1
|
Lu YC, Adukure RD, Roy S, Chien DL, McGill MJ, Polara S, Cisneros GA, Scheidt KA, Fasan R. Photobiocatalytic Enantioselective Benzylic C(sp 3)-H Acylation Enabled by Thiamine-Dependent Enzymes via Intermolecular Hydrogen Atom Transfer. J Am Chem Soc 2025; 147:17804-17816. [PMID: 40369825 DOI: 10.1021/jacs.5c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Hydrogen atom transfer (HAT) constitutes a powerful mechanism exploited in biology and chemistry to functionalize ubiquitous C(sp3)-H bonds in organic molecules. Despite its synthetic potential, achieving stereocontrol in chemical HAT-mediated C-H functionalization transformations remains challenging. By merging the radical reactivity of thiamine (ThDP)-dependent enzymes with chemical hydrogen atom transfer, we report here a photobiocatalytic strategy for the enantioselective C(sp3)-H acylation of an organic substrate, a transformation not found in nature nor currently attainable by chemical means. This method enables the direct functionalization of benzylic C(sp3)-H sites in a broad range of substrates to furnish valuable enantioenriched ketone motifs with good to high enantioselectivity (up to 96% ee). Mechanistic and spectroscopic studies support the involvement of radical species derived from the Breslow intermediate and C-H substrate, highlight the critical role of the photocatalyst and hydrogen atom abstraction reagents for productive catalysis, and reveal a specific enzyme/photocatalyst interaction favoring single electron transfer during catalysis. Further insights into how the enantioselectivity of the C-C bond-forming reaction is controlled by the enzyme and influenced by active site mutations were gained via molecular modeling. This study illustrates the productive integration of ThDP-mediated biocatalysis with chemical HAT, expanding the range of asymmetric C(sp3)-H functionalization transformations that can be accessed through biocatalysis.
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ronald D Adukure
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Satyajit Roy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Derek L Chien
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Matthew J McGill
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarthi Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Yang X, Huang J, Guo J, Fang S, Wang Z, Wu G, Wu Y, Zhong F. Bridging chemistry and biology for light-driven new-to-nature enantioselective photoenzymatic catalysis. Chem Soc Rev 2025. [PMID: 40351234 DOI: 10.1039/d4cs00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Merging enzymes with light-driven photocatalysis has given rise to the burgeoning field of photoenzymatic catalysis. This approach combines the high reactivity from photoexcitation with the exceptional selectivity of biocatalysis, providing exciting opportunities to tackle challenges in enantioselective radical reactions and to access new-to-nature enzyme reactivities. This tutorial review aims to provide a comprehensive introduction to this interdisciplinary topic, catering to the growing interest from communities in asymmetric catalysis, photocatalysis, radical chemistry, enzyme engineering, and synthetic biology. We summarize the fundamental principles of utilizing light to power enzymatic reactions and different strategies exploring enantioselective photoenzymatic systems, including natural cofactor-based photoenzymatic catalysis, photocatalyst/enzyme synergistic catalysis, synthetic cofactor-based artificial photoenzymes, and cofactor-free photoenzymatic catalysis. We also discuss the challenges and prospects of enantioselective photoenzymatic catalysis in advancing sustainable asymmetric synthesis.
Collapse
Affiliation(s)
- Xinjie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Institute for Advanced Study & School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Jianjian Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
- Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuran Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Zhiming Wang
- Institute for Advanced Study & School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Guojiao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yuzhou Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Fangrui Zhong
- State Key Laboratory of Materials Processing and Die & Mould Technology, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
3
|
Bjarnesen D, Lanza L, Presini F, Giovannini PP, Müller M. Diversity of ThDP-Dependent Enzymes Forming Chiral Tertiary Alcohols. Chembiochem 2025:e2500200. [PMID: 40228089 DOI: 10.1002/cbic.202500200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Thiamine diphosphate (ThDP)-dependent enzymes are well known biocatalysts for CC bond-forming reactions. While this enzyme class is mainly investigated for the formation of acyloins of secondary alcohols, recent studies have expanded its scope to utilize ketones as electrophiles in asymmetric carboligation reactions for the formation of tertiary alcohols. Chiral tertiary alcohols are ubiquitous motifs in natural products and important building blocks for the synthesis of bioactive compounds. ThDP-dependent enzymes are emerging as one of the most promising classes of biocatalysts for synthesizing a wide range of products due to the variety of possible substrate combinations, accessible starting materials, high enantioselectivity, and advantageous self-regeneration of the catalytic ThDP cofactor. This review provides an overview of the ThDP-dependent enzymes (e.g., decarboxylase, DC; transketolase, TK; α-keto acid dehydrogenase 2, αKADH2) that form tertiary alcohols, focusing on the substrate scope and diversity of physiological functions. The available toolbox and the characterized reactions shall serve as a starting point for future studies. Inspired by nature, an even broader diversity of classes and substrate specificities is expected in this field.
