1
|
Diniz IMA, de Oliveira RF, do Valle IB, Picoli CC, Jácome-Santos H, de Almeida Queiroz Ferreira L, Avelar GF, Diniz MG, Bibrair A. Photobiomodulation therapy induces NG2 activation through dermal adipocyte lipolysis during wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 267:113151. [PMID: 40187095 DOI: 10.1016/j.jphotobiol.2025.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 03/15/2025] [Indexed: 04/07/2025]
Abstract
Photobiomodulation therapy (PBMT) is a rapidly advancing approach for restoring damaged tissues, particularly in skin and mucosal wounds. While its application is promising, the role of mature adipocytes in regenerating mesenchymal tissues after PBMT remains largely unexplored. This study demonstrates that PBMT applied to skin wounds significantly reduces the number and size of mature adipocytes. Additionally, PBMT modulates the upregulation of peroxisome proliferator-activated receptor γ (PPARγ), increasing the gene expression of fatty acid binding protein 4 (Fabp4) and perilipin 1, which are linked to enhanced lipolysis. The molecular activation of neural/glial antigen 2 (NG2) indicates the recruitment of progenitor cells following mature adipocytes lipolysis. In vitro, PBMT improved dermal skin cell proliferation, migration, inflammatory regulation, and differentiation capacities. These findings reveal a novel mechanistic pathway for skin regeneration, emphasizing the therapeutic potential of PBMT in modulating dermal fat tissue to facilitate wound healing. Collectively, this emerging knowledge provides valuable insights into managing dermal fat tissue to support wound healing.
Collapse
Affiliation(s)
- Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Rafaela Férrer de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Bittencourt do Valle
- Department of Pathology, School of Dentistry, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Humberto Jácome-Santos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza de Almeida Queiroz Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gleide Fernandes Avelar
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Gonçalves Diniz
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Bibrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Messenger AG, Asfour L, Harries M. Frontal Fibrosing Alopecia: An Update. Am J Clin Dermatol 2025; 26:155-174. [PMID: 39699852 DOI: 10.1007/s40257-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
In this review, we discuss recent developments in our understanding of frontal fibrosing alopecia, a disease that has become increasingly common and widespread since its first description in 1994. An inherited predisposition to frontal fibrosing alopecia, previously suspected from the occurrence of familial cases, has been confirmed through genetic studies. Nevertheless, the epidemiology continues to implicate environmental factors in the aetiology. The search has focussed mainly on personal skin care products such as facial moisturisers and UV filters, and there is also some evidence implicating exogenous oestrogens, but confirmation of direct causal links has so far proved elusive. The pathologic mechanisms underlying follicular deletion are being clarified, including the nature of the inflammatory component, the loss of follicular immune privilege in the bulge region and the role of epithelial-mesenchymal transition in the scarring process. Lichen planus pigmentosus, a common accompaniment to frontal fibrosing alopecia in those with darker skin, is probably a feature of the same pathology affecting interfollicular epidermis, rather than a co-morbidity, and may offer new clues to the aetiology. Treatment is still based largely on retrospective case series and variable endpoints. However, methods for assessing frontal fibrosing alopecia and monitoring treatment responses have been strengthened and randomised controlled trials with novel agents (e.g. Janus kinase inhibitors) are in progress. As the main aim of effective treatment is to prevent disease progression, early diagnosis will remain an important target, as will prevention in the longer term.
