1
|
Bi L, Liu Y, Zhang L, Zhang X, Wang D. High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury. Tissue Cell 2025; 93:102746. [PMID: 39864211 DOI: 10.1016/j.tice.2025.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Pressure Injury (PI) is a complex disease process which is influenced by multiple factors, among which ischemia-reperfusion (I/R) injury is closely related to the progression of PI. But its biomarkers are still unclearly. Understanding its physiological mechanisms and related molecular biomarkers is a key to developing effective prevention and therapeutic strategies. METHODS This study through obtained the candidate genes of the differentially expressed genes (DEGs) from the PI rat model by transcriptome sequencing, PI single-cell sequencing database, and genes related to I/R injury from GeneCards database to analyze and screen prognostic related target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) pathway analysis were performed using clusterProfiler package, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The genes related to I/R injury were identified and analyzed using three machine learning algorithms. Then, the hub genes were evaluated using nomogram and receiver operating characteristic (ROC) curves, and validated using immunohistochemistry in the PI rat model. RESULTS There were finally 7 candidate genes obtained from the intersection of the three datasets. GO and KEGG pathway analysis revealed that the DEGs were enriched in complement and coagulation cascades, and the keratinocyte differentiation is a significant factor. Then, two hub genes Serine protease inhibitor clade E member 1 (SERPINE1) and Cathepsin L (CTSL) were identified through three machine learning algorithms. The two hub genes were indicated had a high prognosis value by nomogram and ROC curves. SERPINE1 and CTSL both play crucial roles in vasculogenesis, coagulation and degradation of the extracellular matrix, which is essential for wound healing. The results of immunohistochemistry demonstrated that SERPINE1 and CTSL are significantly upregulated in skin tissue from PI caused by I/R injury, and their mRNA expression levels significantly correlate with PI outcomes. CONCLUSION According to our research we referred that the SERPINE1 and CTSL might be the potential biomarkers of PI.
Collapse
Affiliation(s)
- Lexuan Bi
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, PR China; Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yaxin Liu
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Lei Zhang
- Second Clinical Medical College, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoli Zhang
- School of Nursing, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Dong Wang
- Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Zhang L, Ge T, Cui J. FLI-1-driven regulation of endothelial cells in human diseases. J Transl Med 2024; 22:740. [PMID: 39107790 PMCID: PMC11302838 DOI: 10.1186/s12967-024-05546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are widely distributed in the human body and play crucial roles in the circulatory and immune systems. ECs dysfunction contributes to the progression of various chronic cardiovascular, renal, and metabolic diseases. As a key transcription factor in ECs, FLI-1 is involved in the differentiation, migration, proliferation, angiogenesis and blood coagulation of ECs. Imbalanced FLI-1 expression in ECs can lead to various diseases. Low FLI-1 expression leads to systemic sclerosis by promoting fibrosis and vascular lesions, to pulmonary arterial hypertension by promoting a local inflammatory state and vascular lesions, and to tumour metastasis by promoting the EndMT process. High FLI-1 expression leads to lupus nephritis by promoting a local inflammatory state. Therefore, FLI-1 in ECs may be a good target for the treatment of the abovementioned diseases. This comprehensive review provides the first overview of FLI-1-mediated regulation of ECs processes, with a focus on its influence on the abovementioned diseases and existing FLI-1-targeted drugs. A better understanding of the role of FLI-1 in ECs may facilitate the design of more effective targeted therapies for clinical applications, particularly for tumour treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Tingwen Ge
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
3
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
4
|
Kasamatsu H, Chino T, Hasegawa T, Utsunomiya N, Utsunomiya A, Yamada M, Oyama N, Hasegawa M. A cysteine proteinase inhibitor ALLN alleviates bleomycin-induced skin and lung fibrosis. Arthritis Res Ther 2023; 25:156. [PMID: 37626391 PMCID: PMC10463804 DOI: 10.1186/s13075-023-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease that is characterized by fibrosis in the skin and internal organs, such as the lungs. Activated differentiation of progenitor cells, which are mainly resident fibroblasts, into myofibroblasts is considered a key mechanism underlying the overproduction of extracellular matrix and the resultant tissue fibrosis in SSc. Calpains are members of the Ca2+-dependent cysteine protease family, whose enzymatic activities participate in signal transduction and tissue remodeling, potentially contributing to fibrosis in various organs. However, the roles of calpain in the pathogenesis of SSc remain unknown. This study aimed to examine the anti-fibrotic properties