1
|
Schottdorf M, Rich PD, Diamanti EM, Lin A, Tafazoli S, Nieh EH, Thiberge SY. TWINKLE: An open-source two-photon microscope for teaching and research. PLoS One 2025; 20:e0318924. [PMID: 39946384 PMCID: PMC11824991 DOI: 10.1371/journal.pone.0318924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Many laboratories use two-photon microscopy through commercial suppliers, or homemade designs of considerable complexity. The integrated nature of these systems complicates customization, troubleshooting, and training on the principles of two-photon microscopy. Here, we present "Twinkle": a microscope for Two-photon Imaging in Neuroscience, and Kit for Learning and Education. It is a fully open, high performing and easy-to-set-up microscope that can effectively be used for both education and research. The instrument features a >1 mm field of view, using a modern objective with 3 mm working distance and 2 inch diameter optics combined with GaAsP photomultiplier tubes to maximize the fluorescence signal. We document our experiences using this system as a teaching tool in several two week long workshops, exemplify scientific use cases, and conclude with a broader note on the place of our work in the growing space of open scientific instrumentation.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - P. Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - E. Mika Diamanti
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, United States of America
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States of America
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
2
|
Coscia SM, Moore AS, Wong YC, Holzbaur ELF. Mitochondrially-associated actin waves maintain organelle homeostasis and equitable inheritance. Curr Opin Cell Biol 2024; 88:102364. [PMID: 38692079 PMCID: PMC11179979 DOI: 10.1016/j.ceb.2024.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
First identified in dividing cells as revolving clusters of actin filaments, these are now understood as mitochondrially-associated actin waves that are active throughout the cell cycle. These waves are formed from the polymerization of actin onto a subset of mitochondria. Within minutes, this F-actin depolymerizes while newly formed actin filaments assemble onto neighboring mitochondria. In interphase, actin waves locally fragment the mitochondrial network, enhancing mitochondrial content mixing to maintain organelle homeostasis. In dividing cells actin waves spatially mix mitochondria in the mother cell to ensure equitable partitioning of these organelles between daughter cells. Progress has been made in understanding the consequences of actin cycling as well as the underlying molecular mechanisms, but many questions remain, and here we review these elements. Also, we draw parallels between mitochondrially-associated actin cycling and cortical actin waves. These dynamic systems highlight the remarkable plasticity of the actin cytoskeleton.
Collapse
Affiliation(s)
- Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. https://twitter.com/StephenMCoscia
| | - Andrew S Moore
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Yvette C Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Raju G, Nayak S, Acharya N, Sunder M, Kistenev Y, Mazumder N. Exploring the future of regenerative medicine: Unveiling the potential of optical microscopy for structural and functional imaging of stem cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202300360. [PMID: 38168892 DOI: 10.1002/jbio.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Regenerative medicine, which utilizes stem cells for tissue and organ repair, holds immense promise in healthcare. A comprehensive understanding of stem cell characteristics is crucial to unlock their potential. This study explores the pivotal role of optical microscopy in advancing regenerative medicine as a potent tool for stem cell research. Advanced optical microscopy techniques enable an in-depth examination of stem cell behavior, morphology, and functionality. The review encompasses current optical microscopy, elucidating its capabilities and constraints in stem cell imaging, while also shedding light on emerging technologies for improved stem cell visualization. Optical microscopy, complemented by techniques like fluorescence and multiphoton imaging, enhances our comprehension of stem cell dynamics. The introduction of label-free imaging facilitates noninvasive, real-time stem cell monitoring without external dyes or markers. By pushing the boundaries of optical microscopy, researchers reveal the intricate cellular mechanisms underpinning regenerative processes, thereby advancing more effective therapeutic strategies. The current study not only outlines the future of regenerative medicine but also underscores the pivotal role of optical microscopy in both structural and functional stem cell imaging.