Collapse
Affiliation(s)
| | - Leila Asfour
- Chelsea and Westminster NHS Foundation Trust, London, SW10 9NH, UK
| | - Matthew Harries
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
- Faculty of Biology, Medicine and Health, Centre for Dermatology Research, University of Manchester and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
3
|
Xiao Y, Zhang Y, Deng S, Yang X, Yao X. Immune and Non-immune Interactions in the Pathogenesis of Androgenetic Alopecia. Clin Rev Allergy Immunol 2025; 68:22. [PMID: 40024940 DOI: 10.1007/s12016-025-09034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Androgenetic alopecia (AGA), a leading cause of progressive hair loss, affects up to 50% of males aged 50 years, causing significant psychological burden. Current treatments, such as anti-androgen drugs and minoxidil, show heterogeneous effects, even with long-term application. Meanwhile, the large-scale adoption of other adjuvant therapies has been slow, partly due to insufficient mechanistic evidence. A major barrier to developing better treatment for AGA is the incomplete understanding of its pathogenesis. The predominant academic consensus is that AGA is caused by abnormal expression of androgens and their receptors in individuals with a genetic predisposition. Emerging evidence suggests the contributing role of factors such as immune responses, oxidative stress, and microbiome changes, which were not previously given due consideration. Immune-mediated inflammation and oxidative stress disrupt hair follicles' function and damage the perifollicular niche, while scalp dysbiosis influences local metabolism and destabilizes the local microenvironment. These interconnected mechanisms collectively contribute to AGA pathogenesis. These additional aspects enhance our current understanding and confound the conventional paradigm, bridging the gap in developing holistic solutions for AGA. In this review, we gather existing evidence to discuss various etiopathogenetic factors involved in AGA and their possible interconnections, aiming to lay the groundwork for the future identification of therapeutic targets and drug development. Additionally, we summarize the advantages and disadvantages of AGA research models, ranging from cells and tissues to animals, to provide a solid basis for more effective mechanistic studies.
Collapse
Affiliation(s)
- Yu Xiao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Yi Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Shuting Deng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Xueyuan Yang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Xu Yao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| |
Collapse
|
4
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025:bnae034. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburg, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
5
|
Dai R, Yang X, Bao L, Wu X, Lu Z. Integrative Proteo-Transcriptomic Characterization of Androgenetic Alopecia Identifying ME1-Mediated PPAR Signaling as a Potential Mediator. J Cosmet Dermatol 2025; 24:e16726. [PMID: 39673228 PMCID: PMC11837229 DOI: 10.1111/jocd.16726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Affiliation(s)
- Ru Dai
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaoshuang Yang
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lixin Bao
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
- Department of DermatologyHailar People's HospitalHulunbeirInner MongoliaChina
| | - Xianjie Wu
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Zhongfa Lu
- Department of DermatologySecond Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
6
|
Park S, Park HW, Seo DB, Yoo DS, Bae S. In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells. Front Pharmacol 2024; 15:1482898. [PMID: 39691387 PMCID: PMC11649413 DOI: 10.3389/fphar.2024.1482898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Scalp hair plays a crucial role in social communication by expressing personal appearance and self-identity. Consequently, hair loss often leads to a perception of unattractiveness, negatively impacting an individual's life and mental health. Currently, the use of Food and Drug Administration (FDA)-approved drugs for hair loss is associated with several side effects, highlighting the need for identifying new drug candidates, such as plant-derived phytochemicals, to overcome these issues. Objective This study investigated the hair growth-promoting effects of araliadiol, a polyacetylene compound found in plants such as Centella asiatica. Methods We employed an in vitro model comprising human hair follicle stem cells (HHFSCs) and human dermal papilla cells (HDPCs) to evaluate the hair growth-promoting effects of araliadiol. The