Collapse
Affiliation(s)
- Daniela Bjarnesen
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lucrezia Lanza
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
4
|
Li H, Zhu Z, Wu D, Ju Y, Li D, Zou K, Zhu C, Zhang J, Zhu G, Zhang L, Chi YR, Xie Y. Taming Highly Enolizable Aldehydes via Enzyme Catalysis for Enantiocomplementary Construction of β-Hydroxyphosphonates. J Am Chem Soc 2025; 147:3102-3109. [PMID: 39818875 DOI: 10.1021/jacs.4c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee). The products can be obtained on gram scales and exhibit rich reactivity for downstream transformations to afford diverse molecules. PfBAL (or its mutant A28G) and PaBAL enzymes serve as enantiocomplementary pairs, enabling the synthesis of both product configurations. Mechanistic studies proved that the entrance directions of the active cavities of these two enzyme pairs were distinct, leading to acyl anions formed from these two enzyme pairs attacking 2-phosphonate aldehydes from different orientations.
Collapse
Affiliation(s)
- Huangong Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zheng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongqi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongyuan Ju
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Keke Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaonan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yongtao Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Xing Z, Liu F, Feng J, Yu L, Wu Z, Zhao B, Chen B, Ping H, Xu Y, Liu A, Zhao Y, Wang C, Wang B, Huang X. Synergistic photobiocatalysis for enantioselective triple-radical sorting. Nature 2025; 637:1118-1123. [PMID: 39571610 DOI: 10.1038/s41586-024-08399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 01/24/2025]
Abstract
Multicomponent reactions-those where three or more substrates combine into a product-have been highly useful in rapidly building chemical building blocks of increased complexity1, but achieving this enzymatically has remained rare2-5. This limitation primarily arises because an enzyme's active site is not typically set up to address multiple substrates, especially in cases involving multiple radical intermediates6. Recently, chemical catalytic radical sorting has emerged as an enabling strategy for a variety of useful reactions7,8. However, making such processes enantioselective is highly challenging owing to the inherent difficulty in the stereochemical control of radicals9. Here we repurpose a thiamine-dependent enzyme10,11 through directed evolution and combine it with photoredox catalysis to achieve a photobiocatalytic enantioselective three-component radical cross-coupling. This approach combines three readily available starting materials-aldehydes, α-bromo-carbonyls and alkenes-to give access to enantioenriched ketone products. Mechanistic investigations provide insights into how this dual photocatalyst-enzyme system precisely directs the three distinct radicals involved in the transformation, unlocking enzyme reactivity. Our approach has achieved exceptional stereoselectivity, with 24 out of 33 examples achieving ≥97% enantiomeric excess.
Collapse
Affiliation(s)
- Zhongqiu Xing
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Fulu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Institute of Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Lu Yu
- Division of Life Sciences and Medicine, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhouping Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Beibei Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Bin Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Heng Ping
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuanyuan Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Aokun Liu
- Division of Life Sciences and Medicine, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
7
|
Dobiašová H, Jurkaš V, Kabátová F, Horvat M, Rudroff F, Vranková K, Both P, Winkler M. Carboligation towards production of hydroxypentanones. J Biotechnol 2024; 393:161-169. [PMID: 39122015 DOI: 10.1016/j.jbiotec.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from E. coli (EcPDH E1), namely LaPDH from Leclercia adecarboxylata, CnPDH from Cupriavidus necator, and TcPDH from Tanacetum cinerariifolium, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. CnPDH, for example, exhibits superior stability across different pH levels compared to EcPDH E1. Both α-hydroxy pentanones can be produced with CnPDH in satisfactory yields (74% and 59%, respectively).
