1
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
2
|
Ching-Roa VD, Huang CZ, Ibrahim SF, Smoller BR, Giacomelli MG. Real-time Analysis of Skin Biopsy Specimens With 2-Photon Fluorescence Microscopy. JAMA Dermatol 2022; 158:1175-1182. [PMID: 36069886 PMCID: PMC9453637 DOI: 10.1001/jamadermatol.2022.3628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Importance Nonmelanoma skin cancers (NMSCs) are primarily diagnosed through paraffin section histologic analysis of skin biopsy specimens that requires days to weeks before a formal diagnosis is reported. Two-photon fluorescence microscopy (TPFM) has the potential for point-of-care diagnosis of NMSC and other dermatologic conditions, which could enable same-visit diagnosis and treatment. Objective To demonstrate that TPFM imaging of NMSC can occur within minutes of obtaining biopsies and provide similar histological features to those of conventional histology and evaluate TPFM diagnostic performance with respect to conventional histology. Design, Setting, and Participants This comparative effectiveness pilot study examined 29 freshly excised biopsies from confirmed NMSC lesions in patients presenting for treatment. Biopsies underwent imaging immediately with TPFM on site at Rochester Dermatologic Surgery (Victor, New York) between October 2019 and August 2021. The imaged biopsies were subsequently submitted for paraffin histology to produce coregistered images. Twelve of these coregistered image pairs (41.4%) were used as a training set. Fifteen (51.7%) were used in a masked evaluation by a board-certified dermatopathologist. Two (6.9%) were excluded from the study before evaluation because they could not be coregistered. Main Outcomes and Measures Sensitivity, specificity, and accuracy of TPFM for NMSC biopsies were evaluated compared with conventional histology. Results Fourteen of the 15 biopsy specimens (93.3%) in the evaluation set were identically diagnosed with TPFM and paraffin histology. The TPFM had 100% sensitivity (95% CI, 48%-100%), 100% specificity (95% CI, 69%-100%), and 100% accuracy (95% CI, 78%-100%) for basal cell carcinoma diagnosis. For squamous cell carcinoma diagnosis, TPFM had 89% sensitivity (95% CI, 52%-100), 100% specificity (95% CI, 54%-100%), and 93% accuracy (95% CI, 68%-100%). For overall NMSC diagnosis, TPFM had a 93% sensitivity (95% CI, 66%-100%), 100% specificity (95% CI, 3%-100%), and 93% accuracy (95% CI, 68%-100%). Examination of the 1 discordant pair revealed mismatched imaging planes as the source of error. Conclusions and Relevance The results of this comparative effectiveness pilot study suggest that TPFM captures histological characteristics of NMSC that are present in conventional histology, which reveals its potential as a rapid, point-of-care diagnostic alternative that does not need extensive sample preparation or retraining for image evaluation. Further validation of TPFM imaging performed for a larger cohort is needed to fully evaluate its diagnostic accuracy and potential effect within the field.
Collapse
Affiliation(s)
- Vincent D. Ching-Roa
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Chi Z. Huang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Sherrif F. Ibrahim
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York,Rochester Dermatologic Surgery, PC, Victor, New York
| | - Bruce R. Smoller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
3
|
Alhibah M, Kröger M, Schanzer S, Busch L, Lademann J, Beckers I, Meinke MC, Darvin ME. Penetration Depth of Propylene Glycol, Sodium Fluorescein and Nile Red into the Skin Using Non-Invasive Two-Photon Excited FLIM. Pharmaceutics 2022; 14:1790. [PMID: 36145537 PMCID: PMC9506119 DOI: 10.3390/pharmaceutics14091790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum (SC) forms a strong barrier against topical drug delivery. Therefore, understanding the penetration depth and pathways into the SC is important for the efficiency of drug delivery and cosmetic safety. In this study, TPT-FLIM (two-photon tomography combined with fluorescence lifetime imaging) was applied as a non-invasive optical method for the visualization of skin structure and components to study penetration depths of exemplary substances, like hydrophilic propylene glycol (PG), sodium fluorescein (NaFl) and lipophilic Nile red (NR) into porcine ear skin ex vivo. Non-fluorescent PG was detected indirectly based on the pH-dependent increase in the fluorescence lifetime of SC components. The pH similarity between PG and viable epidermis limited the detection of PG. NaFl reached the viable epidermis, which was also proved by laser scanning microscopy. Tape stripping and confocal Raman micro-spectroscopy were performed additionally to study NaFl, which revealed penetration depths of ≈5 and ≈8 μm, respectively. Lastly, NR did not permeate the SC. We concluded that the amplitude-weighted mean fluorescence lifetime is the most appropriate FLIM parameter to build up penetration profiles. This work is anticipated to provide a non-invasive TPT-FLIM method for studying the penetration of topically applied drugs and cosmetics into the skin.