proliferation-stimulating effects of araliadiol were assessed using water-soluble tetrazolium salt assay, adenosine triphosphate content assay, and crystal violet staining assay. In addition, we performed luciferase reporter assay, polymerase chain reaction analysis, cell fractionation, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to elucidate the mechanism underlying the hair growth-inductive effects of araliadiol. Results Araliadiol exhibited both proliferation- and hair growth-promoting effects in HHFSCs and HDPCs. Specifically, it increased the protein expression of cyclin B1 and Ki67. In HHFSCs, it elevated the expression of hair growth-promoting factors, including CD34, vascular endothelial growth factor (VEGF), and angiopoietin-like 4. Similarly, araliadiol increased the expression of hair growth-inductive proteins such as fibroblast growth factor 7, VEGF, noggin, and insulin-like growth factor 1 in HDPCs. Subsequent Western blot analysis and ELISA using inhibitors such as GW9662 and SB202190 confirmed that these hair growth-promoting effects were dependent on the p38/PPAR-γ signaling in both HHFSCs and HDPCs. Conclusion Araliadiol promotes hair growth through the p38/PPAR-γ signaling pathway in human hair follicle cells. Therefore, araliadiol can be considered a novel drug candidate for the treatment of alopecia.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
8
|
Cruz CJG, Hong YK, Aala WJF, Tsai RY, Chung PL, Tsai YS, Hsu CK, Yang CC. Adipose transcriptome in the scalp of androgenetic alopecia. Front Med (Lausanne) 2023; 10:1195656. [PMID: 37746084 PMCID: PMC10513442 DOI: 10.3389/fmed.2023.1195656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Previous studies have shown how adipocytes can modulate the activity of hair follicle stem cells. However, the role of adipocytes in the pathogenesis of androgenetic alopecia (AGA) remains unknown. We aimed to determine signaling pathways related to the adipose tissue changes in the human scalp with AGA through RNA-seq analysis. RNA was isolated from the adipose tissues derived from the bald (frontal) and normal (occipital) scalps of male patients with AGA (n = 4). The pooled RNA extracts from these samples were subjected to RNA sequencing, followed by differential gene expression and pathway analysis. Our gene expression analysis identified 1,060 differentially expressed genes, including 522 upregulated and 538 downregulated genes in the bald AGA scalp. Biological pathways pertaining to either adipose tissue metabolism or the hair cycle were generated in our pathway analysis. Downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway was noted to be significant in the bald scalp. Expression of adipogenic markers (e.g., PPARG, FABP4, PLN1, and ADIPOQ) was also decreased in the bald site. These findings imply that adipogenesis becomes downregulated in AGA, specifically within the bald scalp adipose. Our results lead to the hypothesis that PPARγ-mediated adipogenesis in the scalp adipose, via crosstalk with signaling pathways involved in hair cycling, might play a role in AGA.
Collapse
Affiliation(s)
- Criselda Jean G. Cruz
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr. F. Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ren-Yeu Tsai
- Department of Dermatology and Skin Laser Center, Taipei Municipal Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-Lun Chung
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Tu W, Cao YW, Sun M, Liu Q, Zhao HG. mTOR signaling in hair follicle and hair diseases: recent progress. Front Med (Lausanne) 2023; 10:1209439. [PMID: 37727765 PMCID: PMC10506410 DOI: 10.3389/fmed.2023.1209439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway is a major regulator of cell proliferation and metabolism, playing significant roles in proliferation, apoptosis, inflammation, and illness. More and more evidences showed that the mTOR signaling pathway affects hair follicle circulation and maintains the stability of hair follicle stem cells. mTOR signaling may be a critical cog in Vitamin D receptor (VDR) deficiency-mediated hair follicle damage and degeneration and related alopecia disorders. This review examines the function of mTOR signaling in hair follicles and hair diseases, and talks about the underlying molecular mechanisms that mTOR signaling regulates.
Collapse
Affiliation(s)
| | | | | | | | - Heng-Guang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Kim DY, Sung JH. The effects of GPR40 agonists on hair growth are mediated by ANGPTL4. Biomed Pharmacother 2023; 161:114509. [PMID: 37002580 DOI: 10.1016/j.biopha.2023.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
GPR40 is found primarily in pancreatic β cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.