Collapse
Affiliation(s)
- Gagan Raju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha Nayak
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neha Acharya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mridula Sunder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Yury Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Hamersky M, Tekale K, Winfree LM, Rowan MJM, Seldin L. Streamlined Intravital Imaging Approach for Long-Term Monitoring of Epithelial Tissue Dynamics on an Inverted Confocal Microscope. J Vis Exp 2023:10.3791/65529. [PMID: 37458444 PMCID: PMC10442707 DOI: 10.3791/65529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Understanding normal and aberrant in vivo cell behaviors is necessary to develop clinical interventions to thwart disease initiation and progression. It is therefore critical to optimize imaging approaches that facilitate the observation of cell dynamics in situ, where tissue structure and composition remain unperturbed. The epidermis is the body's outermost barrier, as well as the source of the most prevalent human cancers, namely cutaneous skin carcinomas. The accessibility of skin tissue presents a unique opportunity to monitor epithelial and dermal cell behaviors in intact animals using noninvasive intravital microscopy. Nevertheless, this sophisticated imaging approach has primarily been achieved using upright multiphoton microscopes, which represent a significant barrier for entry for most investigators. This study presents a custom-designed, 3D-printed microscope stage insert suitable for use with inverted confocal microscopes, streamlining the long-term intravital imaging of ear skin in live transgenic mice. We believe this versatile invention, which may be customized to fit the inverted microscope brand and model of choice and adapted to image additional organ systems, will prove invaluable to the greater scientific research community by significantly enhancing the accessibility of intravital microscopy. This technological advancement is critical for bolstering our understanding of live cell dynamics in normal and disease contexts.
Collapse
Affiliation(s)
| | - Khushi Tekale
- Department of Cell Biology, Emory University School of Medicine
| | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine; Center for Neurodegenerative Disease, Emory University School of Medicine;
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine; Department of Dermatology, Emory University School of Medicine; Winship Cancer Institute, Emory University School of Medicine; Atlanta Veterans Affairs Medical Center;
| |
Collapse
|
6
|
Hamersky M, Tekale K, Winfree LM, Rowan MJM, Seldin L. Streamlined intravital imaging approach for long-term monitoring of epithelial tissue dynamics on an inverted confocal microscope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540242. [PMID: 37214899 PMCID: PMC10197696 DOI: 10.1101/2023.05.10.540242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Understanding normal and aberrant in vivo cell behaviors is necessary to develop clinical interventions to thwart disease initiation and progression. It is therefore critical to optimize imaging approaches that facilitate the observation of cell dynamics in situ, where tissue structure and composition remain unperturbed. The epidermis is the body's outermost barrier as well as the source of the most prevalent human cancers, namely cutaneous skin carcinomas. The accessibility of skin tissue presents a unique opportunity to monitor epithelial and dermal cell behaviors in intact animals using noninvasive intravital microscopy. Nevertheless, this sophisticated imaging approach has primarily been achieved using upright multiphoton microscopes, which represents a significant barrier-for-entry for most investigators. In this study, we present a custom-designed 3D-printed microscope stage insert suitable for use with inverted confocal microscopes that streamlines long-term intravital imaging of ear skin in live transgenic mice. We believe this versatile invention, which may be customized to fit the inverted microscope brand and model of choice, as well as adapted to image additional organ systems, will prove invaluable to the greater scientific research community by significantly enhancing the accessibility of intravital microscopy. This technological advancement is critical to bolster our understanding of live cell dynamics in both normal and disease contexts. SUMMARY A new tool to simplify intravital imaging using inverted confocal microscopy.
Collapse
Affiliation(s)
- Michael Hamersky
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Khushi Tekale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
7
|
Huang S, Kuri P, Aubert Y, Brewster M, Li N, Farrelly O, Rice G, Bae H, Prouty S, Dentchev T, Luo W, Capell BC, Rompolas P. Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization. Cell Stem Cell 2021; 28:1582-1596.e6. [PMID: 34102139 PMCID: PMC8528178 DOI: 10.1016/j.stem.2021.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Stem cells support lifelong maintenance of adult organs, but their specific roles during injury are poorly understood. Here we demonstrate that Lgr6 marks a regionally restricted population of epidermal stem cells that interact with nerves and specialize in wound re-epithelialization. Diphtheria toxin-mediated ablation of Lgr6 stem cells delays wound healing, and skin denervation phenocopies this effect. Using intravital imaging to capture stem cell dynamics after injury, we show that wound re-epithelialization by Lgr6 stem cells is diminished following loss of nerves. This induces recruitment of other stem cell populations, including hair follicle stem cells, which partially compensate to mediate wound closure. Single-cell lineage tracing and gene expression analysis reveal that the fate of Lgr6 stem cells is shifted toward differentiation following loss of their niche. We conclude that Lgr6 epidermal stem cells are primed for injury response and interact with nerves to regulate their fate.