Collapse
Affiliation(s)
- Mohammad Alhibah
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Marius Kröger
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Schanzer
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps University Marburg, 35037 Marburg, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingeborg Beckers
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E. Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Phan TL, Hieu NV, Li TS, Tsao KC, Ching CTS. Noninvasive and real-time in vivo characterization of Inflammation skin. A feasibility of animal study. Skin Res Technol 2021; 27:846-853. [PMID: 33890700 DOI: 10.1111/srt.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory skin diseases were the most common problem in dermatology. This study aimed to develop a circuit by using a simple method for noninvasive, objective, and real-time skin inflammation screening. MATERIALS AND METHODS Sprague-Dawley rats were used in this study. The rats were chemically induced to suffer from skin inflammation at the back of their left-hand side while the right-hand side of their back remained untreated serving as a control. Impedance (Z) spectrum of the rat's skin was recorded. RESULTS Two characteristic frequencies (4.5 and 48.3 kHz) were found. At the two frequencies, the impedance of inflammatory skin tissue (ZIST ) was found to be significantly (P < .05) smaller than that of normal healthy skin tissue (ZNHST ). Moreover, the ratio of the impedance measured at 4.5 kHz (Zf = 4 .5 kHz ) to the impedance measured at 48.3 kHz (Zf = 48.3 kHz ), that is, Zf = 4.5 kHz /Zf = 48.3 kHz , was capable of skin inflammation screening. It was observed that the inflammatory skin tissue (IST) had the smaller value of Zf = 4 .5 kHz /Zf = 48.3 kHz (value < 8.5) and normal healthy skin tissue (NHST) had the higher value of Zf = 4 .5 kHz /Zf = 48.3 kHz (value ≈ 10) which almost remained constant. CONCLUSION A circuit was developed which was used for measuring the skin impedance accurately at the two characteristic frequencies for skin inflammation screening.
Collapse
Affiliation(s)
- Thien Luan Phan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan.,Department of Physics and Electronic Engineering, University of Science (Vietnam National University of Hochiminh City), Ho Chi Minh City, Vietnam
| | - Nguyen Van Hieu
- Department of Physics and Electronic Engineering, University of Science (Vietnam National University of Hochiminh City), Ho Chi Minh City, Vietnam
| | - Tzong Shiun Li
- Department of Plastic Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ko-Chang Tsao
- Department of Dermatology, Puli Christian Hospital, Puli, Taiwan
| | - Congo Tak Shing Ching
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
5
|
Elagin V, Gubarkova E, Garanina O, Davydova D, Orlinskaya N, Matveev L, Klemenova I, Shlivko I, Shirmanova M, Zagaynova E. In vivo multimodal optical imaging of dermoscopic equivocal melanocytic skin lesions. Sci Rep 2021; 11:1405. [PMID: 33446823 PMCID: PMC7809210 DOI: 10.1038/s41598-020-80744-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
There is a wide range of equivocal melanocytic lesions that can be clinically and dermoscopically indistinguishable from early melanoma. In the present work, we assessed the possibilities of combined using of multiphoton microscopy (MPM) and optical coherence angiography (OCA) for differential diagnosis of the equivocal melanocytic lesions. Clinical and dermoscopic examinations of 60 melanocytic lesions revealed 10 benign lesions and 32 melanomas, while 18 lesions remained difficult to diagnose. Histopathological analysis of these lesions revealed 4 intradermal, 3 compound and 3 junctional nevi in the "benign" group, 7 superficial spreading, 14 lentigo maligna and 11 nodular melanomas in the "melanoma" group and 2 lentigo simplex, 4 dysplastic nevi, 6 melanomas in situ, 4 invasive lentigo melanomas and 2 invasive superficial spreading melanomas in the "equivocal" group. On the basis of MPM, a multiphoton microscopy score (MPMS) has been developed for quantitative assessment of melanoma features at the cellular level, that showed lower score for benign lesions compare with malignant ones. OCA revealed that the invasive melanoma has a higher vessel density and thicker blood vessels than melanoma in situ and benign lesions. Discriminant functions analysis of MPM and OCA data allowed to differentiate correctly between all equivocal melanocytic lesions. Therefore, we demonstrate, for the first time, that a combined use of MPM and OCA has the potential to improve early diagnosis of melanoma.