Collapse
Affiliation(s)
- Hana Dobiašová
- Institute of Chemical and Environmental Engineering, Slovak University of Technology Radlinského 9, Bratislava 812 37, Slovakia; Axxence Slovakia s.r.o, Mickiewiczova 9, Bratislava 811 07, Slovakia
| | - Valentina Jurkaš
- Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | | | - Melissa Horvat
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Peter Both
- Axxence Slovakia s.r.o, Mickiewiczova 9, Bratislava 811 07, Slovakia.
| | - Margit Winkler
- Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz 8010, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria.
| |
Collapse
|
8
|
Qiao Y, Wang J, Zhang D, Zheng X, Lin B, Huang Y, Liao Y, Deng Z, Kong L, You D. Biosynthesis of the benzylpyrrolidine precursor in anisomycin by a unique ThDP-dependent enzyme. Synth Syst Biotechnol 2024; 10:76-85. [PMID: 39263350 PMCID: PMC11387542 DOI: 10.1016/j.synbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Anisomycin (compound 1), a multifunctional pyrrolidine antibiotic, primarily inhibits protein biosynthesis by binding to the ribosome. Upon binding to the ribosome, the para-phenol moiety of anisomycin inserts completely into the hydrophobic crevice of the A-site and blocks the access of the incoming aminoacyl-tRNAs, disrupting peptide bond formation. Hence, the para-methoxyphenyl group serves as a starting point for developing novel anisomycin analogs with potent antifungal and insecticidal properties. However, the activation and condensation mechanism of phenylpyruvic acid has not yet been elucidated. In this study, genetic manipulations of aniP and its homologue siAniP confirmed their indispensable role in 1 biosynthesis. Bioinformatics analysis suggested that AniP and siAniP function as transketolase. siAniP was found to catalyzed condensation between 4-hydroxyphenylpyruvic acid (3) and glyceraldehyde (GA), initiating pyrrolidine synthesis. siAniP was specific for aromatic keto acids and tolerant of aliphatic and aromatic aldehydes, and was able to catalyze the asymmetric intermolecular condensation of two keto acids, leading to the formation of 24 α-hydroxy ketone. To the best of our knowledge, siAniP is the first TK that catalyzes the transfer of a C2 ketol and symmetrical intermolecular coupling using aromatic keto acids as donor substrates. Structural analysis, docking model construction, and site-directed mutagenesis identified that I220, H275, R322 and W391 were crucial for substrate binding. Moreover, sequence similarity network (SSN)-based genome neighborhood network (GNN) analyses of AniP suggested the widespread occurrence of the AniP-like-mediated reaction in the biosynthesis of 1 and its analogs, particularly in the assembly of benzylpyrrolidine. These findings not only expand the repertoire of TKs but also provide a potent biocatalyst that could be used for the structural innovation of 1 and its derivatives.
Collapse
Affiliation(s)
- Yongjian Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Junbo Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dashan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoqing Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Baixin Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongkang Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yulin Liao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
9
|
Xu Y, Chen H, Yu L, Peng X, Zhang J, Xing Z, Bao Y, Liu A, Zhao Y, Tian C, Liang Y, Huang X. A light-driven enzymatic enantioselective radical acylation. Nature 2024; 625:74-78. [PMID: 38110574 DOI: 10.1038/s41586-023-06822-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongwei Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lu Yu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Xichao Peng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jiawei Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhongqiu Xing
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuyan Bao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Aokun Liu
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Changlin Tian
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Kordesedehi R, Asadollahi MA, Shahpiri A, Biria D, Nikel PI. Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida. Microb Cell Fact 2023; 22:89. [PMID: 37131175 PMCID: PMC10155308 DOI: 10.1186/s12934-023-02073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.
