1
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
2
|
Perkov S, Cvjetinovic J, Sydygalieva A, Gorodkov S, Li G, Gorin D. Optical Based Methods for Water Monitoring in Biological Tissue. JOURNAL OF BIOPHOTONICS 2025:e202400438. [PMID: 39861929 DOI: 10.1002/jbio.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Skin homeostasis is strongly dependent on its hydration levels, making skin water content measurement vital across various fields, including medicine, cosmetology, and sports science. Noninvasive diagnostic techniques are particularly relevant for clinical applications due to their minimal risk of side effects. A range of optical methods have been developed for this purpose, each with unique physical principles, advantages, and limitations. This review provides an in-depth examination of optical techniques such as diffuse reflectance spectroscopy, optoacoustic spectroscopy, optoacoustic tomography, hyperspectral imaging, and Raman spectroscopy. We explore their efficacy in noninvasive monitoring of skin hydration and edema, which is characterized by an increase in interstitial fluid. By comparing the parameters, sensitivity, and clinical applications of these techniques, this review offers a comprehensive understanding of their potential to enhance diagnostic precision and improve patient care.
Collapse
Affiliation(s)
- Sergei Perkov
- Center for Photonic Science and Engineering, Institute of Optoelectronics, Fudan University, Shanghai, People's Republic of China
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Altynai Sydygalieva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergey Gorodkov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Pediatrics, Saratov State Medical University, Saratov, Russia
| | - Guoqiang Li
- Center for Photonic Science and Engineering, Institute of Optoelectronics, Fudan University, Shanghai, People's Republic of China
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
3
|
Qiu C, Zhang Z, Xu Z, Qiao L, Ning L, Zhang S, Su M, Wu W, Song K, Xu Z, Chen LQ, Zheng H, Liu C, Qiu W, Li F. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging. Nat Commun 2024; 15:10580. [PMID: 39632872 PMCID: PMC11618688 DOI: 10.1038/s41467-024-55032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.
Collapse
Affiliation(s)
- Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Ning
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Min Su
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weichang Wu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kexin Song
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long-Qing Chen
- Materials Research Institute, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hairong Zheng
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weibao Qiu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Zhang L, Bounds A, Girkin J. Using spatial frequency domain imaging to monitor a skin biopsy wound: a pilot study. BIOMEDICAL OPTICS EXPRESS 2024; 15:5872-5885. [PMID: 39421765 PMCID: PMC11482166 DOI: 10.1364/boe.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Surgical wound infection is a global postoperative issue adding a significant clinical burden and increasing healthcare costs. Early detection and subsequent diagnosis of infection is vital for accurate, early, and effective treatments. In this paper, we report a pilot study exploring spatial frequency domain imaging (SFDI) to monitor, in-vivo, a biopsy wound in human skin. The reduced scattering coefficient, μ s ' , absorption coefficient, μ a and the oxygen saturation, StO 2, were measured using a SFDI system at 617 and 850 nm. We found the μ s ' was better capable of monitoring structural changes, possible pus within the wound, re-epithelialization, and collagen fiber remodeling, than with the eye alone. The μ a map is capable of revealing the total hemoglobin distribution in the wound area but was limited in some regions due to the scab covering. This case study indicates SFDI's potential for monitoring and quantifying the process of surgical wound healing and infection.
Collapse
Affiliation(s)
- Lai Zhang
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Alistair Bounds
- Occuity Ltd, The Blade, Abbey Square, Reading RG1 3BE, United Kingdom
| | - John Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Saccomano G, Pinamonti M, Longo E, Marcuzzo T, Tromba G, Dreossi D, Brun F. The potential of x-ray virtual histology in the diagnosis of skin tumors. Skin Res Technol 2024; 30:e13801. [PMID: 39363439 PMCID: PMC11449805 DOI: 10.1111/srt.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Histopathological analysis represents the gold standard in clinical practice for diagnosing skin neoplasms. While the current diagnostic workflow has specialized in producing robust and accurate results, interpreting tissue architecture and malignant cellular morphology correctly remains one of the greatest challenges for pathologists. This paper aims to explore the prospect of applying x-ray virtual histology to human skin tumor excisions and correlating it with the histological validation. MATERIALS AND METHODS Seven skin biopsies containing intriguing melanoma types and pigmented skin lesions were scanned using x-ray Computed micro-Tomography (μCT) and then sectioned for conventional histology assessment. RESULTS The tissue microarchitecture reconstructed by μCT offers detailed insights into diagnosing the malignancy or benignity of the skin lesions. Three-dimensional reconstruction via x-ray virtual histology reveals infiltrative patterns in basal cell carcinoma and evaluated invasiveness in melanoma. The technology enables the identification of pagetoid distributions of neoplastic cells and the assessment of melanoma depth in three dimensions. CONCLUSION Although the proposed approach is not intended to replace conventional histology, the non-destructive nature of the sample and the clarity provided by virtual inspection demonstrate the promising impact of μCT as a valid support method prior to conventional histological sectioning. Indeed, μCT images can suggest the optimal sectioning position before using a microtome, as is commonly performed in histological practice. Moreover, the three-dimensional nature of the proposed approach paves the way for a more accurate assessment of significant prognostic factors in melanoma, such as Breslow thickness, by considering the whole micro-volume rather than a two-dimensional observation.