Collapse
Affiliation(s)
- Doo Yeong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
11
|
Mäemets-Allas K, Klaas M, Cárdenas-León CG, Arak T, Kankuri E, Jaks V. Stimulation with THBS4 activates pathways that regulate proliferation, migration and inflammation in primary human keratinocytes. Biochem Biophys Res Commun 2023; 642:97-106. [PMID: 36566568 DOI: 10.1016/j.bbrc.2022.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As in other mammalian tissues, the extracellular matrix (ECM) of skin functions as mechanical support and regulative environment that guides the behavior of the cells. ECM is a gel-like structure that is primarily composed of structural and nonstructural proteins. While the content of structural proteins is stable, the level of nonstructural ECM proteins, such as thrombospondin-4 (THBS4), is dynamically regulated. In a previous work we demonstrated that THBS4 stimulated cutaneous wound healing. In this work we discovered that in addition to proliferation, THBS4 stimulated the migration of primary keratinocytes in 3D. By using a proteotransciptomic approach we found that stimulation of keratinocytes with THBS4 regulated the activity of signaling pathways linked to proliferation, migration, inflammation and differentiation. Interestingly, some of the regulated genes (eg IL37, TSLP) have been associated with the pathogenesis of atopic dermatitis (AD). We concluded that THBS4 is a promising candidate for novel wound healing therapies and suggest that there is a potential convergence of pathways that stimulate cutaneous wound healing with those active in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | | | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia; Tartu University Hospital, Dermatology Clinic, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
12
|
Miao YJ, Jing J, Du XF, Mao MQ, Yang XS, Lv ZF. Frontal fibrosing alopecia: A review of disease pathogenesis. Front Med (Lausanne) 2022; 9:911944. [PMID: 35957858 PMCID: PMC9357920 DOI: 10.3389/fmed.2022.911944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Frontal fibrosing alopecia (FFA) is a primary patterned cicatricial alopecia that mostly affects postmenopausal women and causes frontotemporal hairline regression and eyebrow loss. Although the incidence of FFA has increased worldwide over the last decade, its etiology and pathology are still unclear. We cover the latest findings on its pathophysiology, including immunomodulation, neurogenic inflammation, and genetic regulation, to provide more alternatives for current clinical treatment. A persistent inflammatory response and immune privilege (IP) collapse develop and lead to epithelial hair follicle stem cells (eHFSCs) destruction and epithelial-mesenchymal transition (EMT) in the bulge area, which is the key process in FFA pathogenesis. Eventually, fibrous tissue replaces normal epithelial tissue and fills the entire hair follicle (HF). In addition, some familial reports and genome-wide association studies suggest a genetic susceptibility or epigenetic mechanism for the onset of FFA. The incidence of FFA increases sharply in postmenopausal women, and many FFA patients also suffer from female pattern hair loss in clinical observation, which suggests a potential association between FFA and steroid hormones. Sun exposure and topical allergens may also be triggers of FFA, but this conjecture has not been proven. More evidence and cohort studies are needed to help us understand the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yu-Jie Miao
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Jing
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Jing Jing,
| | - Xu-Feng Du
- Department of Dermatology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
| | - Mei-Qi Mao
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Shuang Yang
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Fa Lv
- Department of Dermatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Zhong-Fa Lv,
| |
Collapse
|
13
|
Sheep IGFBP2 and IGFBP4 promoter methylation regulates gene expression and hair follicle development. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Senna MM, Peterson E, Jozic I, Chéret J, Paus R. Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID INNOVATIONS 2022; 2:100113. [PMID: 35521043 PMCID: PMC9062486 DOI: 10.1016/j.xjidi.2022.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary, lymphocytic cicatricial hair loss disorders. These model epithelial stem cell (SC) diseases are thought to result from a CD8+ T-cell‒dominated immune attack on the hair follicle (HF) SC niche (bulge) after the latter has lost its immune privilege (IP) for as yet unknown reasons. This induces both apoptosis and pathological epithelial‒mesenchymal transition in epithelial SCs, thus depletes the bulge, causes fibrosis, and ultimately abrogates the HFs' capacity to regenerate. In this paper, we synthesize recent progress in LPP and FFA pathobiology research, integrate our limited current understanding of the roles that genetic, hormonal, environmental, and other factors may play, and define major open questions. We propose that LPP and FFA share a common initial pathobiology, which then bifurcates into two distinct clinical phenotypes, with macrophages possibly playing a key role in phenotype determination. As particularly promising translational research avenues toward direly needed progress in the management of these disfiguring, deeply distressful cicatricial alopecia variants, we advocate to focus on the development of bulge IP and epithelial SC protectants such as, for example, topically effective, HF‒penetrating and immunoinhibitory preparations that contain tacrolimus, peroxisome proliferator-activated receptor-γ, and/or CB1 agonists.