Collapse
Affiliation(s)
- Sixia Huang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yann Aubert
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan Brewster
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia Farrelly
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyunjin Bae
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
9
|
Farrelly O, Suzuki-Horiuchi Y, Brewster M, Kuri P, Huang S, Rice G, Bae H, Xu J, Dentchev T, Lee V, Rompolas P. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell 2021; 28:1233-1247.e4. [PMID: 33984283 DOI: 10.1016/j.stem.2021.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
The functional heterogeneity of resident stem cells that support adult organs is incompletely understood. Here, we directly visualize the corneal limbus in the eyes of live mice and identify discrete stem cell niche compartments. By recording the life cycle of individual stem cells and their progeny, we directly analyze their fates and show that their location within the tissue can predict their differentiation status. Stem cells in the inner limbus undergo mostly symmetric divisions and are required to sustain the population of transient progenitors that support corneal homeostasis. Using in situ photolabeling, we captured their progeny exiting the niche before moving centripetally in unison. The long-implicated slow-cycling stem cells are functionally distinct and display local clonal dynamics during homeostasis but can contribute to corneal regeneration after injury. This study demonstrates how the compartmentalized organization of functionally diverse stem cell populations supports the maintenance and regeneration of an adult organ.
Collapse
Affiliation(s)
- Olivia Farrelly
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Megan Brewster
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sixia Huang
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hyunjin Bae
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzvete Dentchev
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vivian Lee
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Nowzari F, Wang H, Khoradmehr A, Baghban M, Baghban N, Arandian A, Muhaddesi M, Nabipour I, Zibaii MI, Najarasl M, Taheri P, Latifi H, Tamadon A. Three-Dimensional Imaging in Stem Cell-Based Researches. Front Vet Sci 2021; 8:657525. [PMID: 33937378 PMCID: PMC8079735 DOI: 10.3389/fvets.2021.657525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cells have an important role in regenerative therapies, developmental biology studies and drug screening. Basic and translational research in stem cell technology needs more detailed imaging techniques. The possibility of cell-based therapeutic strategies has been validated in the stem cell field over recent years, a more detailed characterization of the properties of stem cells is needed for connectomics of large assemblies and structural analyses of these cells. The aim of stem cell imaging is the characterization of differentiation state, cellular function, purity and cell location. Recent progress in stem cell imaging field has included ultrasound-based technique to study living stem cells and florescence microscopy-based technique to investigate stem cell three-dimensional (3D) structures. Here, we summarized the fundamental characteristics of stem cells via 3D imaging methods and also discussed the emerging literatures on 3D imaging in stem cell research and the applications of both classical 2D imaging techniques and 3D methods on stem cells biology.
Collapse
Affiliation(s)
- Fariborz Nowzari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Muhaddesi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad I. Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Najarasl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Payam Taheri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Physics, Shahid Beheshti University, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
11
|
Rice G, Rompolas P. Advances in resolving the heterogeneity and dynamics of keratinocyte differentiation. Curr Opin Cell Biol 2020; 67:92-98. [PMID: 33091828 PMCID: PMC7736530 DOI: 10.1016/j.ceb.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The mammalian skin is equipped with a highly dynamic stratified epithelium. The maintenance and regeneration of this epithelium is supported by basally located keratinocytes, which display stem cell properties, including lifelong proliferative potential and the ability to undergo diverse differentiation trajectories. Keratinocytes support not just the surface of the skin, called the epidermis, but also a range of ectodermal structures including hair follicles, sebaceous glands, and sweat glands. Recent studies have shed light on the hitherto underappreciated heterogeneity of keratinocytes by employing state-of-the-art imaging technologies and single-cell genomic approaches. In this mini review, we highlight major recent discoveries that illuminate the dynamics and cellular mechanisms that govern keratinocyte differentiation in the live mammalian skin and discuss the broader implications of these findings for our understanding of epithelial and stem cell biology in general.
Collapse
Affiliation(s)
- Gabriella Rice
- Department of Dermatology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Panteleyev AA. Functional anatomy of the hair follicle: The Secondary Hair Germ. Exp Dermatol 2019; 27:701-720. [PMID: 29672929 DOI: 10.1111/exd.13666] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling.