of N-acetyl-Leu-Leu-norleucinal (ALLN), one of the cysteine proteinase inhibitors that primarily inhibit calpain, in vitro and in vivo, to optimally translate into the therapeutic utility in human SSc. METHODS Normal human dermal and lung fibroblasts pretreated with ALLN were stimulated with recombinant transforming growth factor beta 1 (TGF-β1), followed by assessment of TGF-β1/Smad signaling and fibrogenic molecules. RESULTS ALLN treatment significantly inhibited TGF-β1-induced phosphorylation and nuclear transport of Smad2/3 in skin and lung fibroblasts. TGF-β1-dependent increases in α-smooth muscle actin (αSMA), collagen type I, fibronectin 1, and some mesenchymal transcription markers were attenuated by ALLN. Moreover, our findings suggest that ALLN inhibits TGF-β1-induced mesenchymal transition in human lung epithelial cells. Consistent with these in vitro findings, administering ALLN (3 mg/kg/day) three times a week intraperitoneally remarkably suppressed the development of skin and lung fibrosis in a SSc mouse model induced by daily subcutaneous bleomycin injection. The number of skin- and lung-infiltrating CD3+ T cells decreased in ALLN-treated mice compared with that in control-treated mice. Phosphorylation of Smad3 and/or an increase in αSMA-positive myofibroblasts was significantly inhibited by ALLN treatment on the skin and lungs. However, no adverse effects were observed. CONCLUSIONS Our results prove that calpains can be a novel therapeutic target for skin and lung fibrosis in SSc, considering its inhibitor ALLN.
Collapse
Affiliation(s)
- Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
5
|
Mouawad JE, Sharma S, Renaud L, Pilewski JM, Nadig SN, Feghali-Bostwick C. Reduced Cathepsin L expression and secretion into the extracellular milieu contribute to lung fibrosis in systemic sclerosis. Rheumatology (Oxford) 2023; 62:1306-1316. [PMID: 35900152 PMCID: PMC10167927 DOI: 10.1093/rheumatology/keac411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lung fibrosis is the leading cause of death in SSc, with no cure currently available. Antifibrotic Endostatin (ES) production does not reach therapeutic levels in SSc patients, suggesting a deficit in its release from Collagen XVIII by the main cleavage enzyme, Cathepsin L (CTSL). Thus, elucidating a potential deficit in CTSL expression and activity unravels an underlying molecular cause for SSc-driven lung fibrosis. METHODS Fibrosis was induced experimentally using TGF-β in vitro, in primary human lung fibroblasts (pLFs), and ex vivo, in human lung tissues. ES and CTSL expression was quantified using ELISA, RT-qPCR, immunoblotting or immunofluorescence. Recombinant NC1-FLAG peptide was used to assess CTSL cleavage activity. CTSL expression was also compared between SSc vs normal (NL)-derived pLFs and lung tissues. RESULTS ES levels were significantly reduced in media conditioned by TGF-β-induced pLFs. TGF-β-stimulated pLFs significantly reduced expression and secretion of CTSL into the extracellular matrix (ECM). CTSL was also sequestered in its inactive form into extracellular vesicles, further reducing its availability in the ECM. Media conditioned by TGF-β-induced pLFs showed reduced cleavage of NC1-Flag and reduced release of the antifibrotic ES fragment. SSc-derived pLFs and lung tissues expressed significantly lower levels of CTSL compared with NL. CONCLUSIONS Our findings identify CTSL as a protein protective against lung fibrosis via its activation of antifibrotic ES, and whose expression in SSc pLFs and lung tissues is suppressed. Identifying strategies to boost CTSL endogenous levels in SSc patients could serve as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Joe E Mouawad
- Division of Rheumatology & Immunology, Department of Medicine
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC
| | - Shailza Sharma
- Division of Rheumatology & Immunology, Department of Medicine
| | - Ludivine Renaud
- Division of Rheumatology & Immunology, Department of Medicine
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Satish N Nadig
- Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
6
|
Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI. Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 2023; 24:ijms24031881. [PMID: 36768203 PMCID: PMC9915382 DOI: 10.3390/ijms24031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Being initially described as a factor of virally-induced leukemias, Fli1 (Friend leukemia integration 1) has attracted considerable interest lately due to its role in both healthy physiology and a variety of pathological conditions. Over the past few years, Fli1 has been found to be one of the crucial regulators of normal hematopoiesis, vasculogenesis, and immune response. However, abnormal expression of Fli1 due to genetic predisposition, epigenetic reprogramming (modifications), or environmental factors is associated with a few diseases of different etiology. Fli1 hyperexpression leads to malignant transformation of cells and progression of cancers such as Ewing's sarcoma. Deficiency in Fli1 is implicated in the development of systemic sclerosis and hypertensive disorders, which are often accompanied by pronounced fibrosis in different organs. This review summarizes the initial findings and the most recent advances in defining the role of Fli1 in diseases of different origin with emphasis on its pro-fibrotic potential.
