1
|
Alavi MS, Al-Asady AM, Fanoudi S, Sadeghnia HR. Differential effects of antiseizure medications on neurogenesis: Evidence from cells to animals. Heliyon 2024; 10:e26650. [PMID: 38420427 PMCID: PMC10901100 DOI: 10.1016/j.heliyon.2024.e26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Neurogenesis, the process of generating functionally integrated neurons from neural stem and progenitor cells, is involved in brain development during embryonic stages but continues throughout life. Adult neurogenesis plays essential roles in many brain functions such as cognition, brain plasticity, and repair. Abnormalities in neurogenesis have been described in many neuropsychiatric and neurological disorders, including epilepsy. While sharing a common property of suppressing seizures, accumulating evidence has shown that some antiseizure medications (ASM) exhibit neuroprotective potential in the non-epileptic models including Parkinson's disease, Alzheimer's disease, cerebral ischemia, or traumatic brain injury. ASM are a heterogeneous group of medications with different mechanisms of actions. Therefore, it remains to be revealed whether neurogenesis is a class effect or related to them all. In this comprehensive literature study, we reviewed the literature data on the influence of ASM on the neurogenesis process during brain development and also in the adult brain under physiological or pathological conditions. Meanwhile, we discussed the underlying mechanisms associated with the neurogenic effects of ASM by linking the reported in vivo and in vitro studies. PubMed, Web of Science, and Google Scholar databases were searched until the end of February 2023. A total of 83 studies were used finally. ASM can modulate neurogenesis through the increase or decrease of proliferation, survival, and differentiation of the quiescent NSC pool. The present article indicated that the neurogenic potential of ASM depends on the administered dose, treatment period, temporal administration of the drug, and normal or disease context.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid R Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Alavi MS, Negah SS, Ghorbani A, Hosseini A, Sadeghnia HR. Levetiracetam promoted rat embryonic neurogenesis via NMDA receptor-mediated mechanism in vitro. Life Sci 2021; 284:119923. [PMID: 34481865 DOI: 10.1016/j.lfs.2021.119923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
AIMS Levetiracetam (LEV) is a broad-spectrum antiepileptic drug with neuroprotective properties and novel mechanisms of action. Some evidence suggests that LEV may impact adult neurogenesis, but the results are controversial. The present study was aimed to evaluate the effects of LEV on the proliferation and differentiation of rat embryonic neural stem cells (NSCs) and to explore the role of GABAB or NMDA receptors. MAIN METHODS NSCs were isolated from rat fetal ganglionic eminence at embryonic day 14.5. The effects of LEV on viability, proliferation, neurosphere formation, and neuronal or astroglial differentiation of NSCs were assessed using resazurin, BrdU incorporation, immunocytochemistry, quantitative real-time PCR, and western blotting. Additionally, we addressed the relationship between treatment with NMDA and GABAB receptor antagonists (MK801 and saclofen, respectively) in combination with LEV on these parameters. KEY FINDINGS The data showed that LEV (50 μM) significantly increased the number (p < 0.01) and diameter of neurospheres (p < 0.05), enhanced proliferation (p < 0.01), and promoted neuronal differentiation, as revealed by significantly increased expressions of DCX and NeuN. The expressions of astroglial markers, GFAP and Olig2, were markedly reduced. The addition of MK801 (10 μM) significantly diminished neurospheres growth (p < 0.001), decreased the number of proliferating cells (p < 0.01), and reduced the number of new neurons (p < 0.001) but increased the astroglial cells (p < 0.001) induced by LEV. Co-treatment with saclofen (25 μM) did not significantly affect LEV-induced NSCs proliferation and differentiation. SIGNIFICANCE Our findings suggest that LEV may enhance rat embryonic neurogenesis mainly through an NMDA receptor-mediated mechanism.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Andres-Mach M, Szewczyk A, Zagaja M, Szala-Rycaj J, Lemieszek MK, Maj M, Abram M, Kaminski K. Preclinical Assessment of a New Hybrid Compound C11 Efficacy on Neurogenesis and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Int J Mol Sci 2021; 22:ijms22063240. [PMID: 33810180 PMCID: PMC8004689 DOI: 10.3390/ijms22063240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) is a frequent medical emergency that can lead to a variety of neurological disorders, including cognitive impairment and abnormal neurogenesis. The aim of the presented study was the in vitro evaluation of potential neuroprotective properties of a new pyrrolidine-2,5-dione derivatives compound C11, as well as the in vivo assessment of the impact on the neurogenesis and cognitive functions of C11 and levetiracetam (LEV) after pilocarpine (PILO)-induced SE in mice. The in vitro results indicated a protective effect of C11 (500, 1000, and 2500 ng/mL) on astrocytes under trophic stress conditions in the MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) test. The results obtained from the in vivo studies, where mice 72 h after PILO SE were treated with C11 (20 mg/kg) and LEV (10 mg/kg), indicated markedly beneficial effects of C11 on the improvement of the neurogenesis compared to the PILO control and PILO LEV mice. Moreover, this beneficial effect was reflected in the Morris Water Maze test evaluating the cognitive functions in mice. The in vitro confirmed protective effect of C11 on astrocytes, as well as the in vivo demonstrated beneficial impact on neurogenesis and cognitive functions, strongly indicate the need for further advanced molecular research on this compound to determine the exact neuroprotective mechanism of action of C11.