Collapse
Key Words
- 5ARI, 5α-reductase inhibitor
- AA, alopecia areata
- AGA, androgenetic alopecia
- CRH, corticotropin-releasing hormone
- EMT, epithelial‒mesenchymal transition
- FFA, frontal fibrosing alopecia
- HF, hair follicle
- IP, immune privilege
- K, keratin
- KC, keratinocyte
- LPP, lichen planopilaris
- MAC, macrophage
- MHC, major histocompatibility complex
- PCA, primary cicatricial alopecia
- PCP, personal care product
- PPAR-γ, peroxisome proliferator–activated receptor-γ
- SC, stem cell
- SP, substance P
- eHFSC, epithelial hair follicle stem cell
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Maryanne Makredes Senna
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Peterson
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,CUTANEON, Hamburg, Germany
| |
Collapse
|
15
|
Hair Follicle-Related MicroRNA-34a Serum Expression and rs2666433A/G Variant in Patients with Alopecia: A Cross-Sectional Analysis. Biomolecules 2022; 12:biom12050602. [PMID: 35625530 PMCID: PMC9138785 DOI: 10.3390/biom12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 01/10/2023] Open
Abstract
Alopecia areata (AA) is a type of immune-mediated alopecia. Recent studies have suggested microRNAs’ (miRNAs) implication in several cellular processes, including epidermal and hair follicle biology. Single nucleotide polymorphisms (SNPs) can modify gene expression levels, which may induce an autoimmune response. This case−control study included 480 participants (240 for each case/control group). MicroRNA-34a gene (MIR-34A) rs2666433A/G variant was genotyped using real-time allelic discrimination polymerase chain reaction (PCR). Additionally, circulatory miR-34a levels were quantified by quantitative reverse transcription PCR (qRT-PCR). On comparing between alopecia and non-alopecia cohorts, a higher frequency of A variant was noted among patients when compared to controls—A allele: 28 versus 18% (p < 0.001); A/A genotype: 9 versus 2%; A/G genotype: 39 versus 32% (p < 0.001). A/A and A/G carriers were more likely to develop alopecia under heterozygote comparison (OR = 1.83, 95% CI = 1.14−2.93), homozygote comparison (OR = 4.19, 95% CI = 1.33−13.1), dominant (OR = 2.0, 95% CI = 1.27−3.15), recessive (OR = 3.36, 95% CI = 1.08−10.48), over-dominant (OR = 1.65, 95% CI = 1.04−32.63), and log additive (OR = 1.91, 95% CI = 1.3−2.82) models. Serum miR-34a expression levels were upregulated in alopecia patients with a median and quartile fold change of 27.3 (1.42−2430). Significantly higher levels were more pronounced in A/A genotype patients (p < 0.01). Patients carrying the heterozygote genotype (rs2666433 * A/G) were two times more likely to develop more severe disease grades. Stratified analysis by sex revealed the same results. A high expression level was associated with concomitant autoimmune comorbidities (p = 0.001), in particular SLE (p = 0.007) and vitiligo (p = 0.049). In conclusion, the MIR34A rs2666433 (A/G) variant is associated with AA risk and severity in the studied population. Furthermore, high miR-34a circulatory levels could play a role in disease pathogenesis.