Collapse
Affiliation(s)
- V Elagin
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950.
| | - E Gubarkova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - O Garanina
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - D Davydova
- Nizhny Novgorod Regional Clinical Oncology Center, Delovaya Street, 11/1, Nizhny Novgorod, Russia, 603126
| | - N Orlinskaya
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - L Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, Ulyanov Street 46, Nizhny Novgorod, Russia, 603950
| | - I Klemenova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - I Shlivko
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - M Shirmanova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
| | - E Zagaynova
- Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod, Russia, 603950
- Lobachevsky State University of Nizhni Novgorod, Prospekt Gagarina (Gagarin Avenue) 23, Nizhny Novgorod, Russia, 603950
| |
Collapse
|
6
|
Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis Diagnosis. Sci Rep 2020; 10:7968. [PMID: 32409755 PMCID: PMC7224284 DOI: 10.1038/s41598-020-64937-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
The diagnostic possibilities of multiphoton tomography (MPT) in dermatology have already been demonstrated. Nevertheless, the analysis of MPT data is still time-consuming and operator dependent. We propose a fully automatic approach based on convolutional neural networks (CNNs) to fully realize the potential of MPT. In total, 3,663 MPT images combining both morphological and metabolic information were acquired from atopic dermatitis (AD) patients and healthy volunteers. These were used to train and tune CNNs to detect the presence of living cells, and if so, to diagnose AD, independently of imaged layer or position. The proposed algorithm correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells. The diagnosis was obtained with a sensitivity of 0.966 ± 0.003, specificity of 0.977 ± 0.003 and F-score of 0.964 ± 0.002. Relevance propagation by deep Taylor decomposition was used to enhance the algorithm's interpretability. Obtained heatmaps show what aspects of the images are important for a given classification. We showed that MPT imaging can be combined with artificial intelligence to successfully diagnose AD. The proposed approach serves as a framework for the automatic diagnosis of skin disorders using MPT.
Collapse
|
7
|
Oh BH, Kim KH, Chung KY. Skin Imaging Using Ultrasound Imaging, Optical Coherence Tomography, Confocal Microscopy, and Two-Photon Microscopy in Cutaneous Oncology. Front Med (Lausanne) 2019; 6:274. [PMID: 31824956 PMCID: PMC6883721 DOI: 10.3389/fmed.2019.00274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
With the recognition of dermoscopy as a new medical technology and its available fee assessment in Korea comes an increased interest in imaging-based dermatological diagnosis. For the dermatologist, who treats benign tumors and malignant skin cancers, imaging-based evaluations can assist with determining the surgical method and future follow-up plans. The identification of the tumor's location and the existence of blood vessels can guide safe treatment and enable the use of minimal incisions. The recent development of high-resolution microscopy based on laser reflection has enabled observation of the skin at the cellular level. Despite the limitation of a shallow imaging depth, non-invasive light-based histopathologic examinations are being investigated as a rapid and pain-free process that would be appreciated by patients and feature reduced time from consultation to treatment. In the United States, the current procedural terminology billing code was established for reflectance confocal microscopy in 2016 and has been used for the skin cancer diagnosis ever since. In this review, we introduce the basic concepts and images of ultrasound imaging, optical coherence tomography, confocal microscopy, and two-photon microscopy and discuss how they can be utilized in the field of dermatological oncology.
Collapse
Affiliation(s)
- Byung Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Kee Yang Chung
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
|
9
|
Shirshin EA, Yakimov BP, Darvin ME, Omelyanenko NP, Rodionov SA, Gurfinkel YI, Lademann J, Fadeev VV, Priezzhev AV. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:S69-S88. [PMID: 31213196 DOI: 10.1134/s0006297919140050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiphoton microscopy (MPM) is a method of molecular imaging and specifically of intravital imaging that is characterized by high spatial resolution in combination with a greater depth of penetration into the tissue. MPM is a multimodal method based on detection of nonlinear optical signals - multiphoton fluorescence and optical harmonics - and also allows imaging with the use of the parameters of fluorescence decay kinetics. This review describes and discusses photophysical processes within major reporter molecules used in MPM with endogenous contrasts and summarizes several modern experiments that illustrate the capabilities of label-free MPM for molecular imaging of biochemical processes in connective tissue and cells.