Collapse
Affiliation(s)
- Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | | | - Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| |
Collapse
|
7
|
He YD, Wohlford EM, Uhle F, Buturovic L, Liesenfeld O, Sweeney TE. The Optimization and Biological Significance of a 29-Host-Immune-mRNA Panel for the Diagnosis of Acute Infections and Sepsis. J Pers Med 2021; 11:735. [PMID: 34442377 PMCID: PMC8402342 DOI: 10.3390/jpm11080735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
In response to the unmet need for timely accurate diagnosis and prognosis of acute infections and sepsis, host-immune-response-based tests are being developed to help clinicians make more informed decisions including prescribing antimicrobials, ordering additional diagnostics, and assigning level of care. One such test (InSep™, Inflammatix, Inc.) uses a 29-mRNA panel to determine the likelihood of bacterial infection, the separate likelihood of viral infection, and the risk of physiologic decompensation (severity of illness). The test, being implemented in a rapid point-of-care platform with a turnaround time of 30 min, enables accurate and rapid diagnostic use at the point of impact. In this report, we provide details on how the 29-biomarker signature was chosen and optimized, together with its molecular, immunological, and medical significance to better understand the pathophysiological relevance of altered gene expression in disease. We synthesize key results obtained from gene-level functional annotations, geneset-level enrichment analysis, pathway-level analysis, and gene-network-level upstream regulator analysis. Emerging findings are summarized as hallmarks on immune cell interaction, inflammatory mediators, cellular metabolism and homeostasis, immune receptors, intracellular signaling and antiviral response; and converging themes on neutrophil degranulation and activation involved in immune response, interferon, and other signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy E. Sweeney
- Inflammatix, Inc., 863 Mitten Rd, Suite 104, Burlingame, CA 94010, USA; (Y.D.H.); (E.M.W.); (F.U.); (L.B.); (O.L.)
| |
Collapse
|
8
|
Miura S, Watanabe Y, Saigusa R, Yamashita T, Nakamura K, Hirabayashi M, Miyagawa T, Yoshizaki A, Trojanowska M, Sato S, Asano Y. Fli1 deficiency suppresses RALDH1 activity of dermal dendritic cells and related induction of regulatory T cells: a possible role in scleroderma. Arthritis Res Ther 2021; 23:137. [PMID: 33964960 PMCID: PMC8106158 DOI: 10.1186/s13075-021-02520-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 family member A1 (RALDH1)-producing dermal dendritic cells (DCs), a conventional DC subset regulating skin fibrosis, are decreased in the involved skin of patients with systemic sclerosis (SSc). In this study, we investigated the contribution of Fli1 deficiency, a potential predisposing factor of SSc, to the phenotypical alteration of RALDH1-producing dermal DCs by using SSc model mice and SSc skin samples. METHODS Bleomycin (BLM)-induced skin fibrosis was generated with Fli1+/- and wild-type mice. The proportions of DC and CD4+ T cell subsets were determined by flow cytometry in the dermis of BLM-treated mice. Fli1 expression in dermal DCs was evaluated by immunofluorescence with skin samples of SSc and healthy control subjects. RESULTS RALDH activity of dermal DCs was significantly decreased in BLM-treated Fli1+/- mice compared with BLM-treated wild-type mice, whereas the proportion of CD103-CD11b- dermal DCs, a major DC subset producing RALDH1 in response to BLM injection, was comparable between groups. Relevant to this finding, the proportion of regulatory T cells (Tregs) in the dermis was decreased in BLM-treated Fli1+/- mice relative to BLM-treated wild-type mice, while the proportions of Th1, Th2 and Th17 cells were unaltered. In the involved skin of SSc patients, Fli1 was downregulated in CD11c+ cells, including dermal DCs. CONCLUSIONS Fli1 deficiency inhibits RALDH1 activity of CD103-CD11b- dermal DCs and related induction of Tregs in BLM-treated mice. Considering Fli1 reduction in SSc dermal DCs, Fli1deficiency may impair the dermal DC-Treg system, contributing to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, MA, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
