai Qin
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Cao
- First Affiliated Hospital of Zhengzhou University, Zhenzhou, China
| | - Chen Ni
- First Affiliated Hospital of Zhengzhou University, ZhengZhou, Henan, China
| | - Le Han
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruoqi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rosel Blasig
- Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Reiner Haseloff
- Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| | - Yue Qin
- First Affiliated Hospital of Zhengzhou University, Zhenzhou, China
| | - Jie Lan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohan Lou
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Ma
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- First Affiliated Hospital of Zhengzhou University, China
| | - Linlin Wang
- First Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan, China
| | - Fei Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linyu Zhu
- Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Ingolf E Blasig
- Leibniz Institute of Molecular Pharmacology, Berlin, Germany
| |
Collapse
|
3
|
Zhang X, Wu Z, Bu M, Hu R, Zhang X, Li W, Chen L. The CCAAT/Enhancer Binding Protein Beta (cebpb) is essential for the development of enveloping layer (EVL) in zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci 2019; 20:ijms20194774. [PMID: 31561440 PMCID: PMC6801472 DOI: 10.3390/ijms20194774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery.
Collapse
|
5
|
Adler D, Linden JR, Shetty SV, Ma Y, Bokori-Brown M, Titball RW, Vartanian T. Clostridium perfringens Epsilon Toxin Compromises the Blood-Brain Barrier in a Humanized Zebrafish Model. iScience 2019; 15:39-54. [PMID: 31030181 PMCID: PMC6487375 DOI: 10.1016/j.isci.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is hypothesized to mediate blood-brain barrier (BBB) permeability by binding to the myelin and lymphocyte protein (MAL) on the luminal surface of endothelial cells (ECs). However, the kinetics of this interaction and a general understanding of ETX's behavior in a live organism have yet to be appreciated. Here we investigate ETX binding and BBB breakdown in living Danio rerio (zebrafish). Wild-type zebrafish ECs do not bind ETX. When zebrafish ECs are engineered to express human MAL (hMAL), proETX binding occurs in a time-dependent manner. Injection of activated toxin in hMAL zebrafish initiates BBB leakage, hMAL downregulation, blood vessel stenosis, perivascular edema, and blood stasis. We propose a kinetic model of MAL-dependent ETX binding and neurovascular pathology. By generating a humanized zebrafish BBB model, this study contributes to our understanding of ETX-induced BBB permeability and strengthens the proposal that MAL is the ETX receptor.
Collapse
Affiliation(s)
- Drew Adler
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jennifer R Linden
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Samantha V Shetty
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Yinghua Ma
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | - Richard W Titball
- Department of Biosciences, University of Exeter, Exeter, Devon EX4 4SB, UK
| | - Timothy Vartanian
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Kuehne SA, Rood JI, Lyras D. Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0040-2018. [PMID: 31172914 PMCID: PMC11315012 DOI: 10.1128/microbiolspec.gpp3-0040-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
The past 10 years have been revolutionary for clostridial genetics. The rise of next-generation sequencing led to the availability of annotated whole-genome sequences of the important pathogenic clostridia: Clostridium perfringens, Clostridioides (Clostridium) difficile, and Clostridium botulinum, but also Paeniclostridium (Clostridium) sordellii and Clostridium tetani. These sequences were a prerequisite for the development of functional, sophisticated genetic tools for the pathogenic clostridia. A breakthrough came in the early 2000s with the development of TargeTron-based technologies specific for the clostridia, such as ClosTron, an insertional gene inactivation tool. The following years saw a plethora of new technologies being developed, mostly for C. difficile, but also for other members of the genus, including C. perfringens. A range of tools is now available, allowing researchers to precisely delete genes, change single nucleotides in the genome, complement deletions, integrate novel DNA into genomes, or overexpress genes. There are tools for forward genetics, including an inducible transposon mutagenesis system for C. difficile. As the latest addition to the tool kit, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies have also been adopted for the construction of single and multiple gene deletions in C. difficile. This article summarizes the key genetic technologies available to manipulate, study, and understand the pathogenic clostridia.
Collapse
Affiliation(s)
- S A Kuehne
- School of Dentistry and Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - J I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia 3800
| |
Collapse
|
7
|
Fang H, Wang Y, Xu L, Zhou S, Bai J, Wu Y, Qiao J, Jiang X, Zhu D, Ding Y. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med 2019; 43:1522-1530. [PMID: 30628660 DOI: 10.3892/ijmm.2018.4046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been frequently used in targeted therapy for lung cancer. However, the widespread use of gefitinib in targeted therapy for patients with lung cancer is hampered by its common skin toxicities. The present study aimed to investigate the mechanisms underlying the skin toxicities of gefitinib. Normal human epidermal keratinocytes (NHEKs) treated with gefitinib were used for a series of in vitro assays, including MTT, reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunohistochemistry and transepithelial electrical resistance and paracellular permeability detection. In the present study, it was determined that the skin toxicities of gefitinib may be due to claudin (CLDN)1 and CLDN4 downregulation and CLDN2 upregulation in NHEKs. Additionally, Src and signal transducer and activator of transcription 3 pathways were involved in gefitinib‑induced barrier function disruption in NHEKs. In conclusion, the present study may provide novel insights for improving skin toxicity of gefitinib in patients with lung cancer.
Collapse
Affiliation(s)
- Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yina Wang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lina Xu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sha Zhou
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoling Jiang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
8
|
Benz R, Popoff MR. Clostridium perfringens Enterotoxin: The Toxin Forms Highly Cation-Selective Channels in Lipid Bilayers. Toxins (Basel) 2018; 10:toxins10090341. [PMID: 30135397 PMCID: PMC6162509 DOI: 10.3390/toxins10090341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
One of the numerous toxins produced by Clostridium perfringens is Clostridium perfringens enterotoxin (CPE), a polypeptide with a molecular mass of 35.5 kDa exhibiting three different domains. Domain one is responsible for receptor binding, domain two is involved in hexamer formation and domain three has to do with channel formation in membranes. CPE is the major virulence factor of this bacterium and acts on the claudin-receptor containing tight junctions between epithelial cells resulting in various gastrointestinal diseases. The activity of CPE on Vero cells was demonstrated by the entry of propidium iodide (PI) in the cells. The entry of propidium iodide caused by CPE was well correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. CPE formed ion-permeable channels in artificial lipid bilayer membranes with a single-channel conductance of 620 pS in 1 M KCl. The single-channel conductance was not a linear function of the bulk aqueous salt concentration indicating that point-negative charges at the CPE channel controlled ion transport. This resulted in the high cation selectivity of the CPE channels, which suggested that anions are presumably not permeable through the CPE channels. The possible role of cation transport by CPE channels in disease caused by C. perfringens is discussed.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campusring 1, 28759 Bremen, Germany.
| | - Michel R Popoff
- Bacterial Toxins, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
9
|
Neuhaus W, Piontek A, Protze J, Eichner M, Mahringer A, Subileau EA, Lee IFM, Schulzke JD, Krause G, Piontek J. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials 2018; 161:129-143. [DOI: 10.1016/j.biomaterials.2018.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
|
10
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
11
|
Liao Z, Yang Z, Piontek A, Eichner M, Krause G, Li L, Piontek J, Zhang J. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability. Neuroscience 2016; 327:53-63. [PMID: 27095710 DOI: 10.1016/j.neuroscience.2016.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
Abstract
The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5.
Collapse
Affiliation(s)
- Zhuangbin Liao
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhenguo Yang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Anna Piontek
- Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Miriam Eichner
- Clinical Physiology & Nutritional Medicine, Department of Gastroenterology, Rheumatology & Infectious Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd Krause
- Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Joerg Piontek
- Clinical Physiology & Nutritional Medicine, Department of Gastroenterology, Rheumatology & Infectious Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|