Collapse
Affiliation(s)
- Andrey A Panteleyev
- Kurchatov complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
13
|
Song Y, Li D, Farrelly O, Miles L, Li F, Kim SE, Lo TY, Wang F, Li T, Thompson-Peer KL, Gong J, Murthy SE, Coste B, Yakubovich N, Patapoutian A, Xiang Y, Rompolas P, Jan LY, Jan YN. The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration. Neuron 2019; 102:373-389.e6. [PMID: 30819546 PMCID: PMC6487666 DOI: 10.1016/j.neuron.2019.01.050] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
Abstract
Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca2+-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca2+ transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.
Collapse
Affiliation(s)
- Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Olivia Farrelly
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Eun Kim
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tsz Y. Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tun Li
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine L. Thompson-Peer
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Swetha E. Murthy
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Bertrand Coste
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA,Present address: Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ardem Patapoutian
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Panteleimon Rompolas
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily Yeh Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Abstract
Studies characterizing stem cell lineages in different organs aim to understand which cells particular progenitors can give rise to and how this process is controlled. Because the skin contains several resident stem cell populations and undergoes constant turnover, it is an ideal tissue in which to study this phenomenon. Furthermore, with the advent of two-photon microscopy techniques in combination with genetic tools for cell labeling, this question can be studied non-invasively by using live imaging. In this chapter, we describe an experimental approach that takes this technique one step further. We combine the Cre and Tet inducible genetic systems for single clone labeling and genetic manipulation in a specific stem cell population in the skin by using known drivers. Our system involves the use of gain- and loss-of-function alleles activated only in a differentially labeled population to distinguish single clones. The same region within a tissue is imaged repeatedly to document the fate and interactions of single clones with and without genetic modifications in the long term. Implementing this lineage tracing approach while documenting changes in cell behavior brought about by the genetic alterations allows both aspects to be linked. Because of the inherent flexibility of the approach, we expect it to have broad applications in studying stem cell function not only in the skin, but also in other tissues amenable to live imaging.
Collapse
|
15
|
Zomer HD, Trentin AG. Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci 2017; 90:3-12. [PMID: 29289417 DOI: 10.1016/j.jdermsci.2017.12.009] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Despite the great progress in translational research concerning skin wound healing in the last few decades, no animal model fully predicts all clinical outcomes. The mouse is the most commonly used model, as it is easy to maintain and standardize, and is economically accessible. However, differences between murine and human skin repair, such as the contraction promoted by panniculus carnosus and the role of specific niches of skin stem cells, make it difficult to bridge the gap between preclinical and clinical studies. Therefore, this review highlights the particularities of each species concerning skin morphophysiology, immunology, and genetics, which is essential to properly interpret findings and translate them to medicine.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil.
| | - Andrea G Trentin
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Divergent proliferation patterns of distinct human hair follicle epithelial progenitor niches in situ and their differential responsiveness to prostaglandin D2. Sci Rep 2017; 7:15197. [PMID: 29123134 PMCID: PMC5680340 DOI: 10.1038/s41598-017-15038-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Human scalp hair follicles (hHF) harbour several epithelial stem (eHFSC) and progenitor cell sub-populations organised into spatially distinct niches. However, the constitutive cell cycle activity of these niches remains to be characterized in situ. Therefore, the current study has studied these characteristics of keratin 15+ (K15), CD200+ or CD34+ cells within anagen VI hHFs by immunohistomorphometry, using Ki-67 and 5-ethynyl-2'-deoxyuridine (EdU). We quantitatively demonstrate in situ the relative cell cycle inactivity of the CD200+/K15+ bulge compared to other non-bulge CD34+ and K15+ progenitor compartments and found that in each recognized eHFSC/progenitor niche, proliferation associates negatively with eHFSC-marker expression. Furthermore, we also show how prostaglandin D2 (PGD2), which is upregulated in balding scalp, differentially impacts on the proliferation of distinct eHFSC populations. Namely, 24 h organ-cultured hHFs treated with PGD2 displayed reduced Ki-67 expression and EdU incorporation in bulge resident K15+ cells, but not in supra/proximal bulb outer root sheath K15+ progenitors. This study emphasises clear differences between the cell cycle behaviour of spatially distinct stem/progenitor cell niches in the hHF, and demonstrates a possible link between PGD2 and perturbed proliferation dynamics in epithelial stem cells.
Collapse
|