9
|
Miyagawa T, Taniguchi T, Saigusa R, Fukayama M, Takahashi T, Yamashita T, Hirabayashi M, Miura S, Nakamura K, Yoshizaki A, Sato S, Asano Y. Fli1 deficiency induces endothelial adipsin expression, contributing to the onset of pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford) 2021; 59:2005-2015. [PMID: 31782787 DOI: 10.1093/rheumatology/kez517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/03/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Adipsin, or complement factor D, is a serine proteinase catalysing complement factor C3 breakdown, leading to the production of opsonin (C3b), membrane attack complex (C5b-C9) and anaphylatoxins (C3a and C5a). Since adipsin is potentially associated with pulmonary arterial hypertension in SSc, we investigated adipsin expression in dermal small vessels of SSc-involved skin, the mechanism regulating adipsin expression in endothelial cells, and the correlation of serum adipsin levels with SSc clinical symptoms. METHODS Adipsin expression was assessed by immunohistochemistry with skin sections of SSc and healthy subjects. mRNA levels of target genes and transcription factor binding to the ADIPSIN promoter were evaluated by quantitative reverse transcription PCR and chromatin immunoprecipitation, respectively. Serum adipsin levels were determined by enzyme-linked immunosorbent assay. RESULTS Adipsin expression was remarkably increased in dermal small vessels of SSc-involved skin as compared with those of healthy control skin. Consistent with the notion that Fli1 deficiency induces SSc-like phenotypes in various types of cells, FLI1 siRNA enhanced adipsin expression at protein and mRNA levels and Fli1 bound to the ADIPSIN promoter in human dermal microvascular endothelial cells. Serum adipsin levels were significantly lower in diffuse cutaneous SSc patients than in limited cutaneous SSc patients and healthy controls, and were associated positively with elevated right ventricular systolic pressure and inversely with interstitial lung disease by multivariate regression analysis. CONCLUSION Adipsin is up-regulated at least partially by Fli1 deficiency in endothelial cells, potentially contributing to the development of pulmonary vascular involvement in SSc.
Collapse
Affiliation(s)
- Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maiko Fukayama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Yang X, Jiang W, Huang M, Dai Y, Li B, Wang X, Yu Y, Shen T, Wu C, Zhu Q. Intracellular complement activation in podocytes aggravates immune kidney injury in trichloroethylene-sensitized mice. J Toxicol Sci 2020; 45:681-693. [PMID: 33132242 DOI: 10.2131/jts.45.681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trichloroethylene (TCE) as a common organic solvent in industrial production can cause occupational medicamentosa-like dermatitis (OMDT) in some exposed workers. In addition to systemic skin damage, OMDT is also accompanied by severe kidney injury. Our previous studies show that complement (C) plays an important role in immune kidney injury caused by TCE. Specifically, C3 is mainly deposited on glomeruli. Recent studies have found that intracellular complement can be activated by cathepsin L (CTSL) and exert a series of biological effects. The purpose of this study was to explore where C3 on glomeruli comes from and what role it plays. A BALB/c mouse model of skin sensitization induced by TCE in the presence or absence of CTSL inhibitor (CTSLi,10 mg/kg). In TCE sensitization-positive mice, C3 was mainly expressed on podocytes and the expression of CTSL significantly increased in podocytes. Kidney function test and related indicators showed abnormal glomerular filtration and transmission electron microscopy revealed ultrastructure damage to podocytes. These lesions were alleviated in TCE/CTSLi positive mice. These results provide the first evidence that in TCE-induced immune kidney injury, intracellular complement in podocytes can be over-activated by CTSL and aggravates podocytes injury, thereby damaging glomerular filtration function. Intracellular complement activation and cathepsin L in podocytes may be a potential target for treating immune kidney injury induced by TCE.
