1
|
Cantó-Santos J, Valls-Roca L, Tobías E, García-García FJ, Guitart-Mampel M, Andújar-Sánchez F, Vilaseca-Capel A, Esteve-Codina A, Martín-Mur B, Padrosa J, Peruga E, Madrigal I, Segalés P, García-Ruiz C, Fernández-Checa JC, Moreno-Lozano PJ, O'Callaghan AS, Sevilla A, Milisenda JC, Garrabou G. Human induced pluripotent stem cell-derived myotubes to model inclusion body myositis. Acta Neuropathol Commun 2025; 13:38. [PMID: 39985015 PMCID: PMC11844183 DOI: 10.1186/s40478-025-01933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
Inclusion body myositis (IBM) is an inflammatory myopathy that displays proximal and distal muscle weakness. At the histopathological level, the muscles of IBM patients show inflammatory infiltrates, rimmed vacuoles and mitochondrial changes. The etiology of IBM remains unknown, and there is a lack of validated disease models, biomarkers and effective treatments. To contribute to unveil disease underpins we developed a cell model based on myotubes derived from induced pluripotent stem cells (iPSC-myotubes) from IBM patients and compared the molecular phenotype vs. age and sex-paired controls (n = 3 IBM and 4 CTL). We evaluated protein histological findings and the gene expression profile by mRNA-seq, alongside functional analysis of inflammation, degeneration and mitochondrial function. Briefly, IBM iPSC-myotubes replicated relevant muscle histopathology features of IBM, including aberrant expression of HLA, TDP-43 and COX markers. mRNA seq analysis identified 1007 differentially expressed genes (DEGs) (p-value adj < 0.01; 789 upregulated and 218 downregulated), associated with myopathy, muscle structure and developmental changes. Among these, 1 DEG was related to inflammation, 28 to autophagy and 28 to mitochondria. At the functional level, inflammation was similar between the IBM and CTL groups under basal conditions (mean cytokine expression in IBM 4.6 ± 1.4 vs. 6.7 ± 3.4 in CTL), but increased in IBM iPSC-myotubes after lipopolysaccharide treatment (72.5 ± 21.8 in IBM vs. 13.0 ± 6.7 in CTL). Additionally, autophagy was disturbed, with 40.14% reduction in autophagy mediators. Mitochondrial dysfunction was strongly manifested, showing a conserved respiratory profile and antioxidant capacity, but a 56.33% lower cytochrome c oxidase/citrate synthase ratio and a 66.59% increase in lactate secretion. Overall, these findings support patient-derived iPSC-myotubes as a relevant model for IBM, reflecting the main muscle hallmarks, including inflammation, autophagy dysfunction and mitochondrial alterations at transcriptomic, protein and functional levels.
Collapse
Affiliation(s)
- Judith Cantó-Santos
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Laura Valls-Roca
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Ester Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Félix Andújar-Sánchez
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Adrià Vilaseca-Capel
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, CNAG, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Beatriz Martín-Mur
- Centro Nacional de Análisis Genómico, CNAG, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joan Padrosa
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Emma Peruga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Irene Madrigal
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Paula Segalés
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - José Carlos Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), Liver Unit- HCB-IDIBAPS, Barcelona, Spain
- CIBEREHD-Spanish Biomedical Research Centre in Hepatic and Digestive Diseases, Madrid, Spain
| | - Pedro J Moreno-Lozano
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain
| | - Albert Selva O'Callaghan
- Vall d'Hebrón Systemic Autoimmune Diseases Unit. Internal Medicine Service, Hospital Universitari Vall d'Hebrón (HVH), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ana Sevilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.
| | - José César Milisenda
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain.