Collapse
Affiliation(s)
- Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
| | - Thomas Marcuzzo
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | | | | | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| |
Collapse
|
6
|
Lefebvre TL, Sweeney PW, Gröhl J, Hacker L, Brown EL, Else TR, Oraiopoulou ME, Bloom A, Lewis DY, Bohndiek SE. Performance evaluation of image co-registration methods in photoacoustic mesoscopy of the vasculature. Phys Med Biol 2024; 69:215007. [PMID: 39321985 PMCID: PMC11483810 DOI: 10.1088/1361-6560/ad7fc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective:The formation of functional vasculature in solid tumours enables delivery of oxygen and nutrients, and is vital for effective treatment with chemotherapeutic agents. Longitudinal characterisation of vascular networks can be enabled using mesoscopic photoacoustic imaging, but requires accurate image co-registration to precisely assess local changes across disease development or in response to therapy. Co-registration in photoacoustic imaging is challenging due to the complex nature of the generated signal, including the sparsity of data, artefacts related to the illumination/detection geometry, scan-to-scan technical variability, and biological variability, such as transient changes in perfusion. To better inform the choice of co-registration algorithms, we compared five open-source methods, in physiological and pathological tissues, with the aim of aligning evolving vascular networks in tumours imaged over growth at different time-points.Approach:Co-registration techniques were applied to 3D vascular images acquired with photoacoustic mesoscopy from murine ears and breast cancer patient-derived xenografts, at a fixed time-point and longitudinally. Images were pre-processed and segmented using an unsupervised generative adversarial network. To compare co-registration quality in different settings, pairs of fixed and moving intensity images and/or segmentations were fed into five methods split into the following categories: affine intensity-based using 1)mutual information (MI) or 2)normalised cross-correlation (NCC) as optimisation metrics, affine shape-based using 3)NCC applied to distance-transformed segmentations or 4)iterative closest point algorithm, and deformable weakly supervised deep learning-based using 5)LocalNet co-registration. Percent-changes in Dice coefficients, surface distances, MI, structural similarity index measure and target registration errors were evaluated.Main results:Co-registration using MI or NCC provided similar alignment performance, better than shape-based methods. LocalNet provided accurate co-registration of substructures by optimising subfield deformation throughout the volumes, outperforming other methods, especially in the longitudinal breast cancer xenograft dataset by minimising target registration errors.Significance:We showed the feasibility of co-registering repeatedly or longitudinally imaged vascular networks in photoacoustic mesoscopy, taking a step towards longitudinal quantitative characterisation of these complex structures. These tools open new outlooks for monitoring tumour angiogenesis at the meso-scale and for quantifying treatment-induced co-localised alterations in the vasculature.
Collapse
Affiliation(s)
- T L Lefebvre
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - P W Sweeney
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - J Gröhl
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - L Hacker
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - E L Brown
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow G61 1BD, United Kingdom
- School of Cancer Sciences,University of Glasgow, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - T R Else
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - M-E Oraiopoulou
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - A Bloom
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow G61 1BD, United Kingdom
- School of Cancer Sciences,University of Glasgow, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - D Y Lewis
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow G61 1BD, United Kingdom
- School of Cancer Sciences,University of Glasgow, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - S E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute,University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
7
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
9
|
Nemirova S, Orlova A, Kurnikov A, Litvinova Y, Kazakov V, Ayvazyan I, Liu YH, Razansky D, Subochev P. Scanning optoacoustic angiography for assessing structural and functional alterations in superficial vasculature of patients with post-thrombotic syndrome: A pilot study. PHOTOACOUSTICS 2024; 38:100616. [PMID: 38770433 PMCID: PMC11103408 DOI: 10.1016/j.pacs.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
This study highlights the potential of scanning optoacoustic angiography (OA) in identifying alterations of superficial vasculature in patients with post-thrombotic syndrome (PTS) of the foot, a venous stress disorder associated with significant morbidity developing from long-term effects of deep venous thrombosis. The traditional angiography methods available in the clinics are not capable of reliably assessing the state of peripheral veins that provide blood outflow from the skin, a key hallmark of personalized risks of PTS formation after venous thrombosis. Our findings indicate that OA can detect an increase in blood volume, diameter, and tortuosity of superficial blood vessels. The inability to spatially separate vascular plexuses of the dermis and subcutaneous adipose tissue serves as a crucial criterion for distinguishing PTS from normal vasculature. Furthermore, our study demonstrates the ability of scanning optoacoustic angiography to detect blood filling decrease in an elevated limb position versus increase in a lowered position.
Collapse
Affiliation(s)
- Svetlana Nemirova
- Privolzhsky Research Medical University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Anna Orlova
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Alexey Kurnikov
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Yulia Litvinova
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Viacheslav Kazakov
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Irina Ayvazyan
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Yu-Hang Liu
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering and, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, Zurich 8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering and, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, Zurich 8093, Switzerland
| | - Pavel Subochev
- A.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
10
|
Puccetti G. Deep skin homogeneity and light diffusion: An accelerated Monte Carlo model for in vivo skin characterization and consumer perception. Int J Cosmet Sci 2024; 46:368-379. [PMID: 38276873 DOI: 10.1111/ics.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024]
Abstract
The appearance of healthy and youthful skin is related to many factors of the skin optical properties as perceived by our visual sense. The optics of light travelling through human tissues has been extensively investigated in the field of biomedical applications, including the experimental characterization and modelling of skin optics and the propagation of light such as lasers through the layers. This work presents an innovative approach to probe deep skin by means of spectrally and spatially resolved light diffusion in the different layers of skin. Dual hyperspectral measurements of the panellist's skin are performed in vivo on subjects to obtain reflectance and light diffusion spectra. Both are simultaneously fitted by a GPU-accelerated Monte Carlo model to obtain skin optical parameters as a function of depth. The results show a clear correlation between deep skin light diffusion at wavelengths above 590 nm and the subject age, which indicates a progressive degradation of skin homogeneity with age. The effect of this orange-red light diffusion background is to alter the colour tone of the skin. A skincare product is used to show that the warmer skin colour tone is clearly perceivable to consumers when evaluating facial images with and without the product. The product effect also correlates well with hyperspectral measurements. Lastly, this innovative approach demonstrates a first step in real-time skin characterization for consumers and opens the door to customized cosmetic solutions for individual needs.