Collapse
|
16
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
17
|
Ohn J, Son HY, Yu DA, Kim MS, Kwon S, Park WS, Kim JI, Kwon O. Early onset female pattern hair loss: a case–control study for analyzing clinical features and genetic variants. J Dermatol Sci 2022; 106:21-28. [DOI: 10.1016/j.jdermsci.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
|
18
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
19
|
Sadgrove NJ. The ‘bald’ phenotype (androgenetic alopecia) is caused by the high glycaemic, high cholesterol and low mineral ‘western diet’. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Piccini I, Brunken L, Chéret J, Ghatak S, Ramot Y, Alam M, Purba TS, Hardman J, Erdmann H, Jimenez F, Paus R, Bertolini M. PPARγ signaling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial-mesenchymal transition. Br J Dermatol 2021; 186:129-141. [PMID: 34496034 DOI: 10.1111/bjd.20745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Permanent chemotherapy-induced alopecia (pCIA), for which preventive interventions remain limited, can manifest with scarring. While the underlying pathomechanisms of pCIA are unclear, depletion of epithelial hair follicle (HF) stem cells (eHFSCs) is likely to play a role. OBJECTIVES To explore the hypothesis that eHFSCs undergo pathological epithelial-mesenchymal transition (EMT) besides apoptosis in pCIA, thus explaining the scarring phenotype. Furthermore, we tested whether a PPARγ modulator can prevent pCIA-associated pathomechanisms. METHODS Organ-cultured human scalp HFs were treated with the cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Additionally, HFs were pre-treated with the agnostic PPARγ modulator, N-Acetyl-GED-0507-34-Levo (NAGED), which we had previously shown to promote K15 expression and antagonize EMT in eHFSCs. RESULTS In accordance with anticipated hair bulb cytotoxicity, dystrophy and catagen induction, 4-HC promoted apoptosis along with increased p53 expression, DNA damage and pathological EMT in keratin 15+ (K15) bulge eHFSCs, as evidenced by decreased E-cadherin expression and the appearance of fibronectin- and vimentin-positive cells in the bulge. Pre-treatment with NAGED protected from 4-HC-induced hair bulb cytotoxicity/dystrophy, and halted apoptosis, p53 up-regulation, and EMT in the bulge, thereby significantly preventing the depletion of K15+ human eHFSCs ex vivo. CONCLUSIONS A cyclophosphamide metabolite alone suffices to damage and deplete human scalp eHFSCs by promoting apoptosis, DNA damage, and EMT ex vivo. Therefore, pCIA-therapeutic strategies need to target these pathological processes. Our data introduce the stimulation of PPARγ signaling as a novel intervention strategy for the prevention of pCIA, given the ability of NAGED to prevent chemotherapy-induced eHFSCs damage ex vivo.
Collapse
Affiliation(s)
- I Piccini
- Monasterium Laboratory, Münster, Germany
| | - L Brunken
- Monasterium Laboratory, Münster, Germany
| | - J Chéret
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Ghatak
- Monasterium Laboratory, Münster, Germany
| | - Y Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Alam
- Monasterium Laboratory, Münster, Germany.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Dept. of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Doha, Qatar
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | - J Hardman
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - F Jimenez
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Mediteknia Dermatology Clinic, Las Palmas de Gran Canaria, Spain
| | - R Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | | |
Collapse
|
21
|
Wikramanayake TC, Nicu C, Chéret J, Czyzyk TA, Paus R. Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. Bioessays 2021; 43:e2100126. [PMID: 34486148 DOI: 10.1002/bies.202100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
MPZL3 is a nuclear-encoded, mitochondrially localized, immunoglobulin-like V-type protein that functions as a key regulator of epithelial cell differentiation, lipid metabolism, ROS production, glycemic control, and energy expenditure. Recently, MPZL3 has surfaced as an important modulator of sebaceous gland function and of hair follicle cycling, an organ transformation process that is also governed by peripheral clock gene activity and PPARγ. Given the phenotype similarities and differences between Mpzl3 and Pparγ knockout mice, we propose that MPZL3 serves as a signaling hub that is regulated by core clock gene products and/or PPARγ to translate signals from these nuclear transcription factors to the mitochondria to modulate circadian and metabolic regulation. Conservation between murine and human MPZL3 suggests that human MPZL3 may have similarly complex functions in health and disease. We summarize current knowledge and discuss future directions to elucidate the full spectrum of MPZL3 functions in mammalian physiology.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carina Nicu
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Metabolic Health Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Discovery Biology-CMD, Merck & Co., Inc., South San Francisco, California, USA
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
22
|