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Group, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- CIBERER- Spanish Biomedical Research Centre in Rare Diseases - ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Li X, Ai X, Wang B, Luo M, Miyamoto A, Kuchay MS, Feng D, Zhang C. Application of 3D printing in the treatment of diabetic foot ulcers: current status and new insights. Front Bioeng Biotechnol 2024; 12:1475885. [PMID: 39605746 PMCID: PMC11598536 DOI: 10.3389/fbioe.2024.1475885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background and Aims Diabetic foot ulcers (DFUs) are a serious complication of diabetes mellitus (DM), affecting around 25% of individuals with DM. Primary treatment of a DFU involves wound off-loading, surgical debridement, dressings to provide a moist wound environment, vascular assessment, and appropriate antibiotics through a multidisciplinary approach. Three-dimensional (3D) printing technology is considered an innovative tool for the management of DFUs. The utilization of 3D printing technology in the treatment of DFU involves the modernization of traditional methods and the exploration of new techniques. This review discusses recent advancements in 3D printing technology for the application of DFU care, and the development of personalized interventions for the treatment of DFUs. Methods We searched the electronic database for the years 2019-2024. Studies related to the use of 3D printing technology in Diabetic foot were included. Results A total of 25 identified articles based on database search and citation network analysis. After removing duplicates, 18 articles remained, and three articles that did not meet the inclusion criteria were removed after reading the title/abstract. A total of 97 relevant articles were included during the reading of references. In total, 112 articles were included. Conclusion 3D printing technology offers unparalleled advantages, particularly in the realm of personalized treatment. The amalgamation of traditional treatment methods with 3D printing has yielded favorable outcomes in decelerating the progression of DFUs and facilitating wound healing. However, there is a limited body of research regarding the utilization of 3D printing technology in the domain of DFUs.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Ai
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengqian Luo
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Akira Miyamoto
- Department of Nishikyushu University Faculty of Rehabilitation, Fukuoka, Japan
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Haryana, India
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Rui S, Dai L, Zhang X, He M, Xu F, Wu W, Armstrong DG, You Y, Xiao X, Ma Y, Chen Y, Deng W. Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing. J Control Release 2024; 372:221-233. [PMID: 38909697 DOI: 10.1016/j.jconrel.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The utilization of platelet-rich plasma (PRP) has exhibited potential as a therapeutic approach for the management of diabetic foot ulcers (DFUs). However, it is currently not well understood how the diabetic environment may influence PRP-derived exosomes (PRP-Exos) and their potential impact on neutrophil extracellular traps (NETs). This study aims to investigate the effects of the diabetic environment on PRP-Exos, their communication with neutrophils, and the subsequent influence on NETs and wound healing. Through bulk-seq and Western blotting, we confirmed the increased expression of MMP-8 in DFUs. Additionally, we discovered that miRNA-26b-5p plays a significant role in the communication between DFUs and PRP-Exos. In our experiments, we found that PRP-Exos miR-26b-5p effectively improved diabetic wound healing by inhibiting NETs. Further tests validated the inhibitory effect of miR-26b-5p on NETs by targeting MMP-8. Both in vitro and in vivo experiments showed that miRNA-26b-5p from PRP-Exos promoted wound healing by reducing neutrophil infiltration through its targeting of MMP-8. This study establishes the importance of miR-26b-5p in the communication between DFUs and PRP-Exos, disrupting NETs formation in diabetic wounds by targeting MMP-8. These findings provide valuable insights for developing novel therapeutic strategies to enhance wound healing in individuals suffering from DFUs.
Collapse
Affiliation(s)
- Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Linrui Dai
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Xiaoshi Zhang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Min He
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Fan Xu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Yuehua You
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Ma
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| |
Collapse
|
5
|
Deng JY, Wu XQ, He WJ, Liao X, Tang M, Nie XQ. Targeting DNA methylation and demethylation in diabetic foot ulcers. J Adv Res 2023; 54:119-131. [PMID: 36706989 PMCID: PMC10703625 DOI: 10.1016/j.jare.2023.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes. AIM OF REVIEW This work provides significant insights into the development of therapeutics for improving chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and demethylation in DFU. Key scientific concepts of review: DNA methylation and demethylation play an important part in diabetic wound healing, via regulating corresponding signaling pathways in different breeds of cells, including macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound healing in different types of cells; and gave a brief summary on recent advances in applying cellular reprogramming techniques for improving diabetic wound healing.