Collapse
Affiliation(s)
- Reihaneh Kordesedehi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Davoud Biria
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Spöring J, Wiesenthal J, Pfennig VS, Gätgens J, Beydoun K, Bolm C, Klankermayer J, Rother D. Effective Production of Selected Dioxolanes by Sequential Bio- and Chemocatalysis Enabled by Adapted Solvent Switching. CHEMSUSCHEM 2023; 16:e202201981. [PMID: 36448365 PMCID: PMC10107191 DOI: 10.1002/cssc.202201981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Most combinations of chemo- and biocatalysis take place in aqueous media or require a solvent change with complex intermediate processing. Using enzymes in the same organic solvent as the chemocatalyst eliminates this need. Here, it was shown that a complete chemoenzymatic cascade to form dioxolanes could be carried out in a purely organic environment. The result, including downstream processing, was compared with a classical mode, shifting solvent. First, a two-step enzyme cascade starting from aliphatic aldehydes to chiral diols (3,4-hexanediol and 4,5-octanediol) was run either in an aqueous buffer or in the potentially biobased solvent cyclopentyl methyl ether. Subsequently, a ruthenium molecular catalyst enabled the conversion to dioxolanes [e. g., (4S,5S)-dipropyl-1,3-dioxolane]. Importantly, the total synthesis of this product was not only highly stereoselective but also based on the combination of biomass, CO2 , and hydrogen, thus providing an important example of a bio-hybrid chemical.
Collapse
Affiliation(s)
- Jan‐Dirk Spöring
- Institute of Bio- and Geosciences 1Forschungszentrum Jülich GmbH52428JülichGermany
- Aachen Biology and BiotechnologyRWTH Aachen University52056AachenGermany
| | - Jan Wiesenthal
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University52056AachenGermany
| | | | - Jochem Gätgens
- Institute of Bio- and Geosciences 1Forschungszentrum Jülich GmbH52428JülichGermany
| | - Kassem Beydoun
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University52056AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen University52056AachenGermany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University52056AachenGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences 1Forschungszentrum Jülich GmbH52428JülichGermany
- Aachen Biology and BiotechnologyRWTH Aachen University52056AachenGermany
| |
Collapse
|
12
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
13
|
Lechner H, Oberdorfer G. Derivatives of Natural Organocatalytic Cofactors and Artificial Organocatalytic Cofactors as Catalysts in Enzymes. Chembiochem 2022; 23:e202100599. [PMID: 35302276 PMCID: PMC9401024 DOI: 10.1002/cbic.202100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Catalytically active non-metal cofactors in enzymes carry out a variety of different reactions. The efforts to develop derivatives of naturally occurring cofactors such as flavins or pyridoxal phosphate and the advances to design new, non-natural cofactors are reviewed here. We report the status quo for enzymes harboring organocatalysts as derivatives of natural cofactors or as artificial ones and their application in the asymmetric synthesis of various compounds.
Collapse
Affiliation(s)
- Horst Lechner
- Graz University of TechnologyInstitute of BiochemistryPetersgasse 10–12/II8010GrazAustria
| | - Gustav Oberdorfer
- Graz University of TechnologyInstitute of BiochemistryPetersgasse 10–12/II8010GrazAustria
| |
Collapse
|
14
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
15
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
16
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
17
|
Xu J, Lou Y, Wang L, Wang Z, Xu W, Ma W, Chen Z, Chen X, Wu Q. Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Wenqian Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaoyang Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
18
|
Cárdenas-Fernández M, Subrizi F, Dobrijevic D, Hailes HC, Ward JM. Characterisation of a hyperthermophilic transketolase from Thermotoga maritima DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Org Biomol Chem 2021; 19:6493-6500. [PMID: 34250527 PMCID: PMC8317047 DOI: 10.1039/d1ob01237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Transketolase (TK) is a fundamentally important enzyme in industrial biocatalysis which carries out a stereospecific carbon-carbon bond formation, and is widely used in the synthesis of prochiral ketones. This study describes the biochemical and molecular characterisation of a novel and unusual hyperthermophilic TK from Thermotoga maritima DSM3109 (TKtmar). TKtmar has a low protein sequence homology compared to the already described TKs, with key amino acid residues in the active site highly conserved. TKtmar has a very high optimum temperature (>90 °C) and shows pronounced stability at high temperature (e.g. t1/2 99 and 9.3 h at 50 and 80 °C, respectively) and in presence of organic solvents commonly used in industry (DMSO, acetonitrile and methanol). Substrate screening showed activity towards several monosaccharides and aliphatic aldehydes. In addition, for the first time, TK specificity towards uronic acids was achieved with TKtmar catalysing the efficient conversion of d-galacturonic acid and lithium hydroxypyruvate into 7-keto-octuronic acid, a very rare C8 uronic acid, in high yields (98%, 49 mM).