Collapse
Affiliation(s)
- Xiaodong Yang
- Anhui Cancer Institute, The First Affiliated Hospital of Anhui Medical University, China.,Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Wei Jiang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Meng Huang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Bodong Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Xian Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yun Yu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Changhao Wu
- School of Biosciences and Medicine, FHMS, University of Surrey, UK
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, China.,Key Laboratory of Dermatology, Ministry of Education, China
| |
Collapse
|
11
|
He YS, Yang XK, Hu YQ, Xiang K, Pan HF. Emerging role of Fli1 in autoimmune diseases. Int Immunopharmacol 2020; 90:107127. [PMID: 33234418 DOI: 10.1016/j.intimp.2020.107127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
The Ets transcription factor family exerts crucial role in cell proliferation, apoptosis, differentiation and migration. Friend leukemia integration 1 (Fli1), a member of the Ets family, is expressed in fibroblasts, endothelial cells and immune cells. Fli1 gene is participated in the development, proliferation, activation, migration and other processes of immune cells. Fli1 can also affect the function of immune cells by regulating cytokines and chemokines. Emerging evidence has shown that Fli1 is implicated in the etiology of several autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). In this review, we mainly discuss the current evidence for the role of Fli1 in these diseases.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
12
|
Toyama S, Yamashita T, Saigusa R, Miura S, Nakamura K, Hirabayashi M, Miyagawa T, Fukui Y, Omatsu J, Yoshizaki A, Sato S, Asano Y. Decreased serum cathepsin S levels in patients with systemic sclerosis‐associated interstitial lung disease. J Dermatol 2020; 47:1027-1032. [DOI: 10.1111/1346-8138.15458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Satoshi Toyama
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Takashi Yamashita
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Ryosuke Saigusa
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Shunsuke Miura
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Kouki Nakamura
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Megumi Hirabayashi
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Takuya Miyagawa
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Yuki Fukui
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Jun Omatsu
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Ayumi Yoshizaki
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Shinichi Sato
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| | - Yoshihide Asano
- Department of Dermatology University of Tokyo Graduate School of Medicine Tokyo Japan
| |
Collapse
|
13
|
Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T. Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genet 2018; 14:e1007826. [PMID: 30500808 PMCID: PMC6291168 DOI: 10.1371/journal.pgen.1007826] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/12/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions. Differentiated cells possess unique characteristics to maintain vital activities. However, cells occasionally show abnormal behavior in pathological settings due to dysregulated gene expression. Endothelial-to-mesenchymal transition (EndMT) is a phenomenon in which endothelial cells lose their characteristics and acquire mesenchymal-like properties. Although EndMT is observed in various diseases including cancer, and augments fibrosis and vascular defects, the mechanism of EndMT induction is not fully understood. Here, we show that EndMT is triggered via reduced expression of ERG and FLI1, which have recently been recognized as pivotal transcription factors in endothelial cells (ECs). Mechanistically, ERG and FLI1 activate EC-specific genes and repress mesenchymal-like genes via epigenetic regulation to prevent EndMT. Furthermore, we demonstrate that microRNA-126, which is specifically expressed in ECs, is the key downstream target of ERG/FLI1 for regulating EndMT. Finally, we show that ERG and FLI1 expression is decreased in ECs within tumors, suggesting that EndMT is induced in the tumor microenvironment. Collectively, these findings indicate that loss of ERG and FLI1 leads to the aberrant behavior of ECs in pathological conditions.
Collapse
Affiliation(s)
- Nao Nagai
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Ryo Nakaki
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
14
|
Yamashita T, Asano Y, Saigusa R, Taniguchi T, Hirabayashi M, Miyagawa T, Nakamura K, Miura S, Yoshizaki A, Trojanowska M, Sato S. Cyclophosphamide Pulse Therapy Normalizes Vascular Abnormalities in a Mouse Model of Systemic Sclerosis Vasculopathy. J Invest Dermatol 2018; 139:1150-1160. [PMID: 30508546 DOI: 10.1016/j.jid.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023]
Abstract
Intravenous cyclophosphamide pulse, a standard treatment for systemic sclerosis (SSc)-related interstitial lung disease, elicits a disease-modifying effect on SSc vasculopathy, such as fostering microvascular de-remodeling. To investigate the molecular mechanism by which cyclophosphamide mitigates SSc vasculopathy, we employed endothelial cell-specific Fli1 knockout mice that mimic the functional and structural vascular abnormalities characteristic of SSc. Biweekly cyclophosphamide injection improved vascular permeability and structural abnormalities of endothelial cell-specific Fli1 knockout mice in 2 weeks and in 3 months, respectively. In endothelial cell-specific Fli1 knockout mice, a single dose of cyclophosphamide was sufficient to normalize the decreased expression of α-smooth muscle actin in dermal blood vessels and improve the impaired neovascularization in skin-embedded Matrigel plug. Under the same condition, the decreased expression of vascular endothelial cadherin, platelet-derived growth factor B, S1P1, and CCN1 (molecules associated with angiogenesis and/or vasculogenesis) was reversed along with the reversal of endothelial Fli1 expression. In SSc patients, serum CCN1 levels were significantly increased after intravenous cyclophosphamide pulse. Taken together, these results indicate that cyclophosphamide improves Fli1 deficiency-dependent vascular changes by normalizing the expression of angiogenesis- and vasculogenesis-related molecules and endothelial Fli1, which may help to explain the beneficial effect of cyclophosphamide on SSc vasculopathy.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Yue X, Yu X, Petersen F, Riemekasten G. Recent advances in mouse models for systemic sclerosis. Autoimmun Rev 2018; 17:1225-1234. [PMID: 30316997 DOI: 10.1016/j.autrev.2018.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022]
Abstract
SSc is a complex rheumatoid disease characterized by autoimmunity, fibrosis and vasculopathy. Mouse models provide powerful research tools for exploring the pathogenesis of the human diseases. Each mouse model can represent a specific way leading to the development of disease. Moreover, mouse models can be used to investigate the role of candidate molecule in the pathogenesis of disease. So far, more than twenty mouse models for SSc have been established and provide new insights in the understanding of the pathogenesis of SSc. In this review, we provide an overview on recent advances in the field of experimental SSc. We introduce novel mouse models generated in the recent years and discuss their relevance to the SSc pathogenesis. Moreover, we summarize and discuss recent findings in the pathogenesis of classical SSc mouse models.