Collapse
Affiliation(s)
- Jun-Yu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xing-Qian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wen-Jie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xin Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| | - Xu-Qiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
6
|
Li H, Jing S, Xu H. Effect and mechanism of microRNAs on various diabetic wound local cells. J Diabetes 2023; 15:955-967. [PMID: 37679063 PMCID: PMC10667630 DOI: 10.1111/1753-0407.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The difficulty of wound healing in diabetes mellitus has long been regarded as a thorny problem in the medical field. One of the important reasons is the abnormal function of wound-related cells. A large number of recent studies have shown that microRNA (miR), a noncoding RNA that exists in eukaryotic cells, is closely linked to the functions of various cells in diabetic wound, and ultimately affects the healing of wound. This paper establishes for the first time the connection between miR and wound healing from the cellular perspective and summarizes the effects of various miRs on one or more kinds of wound cells, including their targets and related mechanisms. The abnormal expression of miRs in the wound has certain value for the early diagnosis of diabetic wounds. Moreover, it seems that correcting miRs that are abnormal expressed in the wound or artificially adding miRs that can promote wound healing has an essential therapeutic value.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Vascular SurgeryThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Central South University Xiangya School of MedicineChangshaChina
| | - Shengyu Jing
- Department of Vascular SurgeryThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Central South University Xiangya School of MedicineChangshaChina
| | - Hongbo Xu
- Department of Vascular SurgeryThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
7
|
Chen VY, Siegfried LG, Tomic-Canic M, Stone RC, Pastar I. Cutaneous changes in diabetic patients: Primed for aberrant healing? Wound Repair Regen 2023; 31:700-712. [PMID: 37365017 PMCID: PMC10966665 DOI: 10.1111/wrr.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
Cutaneous manifestations affect most patients with diabetes mellitus, clinically presenting with numerous dermatologic diseases from xerosis to diabetic foot ulcers (DFUs). Skin conditions not only impose a significantly impaired quality of life on individuals with diabetes but also predispose patients to further complications. Knowledge of cutaneous biology and the wound healing process under diabetic conditions is largely limited to animal models, and studies focusing on biology of the human condition of DFUs remain limited. In this review, we discuss the critical molecular, cellular, and structural changes to the skin in the hyperglycaemic and insulin-resistant environment of diabetes with a focus specifically on human-derived data. Elucidating the breadth of the cutaneous manifestations coupled with effective diabetes management is important for improving patient quality of life and averting future complications including wound healing disorders.
Collapse
Affiliation(s)
- Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lindsey G Siegfried
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, Wang S, Ma Z, Li G. Mechanisms of diabetic foot ulceration: A review. J Diabetes 2023; 15:299-312. [PMID: 36891783 PMCID: PMC10101842 DOI: 10.1111/1753-0407.13372] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are associated with complex pathogenic factors and are considered a serious complication of diabetes. The potential mechanisms underlying DFUs have been increasingly investigated. Previous studies have focused on the three aspects of diabetic peripheral vascular disease, neuropathy, and wound infections. With advances in technology, researchers have been gradually conducting studies using immune cells, endothelial cells, keratinocytes, and fibroblasts, as they are involved in wound healing. It has been reported that the upregulation or downregulation of molecular signaling pathways is essential for the healing of DFUs. With a recent increase in the awareness of epigenetics, its regulatory role in wound healing has become a much sought-after trend in the treatment of DFUs. This review focuses on four aspects involved in the pathogenesis of DFUs: physiological and pathological mechanisms, cellular mechanisms, molecular signaling pathway mechanisms, and epigenetics. Given the challenge in the treatment of DFUs, we are hopeful that our review will provide new ideas for peers.
Collapse
Affiliation(s)
- Haibo Deng
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Binghui Li
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qian Shen
- School of Foreign StudiesZhongnan University of Economics and LawWuhanHubeiChina
| | - Chenchen Zhang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liwen Kuang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ran Chen
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - SiYuan Wang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - ZhiQiang Ma
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
10
|
Zhang Y, Zhang J, Xu Z, Zhang D, Xia P, Ling J, Tang X, Liu X, Xuan R, Zhang M, Liu J, Yu P. Regulation of NcRNA-protein binding in diabetic foot. Biomed Pharmacother 2023; 160:114361. [PMID: 36753956 DOI: 10.1016/j.biopha.2023.114361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Non-coding RNA (ncRNA) is a special type of RNA transcript that makes up more than 90 % of the human genome. Although ncRNA typically does not encode proteins, it indirectly controls a wide range of biological processes, including cellular metabolism, development, proliferation, transcription, and post-transcriptional modification. NcRNAs include small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), etc. The most researched of these are miRNA, lncRNA, and circRNA, which are crucial regulators in the onset of diabetes and the development of associated consequences. The ncRNAs indicated above are linked to numerous diabetes problems by binding proteins, including diabetic foot (DF), diabetic nephropathy, diabetic cardiomyopathy, and diabetic peripheral neuropathy. According to recent studies, Mir-146a can control the AKAP12 axis to promote the proliferation and migration of diabetic foot ulcer (DFU) cells, while lncRNA GAS5 can activate HIF1A/VEGF pathway by binding to TAF15 to promote DFU wound healing. However, there are still many unanswered questions about the mechanism of action of ncRNAs. In this study, we explored the mechanism and new progress of ncRNA-protein binding in DF, which can provide help and guidance for the application of ncRNA in the early diagnosis and potential targeted intervention of DFU.