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK. and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Liu Q, Xie X, Tang M, Tao W, Shi T, Zhang Y, Huang T, Zhao Y, Deng Z, Lin S. One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mancheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanzhen Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Ma L, Yu Y, Xin L, Zhu L, Xia J, Ou P, Huang X. Visible Light Enabled Formal Cross Silyl Benzoin Reaction as an Access to α‐Hydroxyketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| | - Pengcheng Ou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research Ministry of Education of China Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan 410081 People's Republic of China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 People's Republic of China
| |
Collapse
|
21
|
Marsden SR, McMillan DGG, Hanefeld U. Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids. Int J Mol Sci 2020; 21:ijms21228641. [PMID: 33207817 PMCID: PMC7696235 DOI: 10.3390/ijms21228641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180-250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates.
Collapse
|
22
|
Liang YF, Yan LT, Yue Q, Zhao JK, Luo CY, Gao F, Li H, Gao WY. Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones. Sci Rep 2020; 10:15404. [PMID: 32958806 PMCID: PMC7505981 DOI: 10.1038/s41598-020-72416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Le-Tian Yan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Qiao Yue
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ji-Kui Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Cai-Yun Luo
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Feng Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Claaßen C, Mack K, Rother D. Benchtop NMR for Online Reaction Monitoring of the Biocatalytic Synthesis of Aromatic Amino Alcohols. ChemCatChem 2020; 12:1190-1199. [PMID: 32194875 PMCID: PMC7074048 DOI: 10.1002/cctc.201901910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Indexed: 01/25/2023]
Abstract
Online analytics provides insights into the progress of an ongoing reaction without the need for extensive sampling and offline analysis. In this study, we investigated benchtop NMR as an online reaction monitoring tool for complex enzyme cascade reactions. Online NMR was used to monitor a two-step cascade beginning with an aromatic aldehyde and leading to an aromatic amino alcohol as the final product, applying two different enzymes and a variety of co-substrates and intermediates. Benchtop NMR enabled the concentration of the reaction components to be detected in buffered systems in the single-digit mM range without using deuterated solvent. The concentrations determined via NMR were correlated with offline samples analyzed via uHPLC and displayed a good correlation between the two methods. In summary, benchtop NMR proved to be a sensitive, selective and reliable method for online reaction monitoring in (multi-step) biosynthesis. In future, online analytic systems such as the benchtop NMR devices described might not only enable direct monitoring of the reaction, but may also form the basis for self-regulation in biocatalytic reactions.
Collapse
Affiliation(s)
- C. Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - K. Mack
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - D. Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|
24
|
Seo PW, Jo HJ, Hwang IY, Jeong HY, Kim JH, Kim JW, Lee EY, Park JB, Kim JS. Understanding the molecular properties of the E1 subunit (SucA) of α-ketoglutarate dehydrogenase complex from Vibrio vulnificus for the enantioselective ligation of acetaldehydes into (R)-acetoin. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01566c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enantioselective ligation of acetaldehydes into (R)-acetoin by SucA from Vibrio vulnificus.
Collapse
Affiliation(s)
- Pil-Won Seo
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Hye-Jin Jo
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - In Yeub Hwang
- Department of Chemical Engineering
- Kyung Hee University
- Republic of Korea
| | - Ha-Yeon Jeong
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Jun-Hong Kim
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering
- Kyung Hee University
- Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| |
Collapse
|
25
|
Yu H, Hernández López RI, Steadman D, Méndez‐Sánchez D, Higson S, Cázares‐Körner A, Sheppard TD, Ward JM, Hailes HC, Dalby PA. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones. FEBS J 2019; 287:1758-1776. [DOI: 10.1111/febs.15108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering University College London UK
| | | | | | | | - Sally Higson
- Department of Chemistry University College London UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering University College London UK
| | | | - Paul A. Dalby
- Department of Biochemical Engineering University College London UK
| |
Collapse
|
26
|