Collapse
Affiliation(s)
- Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Gabriela Riemekasten
- Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany.
| |
Collapse
|
16
|
Yamashita T, Asano Y, Saigusa R, Taniguchi T, Nakamura K, Miura S, Toyama T, Takahashi T, Ichimura Y, Hirabayashi M, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Increased expression of aquaporin-1 in dermal fibroblasts and dermal microvascular endothelial cells possibly contributes to skin fibrosis and edema in patients with systemic sclerosis. J Dermatol Sci 2018; 93:24-32. [PMID: 30270117 DOI: 10.1016/j.jdermsci.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aquaporin-1 (AQP1), a water channel protein controlling the water contents of cells and tissues, exerts pleiotropic effects on various biological activities, including inflammation, angiogenesis, and extracellular matrix remodeling, by regulating cell behaviors and tissue water balance. OBJECTIVE To investigate AQP1 roles in systemic sclerosis (SSc) which is characterized by autoimmune inflammation, vasculopathy, and tissue fibrosis. METHODS AQP1 expression was evaluated by immunohistochemistry and quantitative reverse transcription PCR in skin samples from human and animal models and by immunoblotting in cultured cells. Fli1 binding to the AQP1 promoter was evaluated by chromatin immunoprecipitation. Cell migration was assessed by scratch assay. RESULTS Dermal fibroblasts and endothelial cells highly expressed AQP1 in SSc lesional skin, and AQP1 expression in dermal fibroblasts and endothelial cells positively correlated with the degrees of tissue fibrosis and edema, respectively. Consistently, SSc dermal fibroblasts up-regulated AQP1 compared with normal dermal fibroblasts in vitro. Furthermore, TGF-β stimulation induced AQP1 expression in normal dermal fibroblasts, while TGF-β1 antisense oligonucleotide suppressed AQP1 expression in SSc dermal fibroblasts. In endothelial cells, Fli1 deficiency resulted in AQP1 up-regulation in vivo and in vitro and Fli1 bound to the AQP1 promoter. Importantly, SSc dermal fibroblasts and FLI1 siRNA-treated endothelial cells had a pro-migratory property, which was remarkably diminished by gene silencing of AQP1. CONCLUSION AQP1 is up-regulated in SSc dermal fibroblasts and SSc endothelial cells at least partially due to autocrine TGF-β stimulation and Fli1 deficiency, respectively, possibly contributing to inflammation, vasculopathy, and tissue fibrosis by regulating tissue edema and cell migration.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| |
Collapse
|
17
|
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
18
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
19
|
Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000249] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by early microvascular abnormalities, immune dysregulation and chronic inflammation, and subsequent fibrosis of the skin and internal organs. Excessive fibrosis, distinguishing hallmark of SSc, is the end result of a complex series of interlinked vascular injury and immune activation, and represents a maladaptive repair process. Activated vascular, epithelial, and immune cells generate pro-fibrotic cytokines, chemokines, growth factors, lipid mediators, autoantibodies, and reactive oxygen species. These paracrine and autocrine cues in turn induce activation, differentiation, and survival of mesenchymal cells, ensuing tissue fibrosis through increased collagen synthesis, matrix deposition, tissue rigidity and remodeling, and vascular rarefaction. This review features recent insights of the pathogenic process of SSc, highlighting three major characteristics of SSc, microvasculopathy, excessive fibrosis, and immune dysregulation, and sheds new light on the understanding of molecular and cellular mechanisms contributing to the pathogenesis of SSc and providing novel avenues for targeted therapies.