Collapse
Affiliation(s)
- Yujia Zhang
- Huankui College, Nanchang University, Nanchang, Jiangxi, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meiying Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Zhao X, Xu M, Tang Y, Xie D, Wang Y, Chen M. Changes in miroRNA-103 expression in wound margin tissue are related to wound healing of diabetes foot ulcers. Int Wound J 2022; 20:467-483. [PMID: 35837786 PMCID: PMC9885465 DOI: 10.1111/iwj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between small noncoding microRNA-103 (miR-103) and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, forty type 2 diabetes mellitus with DFU (DFU group), and 20 patients with a chronic skin ulcer of lower limbs and normal glucose tolerance (SUC group) were included. Quantitative real-time PCR method was used to determine miR-103 expression levels in the wound margin tissue of subjects, and to analyse the relationship between the expression of miR-103 and DFU wound healing. In vitro experiments were also performed to understand the effect of miR-103 on the high glucose-induced injury of normal human dermal fibroblasts (NHDFs) cells. The results showed that the miR-103 expression level in the DFU group was significantly higher than that in the SUC group [5.81 (2.25-9.36) vs 2.08 (1.15-5.72)] (P < 0.05). The expression level of miR-103 in the wound margin tissue of DFU was negatively correlated with the healing rate of foot ulcers after four weeks (P = 0.037). In vitro experiments revealed that miR-103 could inhibit the proliferation and migration of NHDF cells and promote the apoptosis of NHDF cells by targeted regulation of regulator of calcineurin 1 (RCAN1) gene expression in a high glucose environment. Down-regulation of miR-103 could alleviate high glucose-induced NHDF cell injury by promoting RCAN1 expression. Therefore, the increased expression of miR-103 is involved in the functional damage of NHDF cells induced by high-glucose conditions, which is related to poor wound healing of DFU. These research findings will provide potential targets for the diagnosis and treatment of chronic skin wounds in diabetes.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Murong Xu
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Ying Tang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Dandan Xie
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Youmin Wang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Mingwei Chen
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| |
Collapse
|
12
|
Mastrogiacomo M, Nardini M, Collina MC, Di Campli C, Filaci G, Cancedda R, Odorisio T. Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Front Bioeng Biotechnol 2022; 10:869408. [PMID: 35586557 PMCID: PMC9108368 DOI: 10.3389/fbioe.2022.869408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Cutaneous chronic wounds are a major global health burden in continuous growth, because of population aging and the higher incidence of chronic diseases, such as diabetes. Different treatments have been proposed: biological, surgical, and physical. However, most of these treatments are palliative and none of them can be considered fully satisfactory. During a spontaneous wound healing, endogenous regeneration mechanisms and resident cell activity are triggered by the released platelet content. Activated stem and progenitor cells are key factors for ulcer healing, and they can be either recruited to the wound site from the tissue itself (resident cells) or from elsewhere. Transplant of skin substitutes, and of stem cells derived from tissues such as bone marrow or adipose tissue, together with platelet-rich plasma (PRP) treatments have been proposed as therapeutic options, and they represent the today most promising tools to promote ulcer healing in diabetes. Although stem cells can directly participate to skin repair, they primarily contribute to the tissue remodeling by releasing biomolecules and microvesicles able to stimulate the endogenous regeneration mechanisms. Stem cells and PRP can be obtained from patients as autologous preparations. However, in the diabetic condition, poor cell number, reduced cell activity or impaired PRP efficacy may limit their use. Administration of allogeneic preparations from healthy and/or younger donors is regarded with increasing interest to overcome such limitation. This review summarizes the results obtained when these innovative treatments were adopted in preclinical animal models of diabetes and in diabetic patients, with a focus on allogeneic preparations.
Collapse
Affiliation(s)
- Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- *Correspondence: Maddalena Mastrogiacomo,
| | - Marta Nardini
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
| | - Maria Chiara Collina
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Cristiana Di Campli
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Gilberto Filaci
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genova, Italy
| | - Teresa Odorisio
- Laboratorio di Biologia Molecolare e Cellulare, IDI-IRCCS, Roma, Italy
| |
Collapse
|
13
|
Affiliation(s)
- Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine
| | - Sarah Millar
- Black Family Stem Cell Institute, Departments of Cell, Developmental and Regenerative Biology and Dermatology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|