Collapse
Affiliation(s)
- G Puccetti
- Ashland, Personal Care - Skincare, Consumer Science, Bridgewater, New Jersey, USA
| |
Collapse
|
11
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
12
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
13
|
Wang Z, Chen Y, Pan S, Zhang W, Guo Z, Wang Y, Yang S. Quantitative classification of melasma with photoacoustic microscopy: a pilot study. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11504. [PMID: 37927370 PMCID: PMC10624224 DOI: 10.1117/1.jbo.29.s1.s11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Significance The classification of melasma is critical for correct clinical diagnosis, treatment selection, and postoperative measures. However, preoperative quantitative determination of melasma type remains challenging using conventional Wood's lamp and optical dermoscopy techniques. Aim Using photoacoustic microscopy (PAM) to simultaneously obtain the two diagnostic indicators of melanin and blood vessels for melasma classification and perform quantitative analysis to finally achieve accurate classification, rather than relying solely on physicians' experience. Approach First, the patients were classified by experienced dermatologists with Wood's lamp and optical dermoscopy. Next, the patients were examined in vivo using the PAM imaging system. Further, the horizontal section images (X - Y plane) of epidermal melanin and dermal vascular involvement were extracted from the 3D photoacoustic imaging results, which are important basis for PAM to quantitatively classify melasma. Results PAM can quantitatively reveal epidermal thickness and dermal vascular morphology in each case and obtain the quantitative diagnostic indicators of melanin and blood vessels. The mean vascular diameter in lesional skin (223.2 μ m ) of epidermal M+V-type was much larger than that in non-lesional skin (131.6 μ m ), and the mean vascular density in lesional skin was more than three times that in non-lesional skin. Importantly, vascular diameter and density are important parameters for distinguishing M type from M+V type. Conclusions PAM can obtain the data of epidermal thickness, pigment depth, subcutaneous vascular diameter, and vascular density, and realize the dual standard quantitative melasma classification by combining the parameters of melanin and blood vessels. In addition, PAM can provide new diagnostic information for uncertain melasma types and further refine the typing.
Collapse
Affiliation(s)
- Zhiyang Wang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Yuying Chen
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Shu Pan
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Wuyu Zhang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd., Foshan, China
| | - Ziwei Guo
- Zhujiang Hospital of Southern Medical University, Department of Plastic Surgery, Guangzhou, China
| | - Yuzhi Wang
- General Hospital of Southern Theater Command, Department of Burns and Plastic Surgery, Guangzhou, China
| | - Sihua Yang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| |
Collapse
|
14
|
Latriglia F, Ogien J, Tavernier C, Fischman S, Suppa M, Perrot JL, Dubois A. Line-Field Confocal Optical Coherence Tomography (LC-OCT) for Skin Imaging in Dermatology. Life (Basel) 2023; 13:2268. [PMID: 38137869 PMCID: PMC10744435 DOI: 10.3390/life13122268] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Line-field confocal optical coherence tomography (LC-OCT) is a non-invasive optical imaging technique based on a combination of the principles of optical coherence tomography and reflectance confocal microscopy with line-field illumination, which can generate cell-resolved images of the skin in vivo. This article reports on the LC-OCT technique and its application in dermatology. The principle of the technique is described, and the latest technological innovations are presented. The technology has been miniaturized to fit within an ergonomic handheld probe, allowing for the easy access of any skin area on the body. The performance of the LC-OCT device in terms of resolution, field of view, and acquisition speed is reported. The use of LC-OCT in dermatology for the non-invasive detection, characterization, and therapeutic follow-up of various skin pathologies is discussed. Benign and malignant melanocytic lesions, non-melanocytic skin tumors, such as basal cell carcinoma, squamous cell carcinoma and actinic keratosis, and inflammatory and infectious skin conditions are considered. Dedicated deep learning algorithms have been developed for assisting in the analysis of LC-OCT images of skin lesions.
Collapse
Affiliation(s)
- Flora Latriglia
- DAMAE Medical, 75013 Paris, France
- Laboratoire Charles Fabry, Centre National de la Recherche Scientifique, Institut d’Optique Graduate School, Université Paris-Saclay, 91127 Palaiseau, France
| | | | | | | | - Mariano Suppa
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Anderlecht, Belgium
- Department of Dermatology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 1070 Anderlecht, Belgium
- Groupe d’Imagerie Cutanée Non Invasive (GICNI) of the Société Française de Dermatologie (SFD), 75008 Paris, France;
| | - Jean-Luc Perrot
- Groupe d’Imagerie Cutanée Non Invasive (GICNI) of the Société Française de Dermatologie (SFD), 75008 Paris, France;
- University Hospital of Saint-Etienne, 42100 Saint-Etienne, France
| | - Arnaud Dubois
- DAMAE Medical, 75013 Paris, France
- Laboratoire Charles Fabry, Centre National de la Recherche Scientifique, Institut d’Optique Graduate School, Université Paris-Saclay, 91127 Palaiseau, France
| |
Collapse
|
15
|
He H, Fasoula NA, Karlas A, Omar M, Aguirre J, Lutz J, Kallmayer M, Füchtenbusch M, Eckstein HH, Ziegler A, Ntziachristos V. Opening a window to skin biomarkers for diabetes stage with optoacoustic mesoscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:231. [PMID: 37718348 PMCID: PMC10505608 DOI: 10.1038/s41377-023-01275-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Being the largest and most accessible organ of the human body, the skin could offer a window to diabetes-related complications on the microvasculature. However, skin microvasculature is typically assessed by histological analysis, which is not suited for applications to large populations or longitudinal studies. We introduce ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) for precise, non-invasive assessment of diabetes-related changes in the dermal microvasculature and skin micro-anatomy, resolved with unprecedented sensitivity and detail without the need for contrast agents. Providing unique imaging contrast, we explored a possible role for RSOM as an investigational tool in diabetes healthcare and offer the first comprehensive study investigating the relationship between different diabetes complications and microvascular features in vivo. We applied RSOM to scan the pretibial area of 95 participants with diabetes mellitus and 48 age-matched volunteers without diabetes, grouped according to disease complications, and extracted six label-free optoacoustic biomarkers of human skin, including dermal microvasculature density and epidermal parameters, based on a novel image-processing pipeline. We then correlated these biomarkers to disease severity and found statistically significant effects on microvasculature parameters as a function of diabetes complications. We discuss how label-free RSOM biomarkers can lead to a quantitative assessment of the systemic effects of diabetes and its complications, complementing the qualitative assessment allowed by current clinical metrics, possibly leading to a precise scoring system that captures the gradual evolution of the disease.
