2
|
Tudor DV, Florea A, Cenariu M, Olteanu DE, Farcaș M, Hopârtean A, Clichici SV, Filip GA. Low Doses of Celecoxib Might Promote Phenotype Switching in Cutaneous Melanoma Treated with Dabrafenib-Preliminary Study. J Clin Med 2022; 11:jcm11154560. [PMID: 35956175 PMCID: PMC9369555 DOI: 10.3390/jcm11154560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Cutaneous melanoma is a heterogeneous tumor with a rapidly switching molecular and cellular phenotype. The invasive phenotype switching characterized by MITFlow/AXLhigh predicts early resistance to multiple targeted drugs in melanoma. Celecoxib proved to be a valuable adjuvant in cutaneous melanoma in preclinical studies. Our in vitro study evaluated for the first time whether celecoxib could prevent phenotype switching in two human melanoma cell lines treated with dabrafenib. Methods: All in vitro experiments were carried out on BRAF-V600E-positive A375 and SK-MEL-28 human melanoma cell lines, and subjected to a celecoxib and dabrafenib drug combination for 72 h. Melanoma cells were already in the MITFlow/AXLhigh end of the spectrum. Of main interest was the evaluation of the key proteins expressed in phenotype switching (TGF-β, MITF, AXL, YAP, TAZ), as well as cell death mechanisms correlated with oxidative stress production. Results: Celecoxib significantly enhanced the apoptotic effect of dabrafenib in each melanoma cell line compared to the dabrafenib group (p < 0.0001). Even though celecoxib promoted low MITF expression, this was correlated with high receptor tyrosine kinase AXL levels in A375 and SK-MEL-28 cell lines (p < 0.0001), a positive marker for the phenotype switch to an invasive state. Conclusion: This preliminary study highlighted that celecoxib might promote MITFlow/AXLhigh expression in cutaneous melanoma treated with dabrafenib, facilitating phenotype switching in vitro. Our results need further confirmation, as this finding could represent an important limitation of celecoxib as an antineoplastic drug.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Marius Farcaș
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Hopârtean
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Hamm M, Sohier P, Petit V, Raymond JH, Delmas V, Le Coz M, Gesbert F, Kenny C, Aktary Z, Pouteaux M, Rambow F, Sarasin A, Charoenchon N, Bellacosa A, Sanchez-Del-Campo L, Mosteo L, Lauss M, Meijer D, Steingrimsson E, Jönsson GB, Cornell RA, Davidson I, Goding CR, Larue L. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun 2021; 12:3707. [PMID: 34140478 PMCID: PMC8211827 DOI: 10.1038/s41467-021-23973-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.
Collapse
Affiliation(s)
- Michael Hamm
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Pierre Sohier
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Valérie Petit
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Jérémy H Raymond
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Véronique Delmas
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Madeleine Le Coz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Franck Gesbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Colin Kenny
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Zackie Aktary
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Marie Pouteaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Florian Rambow
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Nisamanee Charoenchon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Equipes Labellisées Ligue Contre le Cancer, Paris, France
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Luis Sanchez-Del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Laura Mosteo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Martin Lauss
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Dies Meijer
- Centre of Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, and Department of Anatomy, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Göran B Jönsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Robert A Cornell
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Irwin Davidson
- Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404, Illkirch, Cedex, France
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK.
| | - Lionel Larue
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Normal and Pathological Development of Melanocytes, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France.
- Equipes Labellisées Ligue Contre le Cancer, Paris, France.
| |
Collapse
|