Collapse
Affiliation(s)
- E A Shirshin
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia. .,Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, 108840, Moscow, Russia
| | - B P Yakimov
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - N P Omelyanenko
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - S A Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - Y I Gurfinkel
- Medical Scientific-Educational Center of Lomonosov Moscow State University, Moscow, 119192, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Fadeev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - A V Priezzhev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| |
Collapse
|
10
|
Sdobnov AY, Lademann J, Darvin ME, Tuchin VV. Methods for Optical Skin Clearing in Molecular Optical Imaging in Dermatology. BIOCHEMISTRY (MOSCOW) 2019; 84:S144-S158. [PMID: 31213200 DOI: 10.1134/s0006297919140098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This short review describes recent progress in using optical clearing (OC) technique in skin studies. Optical clearing is an efficient tool for enhancing the probing depth and data quality in multiphoton microscopy and Raman spectroscopy. Here, we discuss the main mechanisms of OC, its safety, advantages, and limitations. The data on the OC effect on the skin water content are presented. It was demonstrated that 70% glycerol and 100% OmnipaqueTM 300 reduce the water content in the skin. Both OC agents (OCAs) significantly affect the strongly bound and weakly bound water. However, OmnipaqueTM 300 causes considerably less skin dehydration than glycerol. In addition, the results of examination of the OC effect on autofluorescence in two-photon excitation and background fluorescence in Raman scattering at different skin depths are presented. It is shown that OmnipaqueTM 300 is a promising OCA due to its ability to reduce background fluorescence in the upper skin layers. The possibility of multimodal imaging combining optical methods and OC technique is discussed.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570, Finland. .,Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia.,Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, 410028, Russia.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
11
|
Jung S, Lademann J, Darvin ME, Richter C, Pedersen CB, Richter H, Schanzer S, Kottner J, Blume-Peytavi U, Røpke MA. In vivo characterization of structural changes after topical application of glucocorticoids in healthy human skin. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76018. [PMID: 28753693 DOI: 10.1117/1.jbo.22.7.076018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/28/2017] [Indexed: 05/16/2023]
Abstract
Topical glucocorticoids (GC) are known to induce changes in human skin with the potential to develop skin atrophy. Here, atrophogenic effects and subsequent structural changes in the skin after topical application of GC were investigated in vivo. Sixteen healthy volunteers were topically treated daily on the forearms with clobetasol propionate, betamethasone dipropionate, and the petrolatum vehicle for 4 weeks. All treated skin areas and a nontreated control area were examined by ultrasound, optical coherence tomography, confocal laser scanning microscopy, multiphoton tomography (MPT), and resonance Raman spectroscopy at baseline 1 day after last application and 1 week after last application. Investigated parameters included stratum corneum thickness, epidermal, and full skin thickness, keratinocyte size and density, keratinocyte nucleus-to-cytoplasm ratio, skin surface classification, relative collagen and elastin signal intensity, second-harmonic generation-to-autofluorescence aging index of dermis (SAAID), and the antioxidant status of the skin. A reduction in epidermal and dermal skin thickness was observed in GC treated as well as in vehicle-treated and untreated skin areas on the volar forearm. MPT analysis showed an increased epidermal cell density and reduced cell size and nucleus-to-cytoplasm ratio and a significant increase of SAAID after GC treatment indicating a restructuring or compression of collagen fibers clinically being observed as atrophic changes.