Collapse
Affiliation(s)
- Hailong He
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Juan Aguirre
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Jessica Lutz
- Diabetes Center at Marienplatz, Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Martin Füchtenbusch
- Diabetes Center at Marienplatz, Munich, Germany
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Annette Ziegler
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
16
|
Assi H, Cao R, Castelino M, Cox B, Gilbert FJ, Gröhl J, Gurusamy K, Hacker L, Ivory AM, Joseph J, Knieling F, Leahy MJ, Lilaj L, Manohar S, Meglinski I, Moran C, Murray A, Oraevsky AA, Pagel MD, Pramanik M, Raymond J, Singh MKA, Vogt WC, Wang L, Yang S, Members of IPASC, Bohndiek SE. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. PHOTOACOUSTICS 2023; 32:100539. [PMID: 37600964 PMCID: PMC10432856 DOI: 10.1016/j.pacs.2023.100539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group.
Collapse
Affiliation(s)
- Hisham Assi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospital, London, UK
| | - Ben Cox
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Janek Gröhl
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kurinchi Gurusamy
- Department of Surgical Biotechnology, University College London, London, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aoife M. Ivory
- Department of Medical, Marine and Nuclear Physics, National Physical Laboratory, Teddington, UK
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Martin J. Leahy
- School of Natural Sciences – Physics, University of Galway, Galway, Ireland
| | | | | | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrea Murray
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Salford Care Organisation, NCA NHS Foundation Trust, UK
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, UK
| | | | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lihong Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shufan Yang
- School of Computing, Edinburgh Napier University, UK
| | - Members of IPASC
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals. Nat Protoc 2023; 18:2124-2142. [PMID: 37208409 DOI: 10.1038/s41596-023-00834-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Fast tracking of biological dynamics across multiple murine organs using the currently commercially available whole-body preclinical imaging systems is hindered by their limited contrast, sensitivity and spatial or temporal resolution. Spiral volumetric optoacoustic tomography (SVOT) provides optical contrast, with an unprecedented level of spatial and temporal resolution, by rapidly scanning a mouse using spherical arrays, thus overcoming the current limitations in whole-body imaging. The method enables the visualization of deep-seated structures in living mammalian tissues in the near-infrared spectral window, while further providing unrivalled image quality and rich spectroscopic optical contrast. Here, we describe the detailed procedures for SVOT imaging of mice and provide specific details on how to implement a SVOT system, including component selection, system arrangement and alignment, as well as the image processing methods. The step-by-step guide for the rapid panoramic (360°) head-to-tail whole-body imaging of a mouse includes the rapid visualization of contrast agent perfusion and biodistribution. The isotropic spatial resolution possible with SVOT can reach 90 µm in 3D, while alternative steps enable whole-body scans in less than 2 s, unattainable with other preclinical imaging modalities. The method further allows the real-time (100 frames per second) imaging of biodynamics at the whole-organ level. The multiscale imaging capacity provided by SVOT can be used for visualizing rapid biodynamics, monitoring responses to treatments and stimuli, tracking perfusion, and quantifying total body accumulation and clearance dynamics of molecular agents and drugs. Depending on the imaging procedure, the protocol requires 1-2 h to complete by users trained in animal handling and biomedical imaging.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Gezginer I, Chen Z, Yoshihara HA, Deán-Ben XL, Razansky D. Volumetric registration framework for multimodal functional magnetic resonance and optoacoustic tomography of the rodent brain. PHOTOACOUSTICS 2023; 31:100522. [PMID: 37362869 PMCID: PMC10285284 DOI: 10.1016/j.pacs.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Hikari A.I. Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
19
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Head-to-tail imaging of mice with spiral volumetric optoacoustic tomography. PHOTOACOUSTICS 2023; 30:100480. [PMID: 37025111 PMCID: PMC10070820 DOI: 10.1016/j.pacs.2023.100480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Optoacoustic tomography has been established as a powerful modality for preclinical imaging. However, efficient whole-body imaging coverage has not been achieved owing to the arduous requirement for continuous acoustic coupling around the animal. In this work, we introduce panoramic (3600) head-to-tail 3D imaging of mice with spiral volumetric optoacoustic tomography (SVOT). The system combines multi-beam illumination and a dedicated head holder enabling uninterrupted acoustic coupling for whole-body scans. Image fidelity is optimized with self-gated respiratory motion rejection and dual speed-of-sound reconstruction algorithms to attain spatial resolution down to 90 µm. The developed system is thus highly suitable for visualizing rapid biodynamics across scales, such as hemodynamic changes in individual organs, responses to treatments and stimuli, perfusion, total body accumulation, or clearance of molecular agents and drugs with unmatched contrast, spatial and temporal resolution.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
20
|
Hakakzadeh S, Amjadian M, Zhang Y, Mostafavi SM, Kavehvash Z, Wang L. Signal restoration algorithm for photoacoustic imaging systems. BIOMEDICAL OPTICS EXPRESS 2023; 14:651-666. [PMID: 36874483 PMCID: PMC9979682 DOI: 10.1364/boe.480842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
In a photoacoustic (PA) imaging system, the detectors are bandwidth-limited. Therefore, they capture PA signals with some unwanted ripples. This limitation degrades the resolution/contrast and induces sidelobes and artifacts in the reconstructed images along the axial direction. To compensate for the limited bandwidth effect, we present a PA signal restoration algorithm, where a mask is designed to extract the signals at the absorber positions and remove the unwanted ripples. This restoration improves the axial resolution and contrast in the reconstructed image. The restored PA signals can be considered as the input of the conventional reconstruction algorithms (e.g., Delay-and-sum (DAS) and Delay-multiply-and-sum (DMAS)). To compare the performance of the proposed method, DAS and DMAS reconstruction algorithms were performed with both the initial and restored PA signals on numerical and experimental studies (numerical targets, tungsten wires, and human forearm). The results show that, compared with the initial PA signals, the restored PA signals can improve the axial resolution and contrast by 45% and 16.1 dB, respectively, and suppress background artifacts by 80%.