Schieferdecker S, Shabuer G, Letzel AC, Urbansky B, Ishida-Ito M, Ishida K, Cyrulies M, Dahse HM, Pidot S, Hertweck C. Biosynthesis of Diverse Antimicrobial and Antiproliferative Acyloins in Anaerobic Bacteria. ACS Chem Biol 2019; 14:1490-1497. [PMID: 31243958 DOI: 10.1021/acschembio.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metabolic profiling and genome mining revealed that anaerobic bacteria have the potential to produce acyloin natural products. In addition to sattazolin A and B, three new sattazolin congeners and a novel acyloin named clostrocyloin were isolated from three strains of Clostridium beijerinckii, a bacterium used for industrial solvent production. Bioactivity profiling showed that the sattazolin derivatives possess antimicrobial activities against mycobacteria and pseudomonads with only low cytotoxicity. Clostrocyloin was found to be mainly active against fungi. The thiamine diphosphate (ThDP)-dependent sattazolin-producing synthase was identified in silico and characterized both in vivo and in in vitro enzyme assays. A related acyloin synthase from the clostrocyloin producer was shown to be responsible for the production of the acyloin core of clostrocyloin. The biotransformation experiments provided first insights into the substrate scope of the clostrocyloin synthase and revealed biosynthetic intermediates.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gulimila Shabuer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Anne-Catrin Letzel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Barbara Urbansky
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Michael Cyrulies
- BioPilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sacha Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Victoria 3010, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
27
|
Erdmann V, Sehl T, Frindi-Wosch I, Simon RC, Kroutil W, Rother D. Methoxamine Synthesis in a Biocatalytic 1-Pot 2-Step Cascade Approach. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vanessa Erdmann
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Torsten Sehl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- HERBRAND PharmaChemicals GmbH, 77723 Gengenbach, Germany
| | - Ilona Frindi-Wosch
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Robert C. Simon
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Roche-Diagnostics GmbH, 82377 Penzberg, Germany
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Dörte Rother
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
28
|
Claaßen C, Gerlach T, Rother D. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses. Adv Synth Catal 2019; 361:2387-2401. [PMID: 31244574 PMCID: PMC6582597 DOI: 10.1002/adsc.201900169] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Indexed: 01/20/2023]
Abstract
Multi-step biocatalytic reactions have gained increasing importance in recent years because the combination of different enzymes enables the synthesis of a broad variety of industrially relevant products. However, the more enzymes combined, the more crucial it is to avoid cross-reactivity in these cascade reactions and thus achieve high product yields and high purities. The selective control of enzyme activity, i.e., remote on-/off-switching of enzymes, might be a suitable tool to avoid the formation of unwanted by-products in multi-enzyme reactions. This review compiles a range of methods that are known to modulate enzyme activity in a stimulus-responsive manner. It focuses predominantly on in vitro systems and is subdivided into reversible and irreversible enzyme activity control. Furthermore, a discussion section provides indications as to which factors should be considered when designing and choosing activity control systems for biocatalysis. Finally, an outlook is given regarding the future prospects of the field.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Tim Gerlach
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|
29
|
Buchholz PCF, Ferrario V, Pohl M, Gardossi L, Pleiss J. Navigating within thiamine diphosphate-dependent decarboxylases: Sequences, structures, functional positions, and binding sites. Proteins 2019; 87:774-785. [PMID: 31070804 DOI: 10.1002/prot.25706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 11/10/2022]
Abstract
Thiamine diphosphate-dependent decarboxylases catalyze both cleavage and formation of CC bonds in various reactions, which have been assigned to different homologous sequence families. This work compares 53 ThDP-dependent decarboxylases with known crystal structures. Both sequence and structural information were analyzed synergistically and data were analyzed for global and local properties by means of statistical approaches (principle component analysis and principal coordinate analysis) enabling complexity reduction. The different results obtained both locally and globally, that is, individual positions compared with the overall protein sequence or structure, revealed challenges in the assignment of separated homologous families. The methods applied herein support the comparison of enzyme families and the identification of functionally relevant positions. The findings for the family of ThDP-dependent decarboxylases underline that global sequence identity alone is not sufficient to distinguish enzyme function. Instead, local sequence similarity, defined by comparisons of structurally equivalent positions, allows for a better navigation within several groups of homologous enzymes. The differentiation between homologous sequences is further enhanced by taking structural information into account, such as BioGPS analysis of the active site properties or pairwise structural superimpositions. The methods applied herein are expected to be transferrable to other enzyme families, to facilitate family assignments for homologous protein sequences.