Collapse
|
20
|
Toyama T, Asano Y, Miyagawa T, Nakamura K, Hirabayashi M, Yamashita T, Saigusa R, Miura S, Ichimura Y, Takahashi T, Taniguchi T, Yoshizaki A, Sato S. The impact of transcription factor Fli1 deficiency on the regulation of angiogenesis. Exp Dermatol 2017; 26:912-918. [PMID: 28370536 DOI: 10.1111/exd.13341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/18/2022]
Abstract
The insufficiency of Friend leukaemia virus integration 1 (Fli1), a member of the Ets family transcription factors, is implicated in the pathogenesis of vasculopathy associated with systemic sclerosis (SSc). Fli1 deficiency accelerates early steps of angiogenesis, including detachment of pre-existing pericytes and extracellular matrix degradation by endothelial proteinases, but the impact of Fli1 deficiency on the other steps of angiogenesis has not been investigated. Therefore, we evaluated the effect of Fli1 deficiency on migration, proliferation, cell survival and tube formation of human dermal microvascular endothelial cells (HDMECs). HDMECs transfected with FLI1 siRNA exhibited a greater migratory property in scratch assay and transwell migration assay and a higher proliferation rate in BrdU assay than HDMECs transfected with non-silencing scrambled RNA. In flow cytometry-based apoptosis assay, FLI1 siRNA-transduced HDMECs revealed the decreased number of annexin and propidium iodide-double-positive apoptotic cells compared with control cells, reflecting the promotion of cell survival. On the other hand, tubulogenic activity on Matrigel was remarkably suppressed in Fli1-deficient HDMECs relative to control cells. These results indicate that Fli1 deficiency promotes migration, proliferation and cell survival, while abating tube formation of endothelial cells, suggesting that Fli1 deficiency is potentially attributable to the development of both proliferative obliterative vasculopathy (occlusion of arterioles and small arteries) and destructive vasculopathy (loss of small vessels) characteristic of SSc vasculopathy.
Collapse
Affiliation(s)
- Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Mostmans Y, Cutolo M, Giddelo C, Decuman S, Melsens K, Declercq H, Vandecasteele E, De Keyser F, Distler O, Gutermuth J, Smith V. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 2017; 16:774-786. [PMID: 28572048 DOI: 10.1016/j.autrev.2017.05.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by fibroproliferative vasculopathy, immunological abnormalities and progressive fibrosis of multiple organs including the skin. In this study, all English speaking articles concerning the role of endothelial cells (ECs) in SSc vasculopathy and representing biomarkers are systematically reviewed and categorized according to endothelial cell (EC) (dys)function in SSc. METHODS A sensitive search on behalf of the EULAR study group on microcirculation in Rheumatic Diseases was developed in Pubmed, The Cochrane Library and Web of Science to identify articles on SSc vasculopathy and the role of ECs using the following Mesh terms: (systemic sclerosis OR scleroderma) AND pathogenesis AND (endothelial cells OR marker). All selected papers were read and discussed by two independent reviewers. The selection process was based on title, abstract and full text level. Additionally, both reviewers further searched the reference lists of the articles selected for reading on full text level for supplementary papers. These additional articles went through the same selection process. RESULTS In total 193 resulting articles were selected and the identified biomarkers were categorized according to description of EC (dys)function in SSc. The most representing and reliable biomarkers described by the selected articles were adhesion molecules for EC activation, anti-endothelial cell antibodies for EC apoptosis, vascular endothelial growth factor (VEGF), its receptor VEGFR-2 and endostatin for disturbed angiogenesis, endothelial progenitors cells for defective vasculogenesis, endothelin-1 for disturbed vascular tone control, Von Willebrand factor for coagulopathy and interleukin (IL)-33 for EC-immune system communication. Emerging, relatively new discovered biomarkers described in the selected articles, are VEGF165b, IL-17A and the adipocytokines. Finally, myofibroblasts involved in tissue fibrosis in SSc can derive from ECs or epithelial cells through a process known as endothelial-to-mesenchymal transition. CONCLUSION This systematic review emphasizes the growing evidence that SSc is primarily a vascular disease where EC dysfunction is present and prominent in different aspects of cell survival (activation and apoptosis), angiogenesis and vasculogenesis and where disturbed interactions between ECs and various other cells contribute to SSc vasculopathy.