Collapse
Affiliation(s)
- Soheil Hakakzadeh
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
- Equal Contribution
| | - Mohammadreza Amjadian
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Equal Contribution
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Zahra Kavehvash
- Electrical Engineering Department of Sharif University of Technology, Tehran, Iran
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
21
|
Mayer KE, Gaa J, Biedermann T, Posch C. Bildgestützte Beurteilung des Ansprechens auf Immuntherapien bei Hauttumoren. J Dtsch Dermatol Ges 2023; 21:107-115. [PMID: 36808450 DOI: 10.1111/ddg.14941_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 02/22/2023]
Affiliation(s)
- Kristine E Mayer
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München
| | - Jochen Gaa
- Institut für diagnostische und interventionelle Radiologie, Technische Universität München
| | - Tilo Biedermann
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München
| | - Christian Posch
- Klinik und Poliklinik für Dermatologie und Allergologie, Technische Universität München.,Medizinische Fakultät, Sigmund Freud Universität Wien
| |
Collapse
|
22
|
Tang Y, Tang S, Huang C, Klippel P, Ma C, Caso N, Chen S, Jing Y, Yao J. High-fidelity deep functional photoacoustic tomography enhanced by virtual point sources. PHOTOACOUSTICS 2023; 29:100450. [PMID: 36685991 PMCID: PMC9852650 DOI: 10.1016/j.pacs.2023.100450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Photoacoustic tomography (PAT), a hybrid imaging modality that acoustically detects the optical absorption contrast, is a promising technology for imaging hemodynamic functions in deep tissues far beyond the traditional optical microscopy. However, the most clinically compatible PAT often suffers from the poor image fidelity, mostly due to the limited detection view of the linear ultrasound transducer array. PAT can be improved by employing highly-absorbing contrast agents such as droplets and nanoparticles, which, however, have low clinical translation potential due to safety concerns and regulatory hurdles imposed by these agents. In this work, we have developed a new methodology that can fundamentally improve PAT's image fidelity without hampering any of its functional capability or clinical translation potential. By using clinically-approved microbubbles as virtual point sources that strongly and isotropically scatter the local pressure waves generated by surrounding hemoglobin, we can overcome the limited-detection-view problem and achieve high-fidelity functional PAT in deep tissues, a technology referred to as virtual-point-source PAT (VPS-PAT). We have thoroughly investigated the working principle of VPS-PAT by numerical simulations and in vitro phantom experiments, clearly showing the signal origin of VPSs and the resultant superior image fidelity over traditional PAT. We have also demonstrated in vivo applications of VPT-PAT for functional small-animal studies with physiological challenges. We expect that VPS-PAT can find broad applications in biomedical research and accelerated translation to clinical impact.
Collapse
Affiliation(s)
- Yuqi Tang
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| | - Shanshan Tang
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Chengwu Huang
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Paul Klippel
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Chenshuo Ma
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| | - Nathan Caso
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Shigao Chen
- Ultrasound Imaging Lab, Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, the United States of America
| | - Yun Jing
- Graduate Program in Acoustic and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, the United States of America
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, the United States of America
| |
Collapse
|
23
|
Mayer KE, Gaa J, Biedermann T, Posch C. Image-based response assessment during immunotherapy in skin cancer. J Dtsch Dermatol Ges 2023; 21:107-114. [PMID: 36748647 DOI: 10.1111/ddg.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 02/08/2023]
Abstract
Immune-checkpoint inhibitors and further immunotherapeutic treatment strategies have significantly extended therapy options for melanoma and other skin cancer entities over the last decade. In the context of a broader application of immunotherapeutic approaches, sufficient ways to monitor the course of the disease during therapy are required. Immunotherapies are based on different ways of modulating the immune system. This leads to complex clinical response patterns including pseudoprogression and others, requiring an adaptation of conventional diagnostic imaging tools or the introduction of novel technologies. In this review, current non-invasive imaging approaches for response assessment during immunotherapies in skin cancers as well as their limitations are discussed. To overcome present hurdles, promising alternatives to better address novel imaging features during immunotherapy are depicted giving an outlook on what can be expected in the future.