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | | | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-090 Lublin, Poland;
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| |
Collapse
|
4
|
Evaluation of the impact of compound C11 a new anticonvulsant candidate on cognitive functions and hippocampal neurogenesis in mouse brain. Neuropharmacology 2019; 163:107849. [PMID: 31706991 DOI: 10.1016/j.neuropharm.2019.107849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Searching for the new and effective anticonvulsants in our previous study we developed a new hybrid compound C-11 derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamide. C11 revealed high efficacy in acute animal seizure models such as the maximal electroshock model (MES), the pentylenetetrazole model (PTZ) and the 6 Hz (6 Hz, 32 mA) seizure model, as well as in the kindling model of epilepsy induced by repeated injection of PTZ in mice. In the aim of further in vivo C11 characterization, in the current studies we evaluated its influence on cognitive functions, neurodegeneration and neurogenesis process in mice after chronical treatment. All experiments were performed on 6 weeks old male C57/BL mice. The following drugs were used: C11, levetiracetam (LEV), ethosuximide (ETS) and lacosamide (LCM). We analyzed proliferation, migration and differentiation of newborn cells as well as neurodegenerative changes in a mouse brain after long-term treatment with aforementioned AEDs. Additionally, we evaluated changes in learning and memory functions in response to chronic C11, LEV, LCM and ETS treatment. C11 as well as LEV and ETS did not disturb the proliferation of newborn cells compared to the control mice, whereas LCM treatment significantly decreased it. Chronic AEDs therapy did not induce significant neurodegenerative changes. Behavioral studies with using Morris Water Maze test did not indicate any disturbances in the spatial learning and memory after C11 as well as LEV and ETS treatment in comparison to the control group except LCM mice where significant dysfunctions in time, distance and direct swim to the platform were observed. Interestingly, results obtained from in vivo MRI spectroscopy showed a statistically significant increase of one of the neurometabolites- N-acetyloaspartate (NAA) for LCM and LEV mice. A new hybrid compound C11 in contrast to LCM has no negative impact on the process of neurogenesis and neurodegeneration in the mouse hippocampus. Furthermore, chronic treatment with C11 turned out to have no negative impact on cognitive functions of treated mice, which, is certainly of great importance for further more advanced preclinical and especially clinical trials.
Collapse
|
5
|
Orczyk JJ, Garraghty PE. The effects of ethosuximide on aversive instrumental learning in adult rats. Epilepsy Behav 2018; 84:1-9. [PMID: 29730499 DOI: 10.1016/j.yebeh.2018.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
Antiepileptic medications are the frontline treatment for seizure conditions but are not without cognitive side effects. Previously, our laboratory reported learning deficits in phenytoin-, carbamazepine-, valproic acid-, and felbamate-treated rats. In this experiment, the effects found in ethosuximide (ETH)-treated rats have been compared with those in water-treated controls (controls) using the same instrumental training tasks. Rats treated with ETH did not display any performance deficits in any of the conditions tested relative to controls. These animals showed more rapid acquisition of the avoidance response than the control animals but only when they had prior experience in the appetitive condition. Of the drugs tested to date with these learning paradigms, ETH is the only one that did not impair performance relative to controls in any condition tested. Moreover, in comparison with rats treated with valproic acid, the only other available compound commonly recommended for the treatment of absence seizures, ETH-treated rats show substantially higher performance.
Collapse
Affiliation(s)
- John J Orczyk
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
A Long-Term Treatment with Arachidonyl-2'-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy. Int J Mol Sci 2017; 18:ijms18050900. [PMID: 28441341 PMCID: PMC5454813 DOI: 10.3390/ijms18050900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF—a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy.
Collapse
|
7
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|