Collapse
Affiliation(s)
- Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Valerio Ferrario
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.,Laboratory of Applied and Computational Biocatalysis, Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Martina Pohl
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Lucia Gardossi
- Laboratory of Applied and Computational Biocatalysis, Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
30
|
Li Z, Wang Z, Wang Y, Wu X, Lu H, Huang Z, Chen F. Substituent Position‐Controlled Stereoselectivity in Enzymatic Reduction of Diaryl‐ and Aryl(heteroaryl)methanones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhining Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Zexu Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Yuhan Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
| | - Xiaofan Wu
- College of Chemical EngineeringFuzhou University 2 Xueyuan Road Fuzhou 350100 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan University 2005 Songhu Road Shanghai 200438 People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms 2005 Songhu Road Shanghai 200438 People's Republic of China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of ChemistryFudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
31
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
32
|
Hsu N, Wang Y, Lin K, Chang C, Ke S, Lyu S, Hsu L, Li Y, Chen S, Wang K, Li T. Evidence of Diradicals Involved in the Yeast Transketolase Catalyzed Keto-Transferring Reactions. Chembiochem 2018; 19:2395-2402. [PMID: 30155962 PMCID: PMC6282555 DOI: 10.1002/cbic.201800378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 11/12/2022]
Abstract
Transketolase (TK) catalyzes a reversible transfer of a two-carbon (C2 ) unit between phosphoketose donors and phosphoaldose acceptors, for which the group-transfer reaction that follows a one- or two-electron mechanism and the force that breaks the C2"-C3" bond of the ketose donors remain unresolved. Herein, we report ultrahigh-resolution crystal structures of a TK (TKps) from Pichia stipitis in previously undiscovered intermediate states and support a diradical mechanism for a reversible group-transfer reaction. In conjunction with MS, NMR spectroscopy, EPR and computational analyses, it is concluded that the enzyme-catalyzed non-Kekulé diradical cofactor brings about the C2"-C3" bond cleavage/formation for the C2 -unit transfer reaction, for which suppression of activation energy and activation and destabilization of enzymatic intermediates are facilitated.
Collapse
Affiliation(s)
- Ning‐Shian Hsu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Institute of Biochemistry and Molecular BiologyNational Yang-Ming UniversityTaipei112Taiwan
| | - Yung‐Lin Wang
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Kuan‐Hung Lin
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Institute of Biochemistry and Molecular BiologyNational Yang-Ming UniversityTaipei112Taiwan
| | - Chi‐Fon Chang
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Shyue‐Chu Ke
- Department of PhysicsNational Dong Hwa UniversityHualien974Taiwan
| | - Syue‐Yi Lyu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Li‐Jen Hsu
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | - Yi‐Shan Li
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
| | | | | | - Tsung‐Lin Li
- Genomics Research CenterAcademia SinicaTaipei115Taiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichung City402Taiwan
| |
Collapse
|
33
|
Di Carmine G, Bortolini O, Massi A, Müller M, Bernacchia G, Fantin G, Ragno D, Giovannini PP. Enzymatic Cross‐Benzoin‐Type Condensation of Aliphatic Aldehydes: Enantioselective Synthesis of 1‐Alkyl‐1‐hydroxypropan‐2‐ones and 1‐Alkyl‐1‐hydroxybutan‐2‐ones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Graziano Di Carmine
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 79104 Freiburg Germany
| | - Giovanni Bernacchia
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Giancarlo Fantin
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Pier Paolo Giovannini
- Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| |
Collapse
|
34
|
Zhang Y, Yao P, Cui Y, Wu Q, Zhu D. One‐Pot Enzymatic Synthesis of Cyclic Vicinal Diols from Aliphatic Dialdehydes via Intramolecular C−C Bond Formation and Carbonyl Reduction Using Pyruvate Decarboxylases and Alcohol Dehydrogenases. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan Zhang
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China Fax: (+86) 22-24828703
| | - Peiyuan Yao
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China Fax: (+86) 22-24828703
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China Fax: (+86) 22-24828703
| | - Qiaqing Wu
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China Fax: (+86) 22-24828703
| | - Dunming Zhu
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District Beijing 100049 People's Republic of China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China Fax: (+86) 22-24828703
| |
Collapse
|
35
|
Mack K, Erdmann V, Döbber J, Rother D. Efficient synthesis of chiral amino alcohol using two-step enzyme cascades in repetitive batch mode. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201855278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- K. Mack