Collapse
Affiliation(s)
- Kristine E Mayer
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - Jochen Gaa
- Institute for Diagnostic and Interventional Radiology, Technical University Munich, Munich, Germany
| | - Tilo Biedermann
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - Christian Posch
- Clinic and Polyclinic for Dermatology and Allergology, Technical University Munich, Munich, Germany.,Faculty of Medicine, Sigmund Freud University Vienna, Austria
| |
Collapse
|
24
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
25
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
28
|
Fu L, Jokerst J. Interleave-sampled photoacoustic imaging: a doubled and equivalent sampling rate for high-frequency imaging. OPTICS LETTERS 2022; 47:3503-3506. [PMID: 35838713 PMCID: PMC10100578 DOI: 10.1364/ol.464293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
High-frequency photoacoustic (PA) imaging (>20 MHz) requires data acquisition (DAQ) with a commensurately high sampling rate, which leads to hardware challenges and increased costs. We report here a new, to the best of our knowledge, method-interleave-sampled PA imaging-that enables high-frequency imaging with a relatively low sampling rate, e.g., a 41.67-MHz sampling rate with a 30-MHz transducer. This method harnesses two acquisitions at a low sampling rate to effectively double the sampling rate which consequently reduces the frame rate by a factor of two. It modulates the delay of the light pulses and can thus be applied to any PA DAQ system. We perform both phantom and in vivo studies with a 30-MHz transducer. The results demonstrate that interleaved sampling at 41.67 MHz can capture high frequency information above 30 MHz but a conventional 41.67-MHz sampling rate cannot. The axial and lateral resolution are as high as 63 µm and 91 µm via interleaved sampling which are much higher than those of conventional 41.67-MHz sampling (130 µm and 136 µm).
Collapse
Affiliation(s)
- Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jesse Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
- Material Science and Engineering Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
29
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
30
|
Crisan D, Wortsman X, Alfageme F, Catalano O, Badea A, Scharffetter-Kochanek K, Sindrilaru A, Crisan M. Ultraschall in der Dermatochirurgie: Enthüllen des Verborgenen für optimierte chirurgische Planung. J Dtsch Dermatol Ges 2022; 20:913-927. [PMID: 35881098 DOI: 10.1111/ddg.14781_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Diana Crisan
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Deutschland
| | - Ximena Wortsman
- Klinik für Dermatologie, Institut für diagnostische Bildgebung und Erforschung der Haut und Weichteilgewebe, Medizinische Fakultät, Chile Universität, Santiago, Chile
| | - Fernando Alfageme
- Klinik für Dermatologie, Universitätsklinikum Puerta del Hierro, EFSUMB Dermatologisches Ultraschall-Lernzentrum, Majahonda, Madrid, Spanien
| | - Orlando Catalano
- Klinik für Radiologie, Diagnostisches Institut Varelli, Neapel, Italien
| | - Alexandru Badea
- Institut für Anatomie, Iuliu Hatieganu" Universität für Medizin und Pharmazie, Klausenburg, Rumänien
| | | | - Anca Sindrilaru
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Deutschland
| | - Maria Crisan
- Klinik für Dermatologie, Abteilung Histologie, "Iuliu Hatieganu" Universität für Medizin und Pharmazie, Klausenburg, Rumänien
| |
Collapse
|
31
|
Rajendran P, Pramanik M. High frame rate (∼3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:066005. [PMID: 36452448 PMCID: PMC9209813 DOI: 10.1117/1.jbo.27.6.066005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 05/29/2023]
Abstract
Significance In circular scanning photoacoustic tomography (PAT), it takes several minutes to generate an image of acceptable quality, especially with a single-element ultrasound transducer (UST). The imaging speed can be enhanced by faster scanning (with high repetition rate light sources) and using multiple-USTs. However, artifacts arising from the sparse signal acquisition and low signal-to-noise ratio at higher scanning speeds limit the imaging speed. Thus, there is a need to improve the imaging speed of the PAT systems without hampering the quality of the PAT image. Aim To improve the frame rate (or imaging speed) of the PAT system by using deep learning (DL). Approach For improving the frame rate (or imaging speed) of the PAT system, we propose a novel U-Net-based DL framework to reconstruct PAT images from fast scanning data. Results The efficiency of the network was evaluated on both single- and multiple-UST-based PAT systems. Both phantom and in vivo imaging demonstrate that the network can improve the imaging frame rate by approximately sixfold in single-UST-based PAT systems and by approximately twofold in multi-UST-based PAT systems. Conclusions We proposed an innovative method to improve the frame rate (or imaging speed) by using DL and with this method, the fastest frame rate of ∼ 3 Hz imaging is achieved without hampering the quality of the reconstructed image.
Collapse
Affiliation(s)
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
32
|
Crisan D, Wortsman X, Alfageme F, Catalano O, Badea A, Scharffetter-Kochanek K, Sindrilaru A, Crisan M. Ultrasonography in dermatologic surgery: revealing the unseen for improved surgical planning. J Dtsch Dermatol Ges 2022; 20:913-926. [PMID: 35616215 DOI: 10.1111/ddg.14781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
Ultrasonography (US) is a modern, in vivo imaging method, which is increasingly being used in dermatology as a complementary tool to clinical examination and dermoscopy. At higher frequencies (15 MHz and above), US is an established method for assessing benign and malignant skin lesions, locoregional staging, monitoring the therapeutic efficacy in various inflammatory skin conditions, and patient follow-up. One field, which may increasingly benefit from performant imaging techniques such as US is dermatologic surgery. Preoperative imaging of cutaneous tumors, inflammatory skin conditions (hidradenitis suppurativa, abscesses, etc.), or nail pathology provide dermatologic surgeons with relevant information for an optimal surgical planning, identifying potential complex aspects which might require interdisciplinary approaches, herein sparing unnecessary surgical interventions and increasing patients' compliance. In this review, we discuss the increasing significance of US in the field of dermatologic surgery, as well as the spectrum of cutaneous pathology where sonography can aid in the preoperative setting to provide a more precise, individualized surgical planning for better counseling to our patients and improved surgical results.