Collapse
Affiliation(s)
- Sora Jung
- Charité-Universitätsmedizin Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology, and Allergology, Berlin, Germany
| | - Jürgen Lademann
- Charité-Universitätsmedizin Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology, and Allergology, Berlin, Germany
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology, and Allergology, Berlin, Germany
| | - Claudia Richter
- Charité-Universitätsmedizin, Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Berlin, Germany
| | | | - Heike Richter
- Charité-Universitätsmedizin Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology, and Allergology, Berlin, Germany
| | - Sabine Schanzer
- Charité-Universitätsmedizin Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology, and Allergology, Berlin, Germany
| | - Jan Kottner
- Charité-Universitätsmedizin, Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Charité-Universitätsmedizin, Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Berlin, Germany
| | | |
Collapse
|
12
|
Shirshin EA, Gurfinkel YI, Priezzhev AV, Fadeev VV, Lademann J, Darvin ME. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci Rep 2017; 7:1171. [PMID: 28446767 PMCID: PMC5430894 DOI: 10.1038/s41598-017-01238-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
The papillary dermis of human skin is responsible for its biomechanical properties and for supply of epidermis with chemicals. Dermis is mainly composed of structural protein molecules, including collagen and elastin, and contains blood capillaries. Connective tissue diseases, as well as cardiovascular complications have manifestations on the molecular level in the papillary dermis (e.g. alteration of collagen I and III content) and in the capillary structure. In this paper we assessed the molecular structure of internal and external regions of skin capillaries using two-photon fluorescence lifetime imaging (FLIM) of endogenous compounds. It was shown that the capillaries are characterized by a fast fluorescence decay, which is originated from red blood cells and blood plasma. Using the second harmonic generation signal, FLIM segmentation was performed, which provided for spatial localization and fluorescence decay parameters distribution of collagen I and elastin in the dermal papillae. It was demonstrated that the lifetime distribution was different for the inner area of dermal papillae around the capillary loop that was suggested to be due to collagen III. Hence, we propose a generalized approach to two-photon imaging of the papillary dermis components, which extends the capabilities of this technique in skin diagnosis.
Collapse
Affiliation(s)
- Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| | - Yury I Gurfinkel
- Research Clinical Center of JSC "Russian Railways", Moscow, Russia
| | | | - Victor V Fadeev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Krolopp Á, Csákányi A, Haluszka D, Csáti D, Vass L, Kolonics A, Wikonkál N, Szipőcs R. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:3531-3542. [PMID: 27699118 PMCID: PMC5030030 DOI: 10.1364/boe.7.003531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 05/29/2023]
Abstract
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.
Collapse
Affiliation(s)
- Ádám Krolopp
- Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R & D Ultrafast Lasers Ltd, P.O. Box 622, H-1539 Budapest, Hungary
| | - Attila Csákányi
- Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Dóra Haluszka
- Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary
| | - Dániel Csáti
- R & D Ultrafast Lasers Ltd, P.O. Box 622, H-1539 Budapest, Hungary
| | - Lajos Vass
- R & D Ultrafast Lasers Ltd, P.O. Box 622, H-1539 Budapest, Hungary
| | - Attila Kolonics
- Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R & D Ultrafast Lasers Ltd, P.O. Box 622, H-1539 Budapest, Hungary
| | - Norbert Wikonkál
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary
| | - Róbert Szipőcs
- Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R & D Ultrafast Lasers Ltd, P.O. Box 622, H-1539 Budapest, Hungary
| |
Collapse
|
14
|
Warszawik-Hendzel O, Olszewska M, Maj M, Rakowska A, Czuwara J, Rudnicka L. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma. J Dermatol Case Rep 2015; 9:89-97. [PMID: 26848316 DOI: 10.3315/jdcr.2015.1221] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022]
Abstract
Squamous cell carcinoma is the second most common cutaneous malignancy after basal cell carcinoma. Although the gold standard of diagnosis for squamous cell carcinoma is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Dermoscopy has become one of the basic diagnostic methods in clinical practice. The most common dermoscopic features of squamous cell carcinoma include clustered vascular pattern, glomerular vessels and hyperkeratosis. Under reflectance confocal microscopy, squamous cell carcinoma shows an atypical honeycomb or disarranged pattern of the spinous-granular layer of the epidermis, round nucleated bright cells in the epidermis and round vessels in the dermis. High frequency ultrasound and optical coherence tomography may be helpful in predominantly in pre-surgical evaluation of tumor size. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of squamous cell carcinoma of the skin, lip, oral mucosa, vulva or other tissues include high-definition optical coherence tomography, in vivo multiphoton tomography, direct oral microscopy, electrical impedance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, elastic scattering spectroscopy, differential path-length spectroscopy, nuclear magnetic resonance spectroscopy, and angle-resolved low coherence interferometry.
Collapse
Affiliation(s)
| | | | - Małgorzata Maj
- Department of Dermatology, Medical University of Warsaw, Poland
| | | | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Poland; ; Departmet of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|