1
|
Gutierrez-Bayona NE, Petersen C, Hashmi RH, Buonanno M, Shuryak I, Ponnaiya B, Kleiman NJ, Brenner DJ, Welch D. Extending the acute skin response spectrum to include the far-UVC. Photochem Photobiol 2024:10.1111/php.14035. [PMID: 39431526 PMCID: PMC12019814 DOI: 10.1111/php.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Guidance on maximal limits for ultraviolet (UV) exposure has been developed by national and international organizations to protect against adverse effects on human skin and eyes. These guidelines consider the risk of both acute effects (i.e., erythema and photokeratitis) and delayed effects (e.g., skin and ocular cancers) when determining exposure limits, and specify the dose a person can safely receive during an 8-h period without harmful effects. The determination of these exposure limits relies on the action spectra of photobiological responses triggered by UV radiation that quantify the effectiveness of each wavelength at eliciting each of these effects. With growing interest in using far-UVC (200-235 nm) radiation to control the spread of airborne pathogens, recent arguments have emerged about revisiting exposure limits for UV wavelengths. However, the standard erythema action spectrum, which provides some of the quantitative basis for these limits, has not been extended below 240 nm. This study assists to expand the erythema action spectrum to far-UVC wavelengths using a hairless albino mice model. We estimate that inducing acute effects on mouse skin with 222 nm radiation requires a dose of 1162 mJ/cm2, well above the current ACGIH skin exposure limit of 480 mJ/cm2.
Collapse
Affiliation(s)
| | - Camryn Petersen
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Raabia H. Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - Norman J. Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York City, New York, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, New York, USA
| |
Collapse
|
2
|
Martin-Burgos B, Wang W, William I, Tir S, Mohammad I, Javed R, Smith S, Cui Y, Arzavala J, Mora D, Smith CB, van der Vinne V, Molyneux PC, Miller SC, Weaver DR, Leise TL, Harrington ME. Methods for Detecting PER2:LUCIFERASE Bioluminescence Rhythms in Freely Moving Mice. J Biol Rhythms 2021; 37:78-93. [PMID: 34873943 DOI: 10.1177/07487304211062829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue circadian rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of circadian bioluminescence from a freely moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. The LumiCycle In Vivo applies a background subtraction that corrects for effects of room temperature on photomultiplier tube (PMT) output. We tested delivery of d-luciferin via a subcutaneous minipump and in the drinking water. We demonstrate spikes in bioluminescence associated with drinking bouts. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than d-luciferin, and can support longer-term studies. A small difference in phase of the PER2::LUC bioluminescence rhythms, with females phase leading males, can be detected with this technique. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.
Collapse
Affiliation(s)
| | - Wanqi Wang
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Ivana William
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Selma Tir
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Innus Mohammad
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Reja Javed
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Stormi Smith
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Yilin Cui
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | | | - Dalilah Mora
- Neuroscience Program, Smith College, Northampton, Massachusetts
| | - Ciearra B Smith
- Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Vincent van der Vinne
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Department of Biology, Williams College, Williamstown, Massachusetts
| | | | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - David R Weaver
- Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Tanya L Leise
- Department of Mathematics & Statistics, Amherst College, Amherst, Massachusetts
| | | |
Collapse
|
3
|