Collapse
Affiliation(s)
- Diana Crisan
- Department of Dermatology and Allergic Diseases, University Clinic Ulm, Germany
| | - Ximena Wortsman
- Department of Dermatology, Institute for Diagnostic Imaging and Research of the Skin and Soft Tissues, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Alfageme
- Department of Dermatology, University Hospital Puerta del Hierro, EFSUMB Dermatologic Ultrasound Learning Center, Majahonda, Madrid, Spain
| | - Orlando Catalano
- Department of Radiology, Istituto Diagnostico Varelli, Naples, Italy
| | - Alexandru Badea
- Department of Anatomy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University Clinic Ulm, Germany
| | - Maria Crisan
- Departments of Dermatology and Histology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Hybrid confocal fluorescence and photoacoustic microscopy for the label-free investigation of melanin accumulation in fish scales. Sci Rep 2022; 12:7173. [PMID: 35504968 PMCID: PMC9065085 DOI: 10.1038/s41598-022-11262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Lower vertebrates, including fish, can rapidly alter skin lightness through changes in melanin concentration and melanosomes’ mobility according to various factors, which include background color, light intensity, ambient temperature, social context, husbandry practices and acute or chronic stressful stimuli. Within this framework, the determination of skin chromaticity parameters in fish species is estimated either in specific areas using colorimeters or at the whole animal level using image processing and analysis software. Nevertheless, the accurate quantification of melanin content or melanophore coverage in fish skin is quite challenging as a result of the laborious chemical analysis and the typical application of simple optical imaging methods, requiring also to euthanize the fish in order to obtain large skin samples for relevant investigations. Here we present the application of a novel hybrid confocal fluorescence and photoacoustic microscopy prototype for the label-free imaging and quantification of melanin in fish scales samples with high spatial resolution, sensitivity and detection specificity. The hybrid images are automatically processed through optimized algorithms, aiming at the accurate and rapid extraction of various melanin accumulation indices in large datasets (i.e., total melanin content, melanophores’ area, density and coverage) corresponding to different fish species and groups. Furthermore, convolutional neural network-based algorithms have been trained using the recorded data towards the classification of different scales’ samples with high accuracy. In this context, we demonstrate that the proposed methodology may increase substantially the precision, as well as, simplify and expedite the relevant procedures for the quantification of melanin content in marine organisms.
Collapse
|
34
|
Ma H, Wang Z, Zuo C, Huang Q. Three dimensional confocal photoacoustic dermoscopy with an autofocusing sono-opto probe. JOURNAL OF BIOPHOTONICS 2022; 15:e202100323. [PMID: 34989131 DOI: 10.1002/jbio.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Photoacoustic dermoscopy (PAD) is uniquely positioned for the diagnosis and assessment of dermatological conditions because of its ability to visualize optical absorption contrast in vivo in three dimensions. In this Letter, we developed a 3D confocal PAD (3D-CPAD) equipped with an autofocusing sono-opto probe to facilitate the reconstruction of high-spatial-resolution imaging of skin with multilaminate structures in depth direction. The autofocusing sono-opto probe integrated a 10-mm electrowetting-based varifocal lens to automatically control the acoustic and optical confocal length, and an annular ultrasonic detector with a mid-frequency of ~32.8 MHz is coaxially configured for receiving photoacoustic signals. Using this sono-opto probe, the acoustic and optical confocal length-shifting range from ~7 to 43 mm with high image contrast and spatial resolution in the 3D image reconstruction. Autofocusing property tests and 3D human skin in vivo imaging were carried out to demonstrate the imaging capability of the 3D-CPAD for potential clinical foreground in noninvasive biopsies of skin disease.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
35
|
Ma H, Wang Z, Cheng Z, He G, Feng T, Zuo C, Qiu H. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quant Imaging Med Surg 2022; 12:2696-2708. [PMID: 35502399 PMCID: PMC9014143 DOI: 10.21037/qims-21-878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 08/29/2023]
Abstract
Background Photoacoustic dermoscopy (PAD) is a promising branch of photoacoustic microscopy (PAM) that can provide a range of functional and morphologic information for clinical assessment and diagnosis of dermatological conditions. However, most PAM setups are unsuitable for clinical dermatology because their single-scale mode and narrow frequency band result in insufficient imaging depth or poor spatiotemporal resolution when visualizing the internal texture of the skin. Methods We developed a multiscale confocal photoacoustic dermoscopy (MC-PAD) with a multifunction opto-sono objective that could achieve high quality dermatological imaging. Using the objective to coordinate the spatial resolution and penetration depth, the MC-PAD was used to visualize pathophysiological biomarkers and vascular morphology from the epidermis (EP) to the dermis, which enabled us to quantify skin abnormalities without using exogenous contrast agents for human skin. Results The MC-PAD was shown to have the ability to differentiate between different types of cells (such as red blood cells and melanoma cells), image and quantify pigment of the skin, and visualize skin morphology and blood capillary landmarks. The MC-PAD detected a significant difference in the structures of some pigmented and vascular lesions of skin diseases compared with that of healthy skin (P<0.01). The café au lait macule (CALM) skin type was found to have a relatively higher melanin concentration and thicker stratum basale (SB) in the EP than healthy skin. The dermal vascular network of skin that had a port wine stain (PWS) had greater diameters and a denser distribution than healthy skin, as reported in clinical trials. Conclusions The MC-PAD has a broad range of applications for the diagnosis of human skin diseases and evaluation of the curative effect of treatments, and it can offer new perspectives in biomedical sciences.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Guo He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ting Feng
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
37
|
Zeng C, Ouyang J, Sun L, Zeng Z, Tan Y, Zeng F, Wu S. An activatable probe for detection and therapy of food-additive-related hepatic injury via NIR-II fluorescence/optoacoustic imaging and biomarker-triggered drug release. Anal Chim Acta 2022; 1208:339831. [DOI: 10.1016/j.aca.2022.339831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
|
38
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
39
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Budylin GS, Davydov DA, Zlobina NV, Baev AV, Artyushenko VG, Yakimov BP, Shirshin EA. In vivo sensing of cutaneous edema: A comparative study of diffuse reflectance, Raman spectroscopy and multispectral imaging. JOURNAL OF BIOPHOTONICS 2022; 15:e202100268. [PMID: 34661967 DOI: 10.1002/jbio.202100268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Quantitative noninvasive assessment of water content in tissues is important for biomedicine. Optical spectroscopy is potentially capable of solving this problem; however, its applicability for clinical diagnostics remains questionable. The presented study compares diffuse reflectance spectroscopy, Raman spectroscopy and multispectral imaging in the characterization of cutaneous edema. The source-detector geometries for each method are selected based on Monte Carlo simulations results to detect the signal from the dermis. Then, the kinetics of the edema development is studied for two models. All methods demonstrate synchronous trends for histamine-induced edema: The water content reaches a maximum of 1 hour after histamine application and then gradually decreases. For the venous occlusion, a 51% increase in water content is observed with Raman spectroscopy. The differences in water content estimation by three methods are explained based on the light propagation model. The obtained results are essential for introducing quantitative optical water measurement technology to the clinics.
Collapse
Affiliation(s)
- Gleb S Budylin
- Medical Research and Education Center, M. V. Lomonosov Moscow State University, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A Davydov
- Medical Research and Education Center, M. V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda V Zlobina
- Medical Research and Education Center, M. V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Baev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Boris P Yakimov
- Medical Research and Education Center, M. V. Lomonosov Moscow State University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny A Shirshin
- Medical Research and Education Center, M. V. Lomonosov Moscow State University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
41
|
Messas T, Messas A, Kroumpouzos G. Optoacoustic Imaging And Potential Applications Of Raster-Scan Optoacoustic Mesoscopy In Dermatology. Clin Dermatol 2021; 40:85-92. [PMID: 34923064 DOI: 10.1016/j.clindermatol.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Optoacoustic imaging (OAI) is a hybrid imaging modality that integrates the benefits of optical contrast and ultrasound detection. Raster-scan optoacoustic mesoscopy (RSOM) is an emerging OAI method that provides information about several dermatological conditions' structural, functional, and molecular features. We searched PubMed and Google Scholar databases through September 2021 for articles relevant to OAI in the English language. This review contains 32 studies and other relevant literature. Several studies indicate that RSOM is helpful in inflammatory skin conditions such as psoriasis and eczema, especially as it allows more accurate quantification of inflammation-related alterations such as changes to the dermal vasculature. In psoriasis, RSOM can provide objective early diagnosis and monitoring of disease activity and treatment efficacy. Multispectral RSOM, a method in which skin is lightened at more than a single wavelength, is beneficial in diagnosing and monitoring hypoxia-associated conditions, such as systemic sclerosis and chronic wounds. OAI techniques can visualize the pathological vascularization of skin cancers and quantify their oxygenation status which helps differentiate them from normal skin. Also, they can measure the depth of malignant melanoma and detect the metastatic spread of melanoma cells to sentinel lymph nodes. As demonstrated in this article, there is a large spectrum of potential applications of OAI imaging, especially RSOM, in diagnosing, treating, and managing skin diseases.
Collapse
Affiliation(s)
- Tassahil Messas
- Department of Dermatology, University of Constantine III, University Hospital Centre, Constantine, Algeria
| | - Achraf Messas
- Faculty of Medicine, CHU Annaba, Badji Mokhtar University, Annaba, Algeria
| | - George Kroumpouzos
- Department of Dermatology, Alpert Medical School, Brown University, Providence, RI, USA; GK Dermatology, PC, S Weymouth, MA, USA.
| |
Collapse
|
42
|
[Optoacoustic imaging-Applications and advancements of innovative imaging techniques]. Hautarzt 2021; 72:1025-1038. [PMID: 34735593 DOI: 10.1007/s00105-021-04907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 10/19/2022]
Abstract
Optoacoustic imaging (OAB) has developed steadily in recent years. By means of partly pulsed light, in a wide variety of wavelengths, different colour carriers (chromophores) are excited to form sound waves. These in turn are detected by the newly developed systems and converted into three-dimensional images by means of various algorithms. The technique is characterised by a good ratio between contrast and penetration depth and can create macro-, meso- and microscopic images due to its scalability. Optoacoustic macroscopy broadly irradiates the area to be examined with laser light. This can produce images with a high penetration depth, but only with a moderate resolution. Clinically interesting fields of application are for example the results of sentinel lymph nodes (SLNs) examined ex vivo using macroscopic optoacoustics. Due to the ability of OAB to visualise melanin, the detection rate of metastases was superior to previous methods, but not to histology. The ability to visualise dermal and epidermal structures, especially vessels, with good resolution makes optoacoustic mesoscopy useful in the examination of inflammatory skin diseases and could contribute to the verification of the success of therapy, e.g., with biologics for psoriasis vulgaris or atopic eczema (AE), in the future. Optoacoustic microscopy, which has so far been limited mainly to preclinical in vivo research, could be used in the future to detect even finer vascular structures and their changes. The clinical possibilities of OAB seem to be of great benefit and continue to be the subject of intensive research.
Collapse
|