Blunder S, Krimbacher T, Moosbrugger‐Martinz V, Gruber R, Schmuth M, Dubrac S. Keratinocyte-derived IL-1β induces PPARG downregulation and PPARD upregulation in human reconstructed epidermis following barrier impairment. Exp Dermatol 2021; 30:1298-1308. [PMID: 33683743 PMCID: PMC8451818 DOI: 10.1111/exd.14323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors. In skin, PPARs modulate inflammation, lipid synthesis, keratinocyte differentiation and proliferation and thus are important for skin barrier homeostasis. Accordingly, PPAR expression is altered in various skin conditions that entail epidermal barrier impairment, that is atopic dermatitis (AD) and psoriasis. Using human epidermal equivalents (HEEs), we established models of acute epidermal barrier impairment devoid of immune cells. We assessed PPAR and cytokine expression after barrier perturbation and examined effects of keratinocyte-derived cytokines on PPAR expression. We show that acetone or SDS treatment causes graded impairment of epidermal barrier function. Furthermore, we demonstrate that besides IL-1β and TNFα, IL-33 and TSLP are highly relevant markers for acute epidermal barrier impairment. Both SDS- and acetone-mediated epidermal barrier impairment reduce PPARG expression levels, whereas only SDS enhances PPARD expression. In line with findings in IL-1β and TNFα-treated HEEs, abrogation of IL-1 signalling restores PPARG expression and limits the increase of PPARD expression in SDS-induced epidermal barrier impairment. Thus, following epidermal barrier perturbation, keratinocyte-derived IL-1β and partly TNFα modulate PPARG and PPARD expression. These results emphasize a role for PPARγ and PPARβ/δ in acute epidermal barrier impairment with possible implications for diseases such as AD and psoriasis.
Collapse
Affiliation(s)
- Stefan Blunder
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Thomas Krimbacher
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | | | - Robert Gruber
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
23
|
Kaleta KP, Nikolakis G, Hossini AM, Balthasar O, Almansouri D, Vaiopoulos A, Knolle J, Boguslawska A, Wojas-Pelc A, Zouboulis CC. Metabolic Disorders/Obesity Is a Primary Risk Factor in Hidradenitis Suppurativa: An Immunohistochemical Real-World Approach. Dermatology 2021; 238:251-259. [PMID: 34293747 DOI: 10.1159/000517017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is an inflammatory, potentially scarring disease of the hair follicle, affecting the apocrine gland-bearing skin areas. The major comorbid disorders associated with the occurrence or the aggravation of the disease are obesity and smoking. Numerous efforts to dissociate these factors led to controversial results. OBJECTIVES To assess the importance of metabolic disorders/obesity, smoking/environmental toxins, and inflammation in HS by utilizing the differential expression of major relevant protein markers in lesional skin of obese/smoking versus non-obese/non-smoking HS patients. METHODS Lesional skin specimens deriving from two groups of HS patients (BMI >30 and smokers, n = 12 vs. BMI <30 and non-smokers, n = 10) were stained with antibodies raised against irisin, PPARγ, and IGF-1R, which correlate with metabolic disorders/obesity, EGFR and AhR, associated with smoking, and IL-17, IL-17R, and S100A8, as markers of inflammation. RESULTS Metabolic disorders/obesity-related markers exhibited marked differential expression between the two groups, while smoking-associated markers a limited one. IL-17R expression was stronger in obese/smokers, and S100A8 staining exhibited intense strong immunoreactivity in both groups without significant difference. CONCLUSIONS The notion that obesity plays a role in HS development appears to be supported by the prominent regulation of the associated lesional biomarkers. Tobacco smoking might contribute less to HS than previously suspected.
Collapse
Affiliation(s)
- Katarzyna P Kaleta
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany.,Department of Dermatology, Jagiellonian University Medical College, Krakow, Poland
| | - Georgios Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | - Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Ottfried Balthasar
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany.,Institute of Pathology, Dessau Medical Center, Dessau, Germany
| | - Daifallah Almansouri
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Aristeidis Vaiopoulos
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | - Jürgen Knolle
- Institute of Pathology, Dessau Medical Center, Dessau, Germany
| | - Anna Boguslawska
- Department of Paediatric and Adolescence Endocrinology, Paediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, Krakow, Poland
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| |
Collapse
|
24
|
Janus kinase inhibitors in dermatology: Part I. A comprehensive review. J Am Acad Dermatol 2021; 86:406-413. [PMID: 34246698 DOI: 10.1016/j.jaad.2021.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) intracellular signaling pathway is utilized by many proinflammatory molecules to mediate downstream effects and activate gene transcription. Activation of the JAK-STAT pathway contributes to a number of inflammatory dermatoses. Clinical trials and smaller studies have demonstrated the efficacy of JAK inhibitors in the treatment of a variety of dermatologic conditions. Here, we review the use of JAK inhibitors for the treatment of a wide range of dermatologic diseases in a two-part review series.