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - V. Erdmann
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - J. Döbber
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - D. Rother
- Forschungszentrum Jülich GmbH; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| |
Collapse
|
36
|
Extended substrate range of thiamine diphosphate-dependent MenD enzyme by coupling of two C–C-bonding reactions. Appl Microbiol Biotechnol 2018; 102:8359-8372. [DOI: 10.1007/s00253-018-9259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
|
37
|
Baierl A, Theorell A, Mackfeld U, Marquardt P, Hoffmann F, Moers S, Nöh K, Buchholz PCF, Pleiss J, Pohl M. Towards a Mechanistic Understanding of Factors Controlling the Stereoselectivity of Transketolase. ChemCatChem 2018. [DOI: 10.1002/cctc.201800299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Baierl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Axel Theorell
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Ursula Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Philipp Marquardt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | | | - Stephanie Moers
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| |
Collapse
|
38
|
Garrabou X, Macdonald DS, Wicky BIM, Hilvert D. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction. Angew Chem Int Ed Engl 2018; 57:5288-5291. [DOI: 10.1002/anie.201712554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xavier Garrabou
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| | | | | | - Donald Hilvert
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| |
Collapse
|
39
|
Garrabou X, Macdonald DS, Wicky BIM, Hilvert D. Stereodivergent Evolution of Artificial Enzymes for the Michael Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xavier Garrabou
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| | | | | | - Donald Hilvert
- Laboratory of Organic Chemistry; ETH Zürich; 8093 Zürich Switzerland
| |
Collapse
|
40
|
Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalisations. Nat Catal 2017; 1:55-62. [PMID: 29430568 PMCID: PMC5798593 DOI: 10.1038/s41929-017-0001-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peroxygenases offer attractive means to address challenges in selective oxyfunctionalisation chemistry. Despite their attractiveness, the application of peroxygenases in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant (H2O2). Often atom inefficient peroxide generation systems are required, which show little potential for large scale implementation. Here we show that visible light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way the stereoselective oxyfunctionalisation of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.
Collapse
|
41
|
Guérard-Hélaine C, De Sousa Lopes Moreira M, Touisni N, Hecquet L, Lemaire M, Hélaine V. Transketolase-Aldolase Symbiosis for the Stereoselective Preparation of Aldoses and Ketoses of Biological Interest. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christine Guérard-Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Maxime De Sousa Lopes Moreira
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Nadia Touisni
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Laurence Hecquet
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Marielle Lemaire
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Virgil Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| |
Collapse
|
42
|
Cárdenas-Fernández M, Bawn M, Hamley-Bennett C, Bharat PKV, Subrizi F, Suhaili N, Ward DP, Bourdin S, Dalby PA, Hailes HC, Hewitson P, Ignatova S, Kontoravdi C, Leak DJ, Shah N, Sheppard TD, Ward JM, Lye GJ. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discuss 2017; 202:415-431. [DOI: 10.1039/c7fd00094d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).
Collapse
|
43
|
Baierl A, Vogel C, Pleiss J, Hailes H, Müller M, Pohl M. Structure-Function Studies on the Chemo- and Stereoselectivity of ThDP-Dependent Enzymes. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201650278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis. Chemistry 2016; 22:13999-14005. [DOI: 10.1002/chem.201602084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/07/2022]
|
45
|
Giovannini PP, Lerin LA, Müller M, Bernacchia G, Bastiani MD, Catani M, Di Carmine G, Massi A. (S
)-Selectivity in Phenylacetyl Carbinol Synthesis Using the Wild-Type Enzyme Acetoin:Dichlorophenolindophenol Oxidoreductase from Bacillus licheniformis. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 I-44121 Ferrara Italy
| | - Lindomar Alberto Lerin
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 I-44121 Ferrara Italy
| | - Michael Müller
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Giovanni Bernacchia
- Dipartimento di Scienze della Vita e Biotecnologie; Università di Ferrara; Via L. Borsari 46 I-44121 Ferrara Italy
| | - Morena De Bastiani
- Dipartimento di Scienze della Vita e Biotecnologie; Università di Ferrara; Via L. Borsari 46 I-44121 Ferrara Italy
| | - Martina Catani
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 I-44121 Ferrara Italy
| | - Graziano Di Carmine
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 I-44121 Ferrara Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 I-44121 Ferrara Italy
| |
Collapse
|
46
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
47
|
Giovannini PP, Bortolini O, Massi A. