1
|
Wu M, Sarkar C, Guo B. Regulation of Cancer Metastasis by PAK2. Int J Mol Sci 2024; 25:13443. [PMID: 39769207 PMCID: PMC11676821 DOI: 10.3390/ijms252413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis. In addition, recent studies have shown that PAK2 plays an important role in cancer cell metastasis, indicating PAK2 as a potential therapeutic target. This review discusses recent discoveries on the functions of PAK2 in the regulation of various types of cancers. A better understanding of the mechanisms of function of PAK2 will facilitate future development of cancer therapies.
Collapse
Affiliation(s)
- Megan Wu
- The Kinkaid School, Houston, TX 77024, USA;
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
3
|
Wu M, Wu X, Han J. KIF20A Promotes CRC Progression and the Warburg Effect through the C-Myc/HIF-1α Axis. Protein Pept Lett 2024; 31:107-115. [PMID: 38037834 DOI: 10.2174/0109298665256238231120093150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent form of cancer globally, characterized by a high mortality rate. Therefore, discovering effective therapeutic approaches for CRC treatment is critical. METHODS The levels of KIF20A in CRC clinical samples were determined using Western Blot and immunofluorescence assay. SW480 cells were transfected with siRNA targeting KIF20A, while HT-29 cells were transfected with a KIF20A overexpression vector. Cell viability and apoptosis of CRC cells were assessed using CCK-8 and TUNEL analysis. Migration ability was investigated using Transwell. The levels of pyruvate, lactate and ATP were determined through corresponding assay kits. Western Blot was applied to confirm the level of proteins associated with glycolysis, c- Myc, HIF-1α, PKM2 and LDHA. Subsequently, functional rescue experiments were conducted to investigate further the regulatory relationship between KIF20A, c-Myc, and HIF-1α in colorectal cancer (CRC), employing the c-Myc inhibitor 10058-F4 and c-Myc overexpression plasmids. RESULTS KIF20A was up-regulated in vivo and in vitro in CRC. KIF20A knockdown inhibited cell viability and migration while promoting cell apoptosis in SW480 cells. Conversely, overexpression of KIF20A yielded contrasting effects in HT-29 cells. Moreover, inhibition of KIF20A restrained the pyruvate, lactate production and ATP level, whereas overexpression of KIF20A enhanced the Warburg effect. Western Blot indicated that knockdown KIF20A attenuated the levels of c-Myc, HIF-1α, PKM2 and LDHA. In addition, rescue experiments further verified that KIF20A enhanced the Warburg effect by the KIF20A/c-Myc/HIF-1α axis in CRC. CONCLUSION KIF20A, being a crucial regulator in the progression of CRC, has the potential to be a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Zhengjie No. 30, Shapingba District, ChongQing, 400038, China
| | - Xianqiang Wu
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang District, Chengdu, 611130, China
| | - Jie Han
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Shuanghu Branch Road No. 1, Yubei District, Chongqing, 401120, China
| |
Collapse
|
4
|
Xu H, Wang D, Ramponi C, Wang X, Zhang H. The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2022:5. [PMID: 39899001 PMCID: PMC7617276 DOI: 10.53941/ijddp.v1i1.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Group I p21-activated kinases (Paks) are members of the serine/threonine protein kinase family. Paks are encoded by three genes (Pak 1 - 3) and are involved in the regulation of various biological processes. Pak1 and Pak2 are key members, sharing 91% sequence identity in their kinase domains. Recent studies have shown that Pak1/2 protect the heart from various types of stresses. Activated Pak1/2 participate in the maintenance of cellular homeostasis and metabolism, thus enhancing the adaptation and resilience of cardiomyocytes to stress. The structure, activation and function of Pak1/2 as well as their protective roles against the occurrence of cardiovascular disease are described in this review. The values of Pak1/2 as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Honglin Xu
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dingwei Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chiara Ramponi
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hongyuan Zhang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
A Novel and Validated 8-Pyroptosis-Related Genes Based Risk Prediction Model for Diffuse Large B Cell Lymphoma. Biomolecules 2022; 12:biom12121835. [PMID: 36551263 PMCID: PMC9775483 DOI: 10.3390/biom12121835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin's Lymphoma (NHL), has a lethal nature. Thus, the establishment of a novel model to predict the prognosis of DLBCL and guide its therapy is an urgency. Meanwhile, pyroptosis is engaged in the progression of DLBCL with further investigations required to reveal the underlying mechanism. METHODS LASSO regression was conducted to establish a risk model based on those PRGs. External datasets, RT-qPCR and IHC images from The Human Protein Alta (HPA) database were utilized to validate the model. ssGSEA was utilized to estimate the score of immune components in DLBCL. RESULTS A model based on 8 PRGs was established to generate a risk score. Validation of the model confirmed its robust performance. The risk score was associated with advanced clinical stages and shorter overall survivals. Two novel second-line chemotherapies were found to be potential treatments for high-risk patients. The risk score was also found to be correlated with immune components in DLBCL. CONCLUSION This novel model can be utilized in clinical practices to predict the prognosis of DLBCL and guide the treatment of patients at high risk, providing an overview of immune regulatory program via pyroptosis in DLBCL.
Collapse
|
6
|
Liu C, Ding X, Wei C, Pei Y, Meng F, Zhong Y, Liu Y. LncRNA LNCOC1 is Upregulated in Melanoma and Serves as a Potential Regulatory Target of miR-124 to Suppress Cancer Cell Invasion and Migration. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:751-762. [PMID: 35502349 PMCID: PMC9056108 DOI: 10.2147/ccid.s359786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
Background A cascade of genes and pathways have been reported in the precise regulation of malignant melanoma (MM). Previous study has demonstrated that lncRNA LNCOC1 is an oncogenic factor in the pathogenesis and development of various cancers. The present study explored the functionalities of LNCOC1 and its interactions with miR-124 in MM. Methods A total of 65 melanoma patients were enrolled in this study. The expression of LNCOC1 and miR-124 after cell transfection were detected by RT-qPCR. The migration rates of SK-MEL-3 and A375 cells after transient transfection with LNCOC1 expression vector and miR-124 mimic was detected by trans-well assay. Results LNCOC1 was accumulated to high levels in melanoma, and it was significantly correlated with the low survival rate of melanoma patients. Our bioinformatics data showed that miR-124 could target LNCOC1. Overexpression of miR-124 could downregulate LNCOC1. However, up-regulated the expression of LNCOC1 did not affect the expression of miR-124. Our correlation analysis also revealed that the expression of LNCOC1 and miR-124 were inversely correlated in both melanoma tissues and non-tumor tissues. The trans-well invasion and migration assays indicated that overexpression of miR-124 inhibited the melanoma cell invasion and migration. However, overexpression of LNCOC1 promoted melanoma cell invasion and migration. Conclusion LNCOC1 is upregulated in melanoma, which can be considered as a potential target of miR-124 in modulating melanoma cell invasion and migration. LNCOC1 may also be an interfering target of MM therapy.
Collapse
Affiliation(s)
- Changhai Liu
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Xiangsheng Ding
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Cuie Wei
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yongdong Pei
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Fanjun Meng
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yuren Zhong
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yi Liu
- Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
8
|
The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment. Cells 2021; 10:cells10123565. [PMID: 34944073 PMCID: PMC8700304 DOI: 10.3390/cells10123565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors.
Collapse
|
9
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ding J, Wen Q, Huo Z, Nie H, Qin Y, Yan X. Identification of shell-color-related microRNAs in the Manila clam Ruditapes philippinarum using high-throughput sequencing of small RNA transcriptomes. Sci Rep 2021; 11:8044. [PMID: 33850162 PMCID: PMC8044141 DOI: 10.1038/s41598-021-86727-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
Shell-color polymorphism is a common phenomenon in several mollusk species and has been associated with thermal capacity, developmental stability, shell strength, and immunity. Shell-color polymorphism has been related to the differential expression of genes in several signal transduction pathways; however, the functions of micro-RNAs (miRNAs) in shell-color formation remain unclear. In the present study, we compared high-quality, small-RNA transcriptomes in three strains of the Manila clam Ruditapes philippinarum with specific shell-color patterns, artificially selected for six generations. Totals of 114 known and 208 novel miRNAs were identified by high-throughput sequencing, of which nine known and one novel miRNA were verified by stem-loop quantitative real time-polymerase chain reaction. Predicted miRNA targets were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. miR-137 and miR-216b and the Hedgehog signaling pathway and Wnt signaling pathway were identified as being potentially involved in pigment formation and regulation in R. philippinarum. These results may help to clarify the role of miRNAs in shell coloration and shed light on the mechanisms regulating color formation in bivalve shells.
Collapse
Affiliation(s)
- Jianfeng Ding
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Qiang Wen
- Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Hongtao Nie
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Yanjie Qin
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Xiwu Yan
- Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China.
| |
Collapse
|
11
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
12
|
Cheng Y, Liu C, Liu Y, Su Y, Wang S, Jin L, Wan Q, Liu Y, Li C, Sang X, Yang L, Liu C, Wang X, Wang Z. Immune Microenvironment Related Competitive Endogenous RNA Network as Powerful Predictors for Melanoma Prognosis Based on WGCNA Analysis. Front Oncol 2020; 10:577072. [PMID: 33194692 PMCID: PMC7653056 DOI: 10.3389/fonc.2020.577072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous melanoma is the most life-threatening skin malignant tumor due to its increasing metastasis and mortality rate. The abnormal competitive endogenous RNA network promotes the development of tumors and becomes biomarkers for the prognosis of various tumors. At the same time, the tumor immune microenvironment (TIME) is of great significance for tumor outcome and prognosis. From the perspective of TIME and ceRNA network, this study aims to explain the prognostic factors of cutaneous melanoma systematically and find novel and powerful biomarkers for target therapies. We obtained the transcriptome data of cutaneous melanoma from The Cancer Genome Atlas (TCGA) database, 3 survival-related mRNAs co-expression modules and 2 survival-related lncRNAs co-expression modules were identified through weighted gene co-expression network analysis (WCGNA), and 144 prognostic miRNAs were screened out by univariate Cox proportional hazard regression. Cox regression model and Kaplan-Meier survival analysis were employed to identify 4 hub prognostic mRNAs, and the prognostic ceRNA network consisting of 7 lncRNAs, 1 miRNA and 4 mRNAs was established. After analyzing the composition and proportion of total immune cells in cutaneous melanoma microenvironment through CIBERSORT algorithm, it is found through correlation analysis that lncRNA-TUG1 in the ceRNA network was closely related to the TIME. In this study, we first established cutaneous melanoma’s TIME-related ceRNA network by WGCNA. Cutaneous melanoma prognostic markers have been identified from multiple levels, which has important guiding significance for clinical diagnosis, treatment, and further scientific research on cutaneous melanoma.
Collapse
Affiliation(s)
- Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengxiu Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Yurun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
|
14
|
Wang Y, Tong J, Lin H, Ma L, Xu Y. CCHE1 accelerated the initiation of oral squamous cell carcinoma through enhancing PAK2 expression by sponging miR-922. J Oral Pathol Med 2020; 49:636-644. [PMID: 31981240 DOI: 10.1111/jop.12995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a normal form of mouth cancer, comprising the majority of oral cancers. A large number of long non-coding RNAs (lncRNAs) have been reported due to their oncogenic function in cancers. Recent studies show that lncRNA CCHE1 is an oncogene in a wide range of cancers. Whether CCHE1 accelerates the progression of OSCC is still undiscovered. METHODS The qRT-PCR analysis was used to determine CCHE1, miR-922, and PAK2 expression levels. CCK8 and colony formation assays were applied to evaluate OSCC cell proliferative ability. Transwell assay was performed to investigate the capability of cell migration and invasion. Cell apoptosis was assessed by flow cytometry analysis. The distribution of CCHE1 in OSCC cells was confirmed via subcellular fractionation assay. Luciferase reporter assay was used to verify the connection between miR-922 and CCHE1 or PAK2. RESULTS qRT-PCR analysis identified the upregulation of CCHE1 in OSCC cells. Knockdown of CCHE1 curbed the proliferation, migration, and invasion and hastened the apoptosis in OSCC cell lines. Moreover, it was found that miR-922 could interact with CCHE1. Besides, PAK2 was identified as the target gene of miR-922 and its expression was negatively modulated by miR-922 and positively regulated by CCHE1. Restoration assay manifested that the suppressing influence of CCHE1 depletion on OSCC progression was rescued by amplified PAK2. CONCLUSIONS CCHE1 increases the expression of PAK2 to promote the progression of OSCC by competitively binding to miR-922 in OSCC cells.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Tong
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haozhi Lin
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaoxiang Xu
- Department of Oral Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Li Q, Wu X, Guo L, Shi J, Li J. MicroRNA-7-5p induces cell growth inhibition, cell cycle arrest and apoptosis by targeting PAK2 in non-small cell lung cancer. FEBS Open Bio 2019; 9:1983-1993. [PMID: 31587474 PMCID: PMC6823280 DOI: 10.1002/2211-5463.12738] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miR) are known to be critical regulators in tumor progression. miR-7-5p was reported to be involved in several cancers, including glioblastoma, cervical cancer, and melanoma, but its prognostic value and biological function in non-small-cell lung cancer (NSCLC) remain unclear. In this study, using quantitative real-time PCR analysis, we found that miR-7-5p was significantly downregulated in NSCLC tissues and cell lines. Lower miR-7-5p expression was associated with tumor-node-metastasis stage and tumor size by chi-squared test. Deceased miR-7-5p expression was associated with a worse prognosis in patients with NSCLC using Kaplan-Meier survival analysis and multivariate Cox regression analysis. Experiments in NSCLC cell lines (A549 and H1299) demonstrated that upregulation of miR-7-5p significantly suppressed cell proliferation, but induced cell cycle G0/G1 phase arrest and apoptosis using Cell Counting Kit-8, colony formation, and flow cytometry analysis. Through loss-of-function assays, we further demonstrated that downregulation of miR-7-5p promoted cell proliferation and cell cycle G1/S transition, but decreased cell apoptosis in SPC-A1 cells. Furthermore, P21-activated kinase 2 (PAK2) was predicted and confirmed as a direct target gene of miR-7-5p in NSCLC cells by luciferase reporter assay. In addition, we found PAK2 overexpression could partially reverse the effects of miR-7-5p on cell proliferation, cell cycle distribution, and apoptosis. We thus concluded that lower expression of miR-7-5p was associated with poor prognosis and NSCLC progression by directly targeting PAK2.
Collapse
Affiliation(s)
- Qin Li
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Xingping Wu
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Lin Guo
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Jiaxin Shi
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| | - Jiashu Li
- Department of Respiration, Xuzhou Medical University Affiliated Hospital of Lianyungang, China
| |
Collapse
|
16
|
Huang Y, Zou Y, Zheng R, Ma X. MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. Eur J Haematol 2019; 103:215-224. [PMID: 31206203 DOI: 10.1111/ejh.13276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
AIM This study aimed to investigate the possible functions of interaction between JARID1B and miR-137 in ALL. METHODS The levels of H3K4me3 and H3K4me2 and the expression of JARID1B and miR-137 were analyzed in six ALL cell lines and 30 ALL patients. The effects of miR-137 and JARID1B on cell proliferation and apoptosis were investigated by silencing or promoting the respective genes. The interaction between miR-137 and JARID1B was confirmed by double-luciferase report assay. RESULTS The histone H3K4 expressions and miR-137 expression were lower in 30 ALL patients and in six ALL cell lines, while the expression of JARID1B was elevated. A negative correlation was observed between JARID1B and miR-137. Over-expression of miR-137 led to decreasing cell proliferation and increasing apoptosis in MOLT-4 and BALL-1 cells. MiR-137 inhibitor up-regulated JARID1B in these two cell lines, while promoted proliferation in BALL-1 cells only. Dual-luciferase report assay suggested that JARID1B was a direct target of miR-137 in ALL cell lines. CONCLUSIONS The expression of miR-137 was declined in ALL, and JARID1B was directly repressed by miR-137. Aberrant JARID1B expression could result in abnormal histone methylation, which might be one cause of ALL.
Collapse
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| |
Collapse
|
17
|
Hao S, Li S, Wang J, Zhao L, Yan Y, Wu T, Zhang J, Wang C. C-Phycocyanin Suppresses the In Vitro Proliferation and Migration of Non-Small-Cell Lung Cancer Cells through Reduction of RIPK1/NF-κB Activity. Mar Drugs 2019; 17:E362. [PMID: 31216707 PMCID: PMC6627888 DOI: 10.3390/md17060362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Phycocyanin, derived from Spirulina platensis, is a type of natural antineoplastic marine protein. It is known that phycocyanin exerts anticancer effects on non-small-cell lung cancer (NSCLC) cells, but its underlying mechanism has not been elucidated. Herein, the antitumor function and regulatory mechanism of phycocyanin were investigated in three NSCLC cell lines for the first time: H358, H1650, and LTEP-a2. Cell phenotype experiments suggested that phycocyanin could suppress the survival rate, proliferation, colony formation, and migration abilities, as well as induce apoptosis of NSCLC cells. Subsequently, transcriptome analysis revealed that receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was significantly down-regulated by phycocyanin in the LTEP-a2 cell, which was further validated by qRT-PCR and Western blot analysis in two other cell lines. Interestingly, similar to phycocyanin-treated assays, siRNA knockdown of RIPK1 expression also resulted in growth and migration inhibition of NSCLC cells. Moreover, the activity of NF-κB signaling was also suppressed after silencing RIPK1 expression, indicating that phycocyanin exerted anti-proliferative and anti-migratory function through down-regulating RIPK1/NF-κB activity in NSCLC cells. This study proposes a mechanism of action for phycocyanin involving both NSCLC apoptosis and down regulation of NSCLC genes.
Collapse
Affiliation(s)
- Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiawen Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
18
|
Hao S, Li S, Wang J, Yan Y, Ai X, Zhang J, Ren Y, Wu T, Liu L, Wang C. Phycocyanin Exerts Anti-Proliferative Effects through Down-Regulating TIRAP/NF-κB Activity in Human Non-Small Cell Lung Cancer Cells. Cells 2019; 8:E588. [PMID: 31207932 PMCID: PMC6627414 DOI: 10.3390/cells8060588] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Phycocyanin is a type of marine functional food additive, exerting a health care efficacy with no side effects. It has been shown that phycocyanin possesses anticancer function in non-small cell lung cancer (NSCLC) cells, but the underlying regulatory mechanism still remains unclear. Further investigation on the antineoplastic mechanism of phycocyanin would provide useful information on NSCLC treatment. In this study, we explored the in vitro function and mechanism of phycocyanin in three typical NSCLC cell lines, H1975, H1650, and LTEP-a2, for the first time. Phenotypic experiments showed that phycocyanin significantly induced the apoptosis as well as suppressed the growth of NSCLC cells. Transcriptome analysis suggested that toll/interleukin 1 receptor domain-containing adaptor protein (TIRAP) was significantly down-regulated by phycocyanin. Strikingly, similar to phycocyanin-treated assays, siRNA knockdown of TIRAP expression also resulted in the anti-proliferative phenomenon in NSCLC cells. In addition, the activity of NF-κB signaling was also suppressed after silencing TIRAP expression, revealing that phycocyanin exerted anti-proliferative function through down-regulating TIRAP/NF-κB activity in NSCLC cells. Collectively, this study has laid a theoretical basis on the treatment of NSCLC and the potential utilization of marine functional products.
Collapse
Affiliation(s)
- Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xin Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiawen Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yuqing Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liyun Liu
- State Key Laboratory of Infection Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Yu H, Ma M, Wang X, Zhou Z, Li R, Guo Q. Propofol suppresses proliferation, invasion, and migration of human melanoma cells via regulating microRNA‐137 and fibroblast growth factor 9. J Cell Physiol 2019; 234:23279-23288. [PMID: 31134615 DOI: 10.1002/jcp.28896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hong Yu
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| | - Meina Ma
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| | - Xupeng Wang
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| | - Zhenzhen Zhou
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| | - Rui Li
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| | - Qingduo Guo
- Department of Anesthesiology Cangzhou Central Hospital Cangzhou Hebei People's Republic of China
| |
Collapse
|
20
|
Yao GW, Bai JR, Zhang DP. P21 activated kinase 2 promotes pancreatic cancer growth and metastasis. Oncol Lett 2019; 17:3709-3718. [PMID: 30930982 PMCID: PMC6425405 DOI: 10.3892/ol.2019.10040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has an overall 5-year survival rate of only 9%, due to its rapid metastasis and poor prognosis. To combat this disease, novel therapeutic targets and biomarkers are required. In this study, immunohistochemistry was used to detect the expression of P21 activated kinase 2 (PAK2) protein in the tissues of cancer and the paired adjacent normal tissues. The association between PAK2 and the clinicopathologic features of patients with pancreatic cancer was subsequently analyzed. The results indicated that PAK2 was overexpressed in the cancer tissues, which indicated high pTNM stage, poor tumor grade, lymph node metastasis and vascular invasion. In addition, the results demonstrated evidence of a close association between PAK2 expression and poor prognosis of patients with pancreatic cancer. The results also suggested that PAK2 may promote pancreatic cancer cell proliferation and migration in vitro through clone formation, MTT, wound healing and Transwell assays. The present study further identified that PAK2 could stimulate pancreatic cancer growth and metastasis in mice. Decreased expression of proliferation marker protein Ki-67 and proliferating cell nuclear antigen in response to PAK2 knockdown further verified the role of PAK2 in promoting cell proliferation by western blot analysis. In addition, the expression levels of matrix metallopeptidase (MMP) 2 and MMP9 were decreased in PANC1 and BxPC3 cell lines transfected with PAK2-short hairpin RNA as indicated in western blot analysis, suggesting a function of PAK2 in promoting cell invasion. Collectively, these findings revealed a critical role for PAK2 in the development of pancreatic cancer and may have important implications for the management of this disease.
Collapse
Affiliation(s)
- Guo-Wang Yao
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jing-Rui Bai
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Da-Peng Zhang
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
21
|
Kordaß T, Weber CEM, Eisel D, Pane AA, Osen W, Eichmüller SB. miR-193b and miR-30c-1 * inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget 2018; 9:32507-32522. [PMID: 30197759 PMCID: PMC6126698 DOI: 10.18632/oncotarget.25986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
In cancer cells, microRNAs (miRNAs) are often aberrantly expressed resulting in impaired mRNA translation. In this study we show that miR-193b and miR-30c-1* inhibit, whereas miR-576-5p accelerates invasion of various human melanoma cell lines. Using Boyden chamber invasion assays the effect of selected miRNAs on the invasive capacity of various human melanoma cell lines was analyzed. Upon gene expression profiling performed on transfected A375 cells, CTGF, THBS1, STMN1, BCL9, RAC1 and MCL1 were identified as potential targets. For target validation, qPCR, Western blot analyses or luciferase reporter assays were applied. This study reveals opposed effects of miR-193b / miR-30c-1* and miR-576-5p, respectively, on melanoma cell invasion and on expression of BCL9 and MCL1, possibly accounting for the contrasting invasive phenotypes observed in A375 cells transfected with these miRNAs. The miRNAs studied and their targets identified fit well into a model proposed by us explaining the regulation of invasion associated genes and the observed opposed phenotypes as a result of networked direct and indirect miRNA / target interactions. The results of this study suggest miR-193b and miR-30c-1* as tumor-suppressive miRNAs, whereas miR-576-5p appears as potential tumor-promoting oncomiR. Thus, miR-193b and miR-30c-1* mimics as well as antagomiRs directed against miR-576-5p might become useful tools in future therapy approaches against advanced melanoma.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Claudia E M Weber
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Eisel
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Antonino A Pane
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Ran M, Weng B, Cao R, Li Z, Peng F, Luo H, Gao H, Chen B. miR-26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene. Reprod Domest Anim 2018; 53:1375-1385. [PMID: 30024056 DOI: 10.1111/rda.13254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Accumulating reports have demonstrated that microRNAs (miRNAs) participate in regulating the complex processes of animal testis development and spermatogenesis; yet, the mechanisms by which miRNAs regulate spermatogenesis are poorly understood. miR-26a was identified as a miRNA that is differentially expressed among different pig testicular tissue developmental stages in our previous study. In this study, p21 activated kinase 2 (PAK2) gene was determined as one target gene of miR-26a by luciferase reporter assay, and miR-26a repressed the PAK2 mRNA abundance in porcine Sertoli cells. The Cell Counting Kit-8 (CCK8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and annexin V-FITC/PI staining assay results showed that miR-26a overexpression inhibited proliferation and promoted apoptosis in porcine Sertoli cells. These phenomena were similar to the siRNA-mediated knockdown of the PAK2 gene. Taken together, our results demonstrate that miR-26a inhibits proliferation and promotes apoptosis in porcine Sertoli cells by targeting the PAK2 gene, which may be a regulator of porcine spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Rong Cao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hui Luo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| |
Collapse
|
23
|
Liu X, Xu X. MicroRNA-137 dysregulation predisposes to osteoporotic fracture by impeding ALP activity and expression via suppression of leucine-rich repeat-containing G-protein-coupled receptor 4 expression. Int J Mol Med 2018; 42:1026-1033. [PMID: 29786747 DOI: 10.3892/ijmm.2018.3690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/20/2018] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is defined as a loss of bone mass and deterioration of its architecture resulting in bone weakness, which becomes prone to fracture. The objective of this study was to investigate the molecular mechanism by which miR-137 can reduce the risk of fracture in patients with osteoporosis. An online miRNA database and a luciferase reporter assay system were used to confirm that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) was the target of miR-137. Real-time PCR and western blot analysis were used to study miR-137 mRNA, the expression of LGR4 mRNA and protein among different groups or cells transfected with a scrambled miRNA control, miR-137 mimic, LGR4 siRNA and miR-137 inhibitor. Expression of miR-137 was upregulated to higher levels in cells isolated from osteoporosis patients with fracture than in those without fracture. The 'seed sequence' was found to be located within the 3' untranslated region (3'-UTR) of LGR4 mRNA by searching an online miRNA database. Luciferase reporter assay was performed to confirm that LGR4 is a direct target gene of miR-137 with a potential binding site in the 3'UTR of LGR4. Luciferase activity of cells transfected with wild-type LGR4 3'UTR was much lower than that of the cells transfected with mutant LGR4 3'UTR. The results of real-time PCR and immunohistochemistry experiments demonstrated that the expression levels of LGR4 mRNA and protein were much higher in osteoporosis patients with fracture than osteoporosis patients without fracture. We found that the expression levels of LGR4 mRNA and protein were clearly upregulated following transfection with miR-137 inhibitor, while noticeably downregulated following transfection with miR-137 mimic when compared with the scramble control. Furthermore, the expression of ALP mRNA and ALP activity in bone tissue were much higher in osteoporosis patients with fracture than those without fracture. In conclusion, these data prove that the overexpression of miR-137 was associated with an altered risk of fracture in patients with osteoporosis, and can be used as a biomarker for the prediction of risk of fracture in osteoporosis.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Orthopedics, The People's Hospital of Huangdao, Qingdao, Shandong 266400, P.R. China
| | - Xiaohui Xu
- Department of Orthopedics, The People's Hospital of Huangdao, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|
24
|
Wang M, Gao H, Qu H, Li J, Liu K, Han Z. MiR-137 suppresses tumor growth and metastasis in clear cell renal cell carcinoma. Pharmacol Rep 2018; 70:963-971. [PMID: 30107346 DOI: 10.1016/j.pharep.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND The most frequent type of renal cell carcinoma is called clear-cell renal cell carcinoma (ccRCC) which is associated with a poor prognosis. It has been observed that miR-137 is aberrantly expressed in many different kinds of human malignancies including ccRCC. This research aims to examine the role of miR-137 in ccRCC. METHODS Quantitative RT-PCR (qRT-PCR) was applied to measure miR-137 expression in ccRCC and adjacent noncancerous tissue. Gene expression was determined by western blot. Cell Counting Kit-8 (CCK-8) assay, flow cytometry and Transwell assay were used to determine the effects of miR-137 on cell growth, apoptosis and invasion, respectively. Moreover, xenograft and pulmonary metastasis animal models were established to investigate the role of miR-137 in vivo. RESULTS Our findings show that there was significant downregulation of miR-137 in ccRCC tissue relative to corresponding non-cancerous tissue. Ectopic miR-137 expression in ccRCC cells led to suppression of cell growth and invasion, as well as apoptosis induction. In contrast, knockdown of miR-137 enhances proliferation and invasion, inhibits apoptosis. It also confirms that miR-137 plays a tumor supressor role in vivo. Mechanically, miR-137 directly targets the 3'-UTR of RLIP76 which is an established oncogene in ccRCC. CONCLUSION MiR-137 serves as a tumor suppressor, which can be considered a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Meizhi Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Haijun Qu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaili Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
MicroRNA miR-4779 suppresses tumor growth by inducing apoptosis and cell cycle arrest through direct targeting of PAK2 and CCND3. Cell Death Dis 2018; 9:77. [PMID: 29362401 PMCID: PMC5833427 DOI: 10.1038/s41419-017-0100-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Depending on the function of their target genes, microRNAs (miRNAs) act as either tumor suppressors or oncogenes. Therefore, miRNAs represent a novel therapeutic strategy for prevention and management of cancer by targeting of onco-miRNAs or mimicking of tumor suppressor miRNAs. Herein, we identified novel tumor suppressor miRNAs and investigated their molecular mechanisms. To identify novel tumor suppressor miRNAs, we used 532 human miRNA mimic libraries and measured cell viability using MTS assays. The function of miR-4779 was then analyzed using cell cycle analyses and apoptosis, colony forming, and soft agar assays. Target genes of miR-4779 were predicted using TargetScan and miRDB databases and were confirmed using luciferase assays. Levels of miR-4779 and target genes in colon cancer tissue samples from patients were evaluated using qRT-PCR and western blotting analyses. Finally, in vivo tumor suppressive effects of miR-4779 were evaluated in HCT116 xenografts. In this study, miR-4779 inhibited cancer cell growth by inducing apoptosis and cell cycle arrest, and the putative survival factors PAK2 and CCND3 were identified as direct targets of miR-4779. In subsequent experiments, PAK2 knockdown induced cell cycle arrest and CCND3 knockdown induced cell cycle arrest and apoptosis. In addition, miR-4779 suppressed tumor growth and tumorigenesis in an in vivo HCT116 xenograft model. Finally, miR-4779 expression was low in 9 of 10 colon cancer tissues, whereas PAK2 and CCND3 expressions were significantly high in colon cancer tissues. The novel tumor suppressor miR-4779 inhibits cancer cell growth via cell cycle arrest and apoptosis by directly targeting PAK2 and CCND3. The present data indicate the potential of miR-4779 as a therapeutic target for miRNA-based cancer therapy.
Collapse
|
27
|
miR-137 inhibits melanoma cell proliferation through downregulation of GLO1. SCIENCE CHINA-LIFE SCIENCES 2018; 61:541-549. [DOI: 10.1007/s11427-017-9138-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
|
28
|
Liang ML, Hsieh TH, Ng KH, Tsai YN, Tsai CF, Chao ME, Liu DJ, Chu SS, Chen W, Liu YR, Liu RS, Lin SC, Ho DMT, Wong TT, Yang MH, Wang HW. Downregulation of miR-137 and miR-6500-3p promotes cell proliferation in pediatric high-grade gliomas. Oncotarget 2017; 7:19723-37. [PMID: 26933822 PMCID: PMC4991414 DOI: 10.18632/oncotarget.7736] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are aggressive brain tumors affecting children, and outcomes have remained dismal, even with access to new multimodal therapies. In this study, we compared the miRNomes and transcriptomes of pediatric low- (pLGGs) and high-grade gliomas (pHGGs) using small RNA sequencing (smRNA-Seq) and gene expression microarray, respectively. Through integrated bioinformatics analyses and experimental validation, we identified miR-137 and miR-6500-3p as significantly downregulated in pHGGs. miR-137 or miR-6500-3p overexpression reduced cell proliferation in two pHGG cell lines, SF188 and UW479. CENPE, KIF14 and NCAPG levels were significantly higher in pHGGs than pLGGs, and were direct targets of miR-137 or miR-6500-3p. Furthermore, knockdown of CENPE, KIF14 or NCAPG combined with temozolomide treatment resulted in a combined suppressive effect on pHGG cell proliferation. In summary, our results identify novel mRNA/miRNA interactions that contribute to pediatric glioma malignancy and represent potential targets for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Muh-Lii Liang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan
| | - Kim-Hai Ng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Ni Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Fong Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Meng-En Chao
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Da-Jung Liu
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Shiung Chu
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan Chen
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ren-Shyan Liu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Donald Ming-Tak Ho
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan.,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Peres J, Kwesi-Maliepaard EM, Rambow F, Larue L, Prince S. The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Lett 2017; 405:111-119. [PMID: 28757416 DOI: 10.1016/j.canlet.2017.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
The transcription factor, TBX3, is a key driver of malignant melanoma and any drug that impacts its expression is likely to have an impact on the treatment of this highly aggressive and treatment resistant cancer. Replacement of miRNAs that target oncogenes has gained much attention as a therapy because it is anticipated to be effective with little side-effects since miRNAs are naturally occurring and often target large set of genes in the same oncogenic pathway. Here we show that miR-137 levels correlate inversely with TBX3 mRNA levels in a panel of melanoma cell lines and in a cohort of patients with primary melanoma. Low levels of miR-137 and high levels of TBX3 are shown to be associated with poor patient survival. We show that miR-137 binds a conserved site in the TBX3 3' untranslated region and that a miR-137 mimic significantly reduces endogenous levels of TBX3 and inhibits anchorage independent growth and migration of malignant melanoma cells. Novel data are provided that the miR-137/TBX3/E-cadherin axis plays an important role in melanomagenesis and that miR-137 replacement is a potential therapeutic approach for treating melanomas.
Collapse
Affiliation(s)
- Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - Eliza M Kwesi-Maliepaard
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | - Florian Rambow
- VIB Center for Cancer Biology, Department of Oncology, Laboratory of Molecular Cancer Biology, Campus Gasthuisberg, O&N4, Herestraat 49 Box 602, 3000 Leuven, Belgium.
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France.
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
30
|
Chen L, Cao Y, Rong D, Wang Y, Cao Y. MicroRNA-605 functions as a tumor suppressor by targeting INPP4B in melanoma. Oncol Rep 2017; 38:1276-1286. [PMID: 28656250 DOI: 10.3892/or.2017.5740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/10/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in the initiation and progression of various cancers, including melanoma. Recently, the genetic variants and deregulation of miR-605 have been reported to participate in carcinogenesis. However, the expression status of the miR-605 in melanoma tissues and its role in melanoma progression remain unknown. In this study, we found that miR-605 was significantly downregulated in melanoma cell lines and clinical specimens. Further function studies demonstrated that miR-605 suppressed melanoma cell growth both in vitro and in vivo. Moreover, INPP4B gene was identified as a target of miR-605 through bioinformatics analysis and luciferase reporter assays. Further analysis demonstrated that the inhibition of INPP4B mediated SGK3 activation was required for the suppressive role of miR-605 on melanomas cell growth. Collectively, our data suggest that miR-605 functions as a tumor suppressor by negatively regulating INPP4B mediated SGK3 activation in melanoma and may present a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Yaxuan Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Dongyun Rong
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Ye Wang
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, The Affiliated Hospital of Guiyang Medical University, Yunyan, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
31
|
Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry 2017; 22:44-55. [PMID: 27620842 PMCID: PMC5414082 DOI: 10.1038/mp.2016.150] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) represent an important class of small regulatory RNAs that control gene expression posttranscriptionally by targeting mRNAs for degradation or translation inhibition. Early studies have revealed a complex role for miRNAs in major biological processes such as development, differentiation, growth and metabolism. MiR-137 in particular, has been of great interest due to its critical role in brain function and putative involvement in the etiology of both neuropsychiatric disorders and cancer. Several lines of evidence suggest that development, differentiation and maturation of the nervous system is strongly linked to the expression of miR-137 and its regulation of a large number of downstream target genes in various pathways. Dysregulation of this molecule has also been implicated in major mental illnesses through its position in a variant allele highly associated with schizophrenia in the largest mega genome-wide association studies. Interestingly, miR-137 has also been shown to act as a tumor suppressor, with numerous studies finding reduced expression in neoplasia including brain tumor. Restoration of miR-137 expression has also been shown to inhibit cell proliferation, migration and metastasis, and induce cell cycle arrest, differentiation and apoptosis. These properties of miR-137 propose its potential for prognosis, diagnosis and as a therapeutic target for treatment of several human neurological and neoplastic disorders. In this review, we provide details on the discovery, targets, function, regulation and disease involvement of miR-137 with a broad look at recent discovery in this area.
Collapse
Affiliation(s)
- E Mahmoudi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia,Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia,Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia. E-mail:
| |
Collapse
|
32
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
33
|
Lu TM, Lu W, Zhao LJ. MicroRNA-137 Affects Proliferation and Migration of Placenta Trophoblast Cells in Preeclampsia by Targeting ERRα. Reprod Sci 2016; 24:85-96. [DOI: 10.1177/1933719116650754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tan-Min Lu
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Wei Lu
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Long-Jun Zhao
- Department of Gynecology and Obstetrics, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
34
|
Qiu HJ, Lu XH, Yang SS, Weng CY, Zhang EK, Chen FC. MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression. Biomed Pharmacother 2016; 82:117-123. [PMID: 27470346 DOI: 10.1016/j.biopha.2016.04.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs with post-transcriptional regulatory function, playing crucial roles in cancer development and progression of human melanoma. Previous studies have indicated that miR-769 was implicated in diverse biological processes. However, the underlying mechanism of miR-769 in human melanoma has not been intensively investigated. In this present study, we aimed to investigate the role of miR-769 and its target genes in human melanoma. We found that miR-769 expression was strongly increased in human melanoma cells and clinical tissues compared with their corresponding controls. Overexpression of miR-769 promoted cell proliferation in human melanoma cell line A375, whereas miR-769-in reverses the function. Glycogen synthase kinase-3 Beta (GSK3B), a potential target gene of miR-769, and was validated by luciferase assay. Further studies revealed that miR-769 regulated cell proliferation of human melanoma by directly suppressing GSK3B expression and the knockdown of GSK3B expression reversed the effect of miR-769-in on human melanoma cell proliferation. In summary, our data demonstrated that miR-769 might act as a tumor promoter by targeting GSK3B during development of human melanoma.
Collapse
Affiliation(s)
- Hai-Jiang Qiu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China, People's Republic of China; Department of ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, People's Republic of China, People's Republic of China
| | - Xiao-He Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China, People's Republic of China.
| | - Sha-Sha Yang
- Department of ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, People's Republic of China, People's Republic of China
| | - Chen-Yin Weng
- Department of ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, People's Republic of China, People's Republic of China
| | - E-Keng Zhang
- Department of ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, People's Republic of China, People's Republic of China
| | - Fang-Chao Chen
- Department of ophthalmology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, People's Republic of China, People's Republic of China
| |
Collapse
|
35
|
Deng Z, Hao J, Lei D, He Y, Lu L, He L. Pivotal MicroRNAs in Melanoma: A Mini-Review. Mol Diagn Ther 2016; 20:449-55. [DOI: 10.1007/s40291-016-0219-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
37
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
microRNA-137 is downregulated in thyroid cancer and inhibits proliferation and invasion by targeting EGFR. Tumour Biol 2015; 37:7749-55. [DOI: 10.1007/s13277-015-4611-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023] Open
|