Collapse
|
25
|
Böhm M. In search of the needle in a haystack: Finding a suitable serum biomarker for monitoring disease activity of systemic sclerosis. Exp Dermatol 2021; 30:880-886. [PMID: 34121239 DOI: 10.1111/exd.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Sadgrove NJ, Simmonds MSJ. Topical and nutricosmetic products for healthy hair and dermal antiaging using "dual-acting" (2 for 1) plant-based peptides, hormones, and cannabinoids. FASEB Bioadv 2021; 3:601-610. [PMID: 34377956 PMCID: PMC8332470 DOI: 10.1096/fba.2021-00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
One of the side effects of oral antiaging retinoids is increased hair shedding. Retinoids promote the expression of TGF-β2 from fibroblasts, which stimulate collagen expression but silences keratinocytes. Since keratinocytes normally influence differentiation of dermal papilla cells at the base of the hair follicle, retinoids feasibly inhibit hair growth via the increased expression of TGF-β2, which inhibits Wnt/β-catenin signaling. Fortunately, the plant kingdom provides an array of alternatives as dual-acting nutricosmetics and topicals that work independently of TGF-β2 to confer dermal antiaging and hair health effects. These alternatives include "plant hormones" such as cytokinins and phytoestrogens. Many cytokinins are agonists of the G-coupled adenosine receptors. Partial agonism of adenosine receptors promotes collagen synthesis independently of TGF-β2 signaling. Adenosine expression is potentially also the mechanism of minoxidil in promotion of scalp hair growth. Because of crosstalk between adenosine and cannabinoid receptors it makes sense to try combinations of specific CB2 agonists and cytokinins (or phytoestrogens). However, dual-acting cosmetics including peptides with high numbers of positively charged amino acids, such as lysine or arginine, offer real potential as they can be processed from multiple botanical candidates, including almond, fenugreek, pea sprouts, soy, and seaweeds. The current review summarizes much of what is known about retinoid alternatives in the plant kingdom and identifies potentially fruitful new areas of research.
Collapse
|
27
|
Paus R. Shining a (blue) light on hair follicle chronobiology and photobiomodulation. Exp Dermatol 2021; 30:189-192. [PMID: 33433942 DOI: 10.1111/exd.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
28
|
Böhm M, Paus R. Towards a renaissance of dermatoendocrinology: Selected current frontiers. Exp Dermatol 2020; 29:786-789. [PMID: 33319935 DOI: 10.1111/exd.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester and NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
29
|
Hardman-Smart JA, Purba TS, Panicker S, Farjo B, Farjo N, Harries MJ, Paus R. Does mitochondrial dysfunction of hair follicle epithelial stem cells play a role in the pathobiology of lichen planopilaris? Br J Dermatol 2020; 183:964-966. [PMID: 32471007 DOI: 10.1111/bjd.19259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J A Hardman-Smart
- St John's Institute of Dermatology, Guy's Hospital, London, SE1 9RT, UK
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Biomedical Research Centre, Manchester, UK
| | - S Panicker
- Department of Zoology, University of Kerala, Kerala, India
| | - B Farjo
- Farjo Hair Institute, Manchester, UK
| | - N Farjo
- Farjo Hair Institute, Manchester, UK
| | - M J Harries
- Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Biomedical Research Centre, Manchester, UK.,The Dermatology Centre, Salford Royal NHS Foundation Trust, Salford, Greater Manchester, UK
| | - R Paus
- Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Biomedical Research Centre, Manchester, UK.,Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
30
|
Affiliation(s)
- Kevin J. McElwee
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver BC Canada
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Leonard M. Miller School of Medicine Miami FL USA
| |
Collapse
|