Collapse
Affiliation(s)
- Y Mostmans
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Immunology and Allergology (CIA) Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles (ULB), Van Gehuchtenplein 4, 1020 Brussels, Belgium.
| | - M Cutolo
- Research Laboratory and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - C Giddelo
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - S Decuman
- Ghent University, Department of Internal Medicine, Ghent, Belgium
| | - K Melsens
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - H Declercq
- Department of Basic Medical Sciences, Tissue Engineering and Biomaterials Group, Ghent University, Ghent, Belgium
| | - E Vandecasteele
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - F De Keyser
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| | - O Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - J Gutermuth
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - V Smith
- Ghent University, Department of Internal Medicine, Ghent, Belgium; Ghent University Hospital, Department of Rheumatology, Ghent, Belgium
| |
Collapse
|
22
|
Saigusa R, Asano Y, Nakamura K, Hirabayashi M, Miura S, Yamashita T, Taniguchi T, Ichimura Y, Takahashi T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Systemic Sclerosis Dermal Fibroblasts Suppress Th1 Cytokine Production via Galectin-9 Overproduction due to Fli1 Deficiency. J Invest Dermatol 2017; 137:1850-1859. [PMID: 28528914 DOI: 10.1016/j.jid.2017.04.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Dermal fibroblasts promote skin-localized transdifferentiation of regulatory T cells to T helper (Th) type 2-like cells in systemic sclerosis (SSc). However, the entire effect of SSc dermal fibroblasts on immune cells still remains unknown. Because galectin-9 induces Th2 cytokine-predominant immune imbalance by negatively regulating Th1/Th17 cells in inflammatory diseases, we investigated the contribution of galectin-9 to Th immune balance in SSc lesional skin. We used human clinical samples and Fli1+/- mice because Fli1 deficiency induces SSc-like phenotypes in various cell types. Galectin-9 was overexpressed in SSc dermal fibroblasts in vivo and in vitro. Serum galectin-9 levels were significantly elevated in SSc patients and positively correlated with skin score. Galectin-9 was up-regulated by autocrine endothelin stimulation and Fli1 deficiency, and Fli1 occupied the LGALS9 promoter in dermal fibroblasts. Co-culture of splenic CD4+ T cells with Fli1+/- dermal fibroblasts significantly increased IL-4-producing cell proportion, and this effect was cancelled in parallel with the increased interferon-γ production when Fli1+/- dermal fibroblasts were transfected with Lgals9 small interfering RNA. Furthermore, Lgals9 small interfering RNA suppressed dermal collagen deposition by increasing interferon-γ production of skin-infiltrating CD4+ T cells in bleomycin-treated mice. These results suggest that SSc dermal fibroblasts suppress interferon-γ expression of skin-infiltrating CD4+ T cells through galectin-9 overproduction, promoting skin fibrosis development.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Taniguchi T, Asano Y, Nakamura K, Yamashita T, Saigusa R, Ichimura Y, Takahashi T, Toyama T, Yoshizaki A, Sato S. Fli1 Deficiency Induces CXCL6 Expression in Dermal Fibroblasts and Endothelial Cells, Contributing to the Development of Fibrosis and Vasculopathy in Systemic Sclerosis. J Rheumatol 2017; 44:1198-1205. [DOI: 10.3899/jrheum.161092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 02/02/2023]
Abstract
Objective.CXCL6, a chemokine with proangiogenic property, is reported to be involved in vasculopathy associated with systemic sclerosis (SSc). We investigated the contribution of CXCL6 to SSc development by focusing on the association of friend leukemia virus integration 1 (Fli1) deficiency, a potential predisposing factor of SSc, with CXCL6 expression and clinical correlation of serum CXCL6 levels.Methods.mRNA levels of target genes and the binding of Fli1 to the CXCL6 promoter were evaluated by quantitative reverse transcription-PCR and chromatin immunoprecipitation, respectively. Serum CXCL6 levels were determined by ELISA.Results.FLI1 siRNA significantly enhanced CXCL6 mRNA expression in human dermal fibroblasts and human dermal microvascular endothelial cells, while Fli1 haploinsufficiency significantly suppressed CXCL6 mRNA expression in murine peritoneal macrophages stimulated with lipopolysaccharide. Supporting a critical role of Fli1 deficiency to induce SSc-like phenotypes, CXCL6 mRNA expression was higher in SSc dermal fibroblasts than in normal dermal fibroblasts. Importantly, Fli1 bound to the CXCL6 promoter in dermal fibroblasts, endothelial cells, and THP-1 cells. In patients with SSc, serum CXCL6 levels correlated positively with the severity of dermal and pulmonary fibrosis and were elevated in association with cardiac and pulmonary vascular involvement and cutaneous vascular symptoms, including Raynaud phenomenon, digital ulcers (DU)/pitting scars, and telangiectasia. Especially, serum CXCL6 levels were associated with DU/pitting scars and heart involvement by multiple regression analysis.Conclusion.CXCL6 expression is upregulated by Fli1 deficiency in fibroblasts and endothelial cells, potentially contributing to the development of fibrosis and vasculopathy in the skin, lung, and heart of SSc.
Collapse
|