Effect of High-Dose Topical Minoxidil on Erythrocyte Quality in SKH1 Hairless Mice. Animals (Basel) 2020; 10:ani10040731. [PMID: 32340110 PMCID: PMC7222831 DOI: 10.3390/ani10040731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In any animal species, involuntary exposure to unknown agents may increase genetic material damage. This genetic damage can also induce the appearance of diseases such as cancer or other pathologies, including problems that can be passed on to the offspring of the damaged individual. For instance, living organisms may be affected due to the use of medications or exposure to certain chemical, physical, or biological agents which cause cell failure. This impaired function acts as an indicator that helps identify and evaluate damage in order to avoid or minimize it. In this work, excessive doses of a cosmetic drug for topical use in dermatological treatments, known as minoxidil, produced defects in the blood of hairless mice, particularly in red cells, indicating loss of DNA, a situation that may compromise life or the offspring by causing damage to their genetic material. It is important to consider that compounds may be tissue- or species-specific, although we cannot rule out the possibility that similar damage could occur in other animal species. Thus, excessive exposure to this compound should be prevented. Abstract SKH1 hairless mice are widely used in carcinogenesis and dermatology research due to their bare skin, as exposure to different agents is facilitated. Minoxidil is a cosmetic drug that is recognized as a mitogenic agent, and mitogens are suggested to have carcinogenic and mutagenic potential by inducing cell division and increasing the possibility of perpetuating DNA damage. Therefore, we hypothesized that the application of high doses of minoxidil to the skin of hairless mice would increase the number of micronucleated erythrocytes (MNEs) in peripheral blood. The objective of this study was to evaluate the topical administration of high doses of minoxidil on peripheral blood erythrocytes of SKH1 mice by means of micronucleus assay. Minoxidil was administered on the entire body surface of mice every 12 or 24 h. Minoxidil dosing every 24 h increased the number of micronucleated polychromatic erythrocytes (MNPCEs), and dosing every 12 h increased the number of MNEs and MNPCEs, as compared to baseline and the negative control group. No decrease in polychromatic erythrocyte frequencies was observed in the minoxidil groups. Therefore, topical application of high minoxidil doses to mice can produce DNA damage, as observed through an increase in the number of MNEs, without producing cytotoxicity, possibly due to its mitogenic effect.
Collapse
|
4
|
Voigt AY, Michaud M, Tsai KY, Oh J, Sundberg JP. Differential Hairless Mouse Strain-Specific Susceptibility to Skin Cancer and Sunburn. J Invest Dermatol 2019; 139:1837-1840.e3. [PMID: 30742806 DOI: 10.1016/j.jid.2019.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Anita Y Voigt
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Michael Michaud
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Kenneth Y Tsai
- Departments of Pathology and Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Julia Oh
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA.
| | - John P Sundberg
- The Jackson Laboratory, Mammalian Genomics, Bar Harbor, Maine, USA
| |
Collapse
|
5
|
Konger RL, Derr-Yellin E, Travers JB, Ocana JA, Sahu RP. Epidermal PPARγ influences subcutaneous tumor growth and acts through TNF-α to regulate contact hypersensitivity and the acute photoresponse. Oncotarget 2017; 8:98184-98199. [PMID: 29228682 PMCID: PMC5716722 DOI: 10.18632/oncotarget.21002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
It is known that ultraviolet B (UVB) induces PPARγ ligand formation while loss of murine epidermal PPARγ (Pparg-/-epi) promotes UVB-induced apoptosis, inflammation, and carcinogenesis. PPARγ is known to suppress tumor necrosis factor-α (TNF-α) production. TNF-α is also known to promote UVB-induced inflammation, apoptosis, and immunosuppression. We show that Pparg-/-epi mice exhibit increased baseline TNF-α expression. Neutralizing Abs to TNF-α block the increased photo-inflammation and photo-toxicity that is observed in Pparg-/-epi mouse skin. Interestingly, the increase in UVB-induced apoptosis in Pparg-/-epi mice is not accompanied by a change in cyclobutane pyrimidine dimer clearance or in mutation burden. This suggests that loss of epidermal PPARγ does not result in a significant alteration in DNA repair capacity. However, loss of epidermal PPARγ results in marked immunosuppression using a contact hypersensitivity (CHS) model. This impaired CHS response was significantly alleviated using neutralizing TNF-α antibodies or loss of germline Tnf. In addition, the PPARγ agonist rosiglitazone reversed UVB-induced systemic immunosuppression (UV-IS) as well as UV-induced growth of B16F10 melanoma tumor cells in syngeneic mice. Finally, increased B16F10 tumor growth was observed when injected subcutaneously into Pparg-/-epi mice. Thus, we provide novel evidence that epidermal PPARγ is important for cutaneous immune function and the acute photoresponse.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Wright State University, Dayton, OH, USA
| | - Jesus A Ocana
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravi P Sahu
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH, USA
| |
Collapse
|
6
|
|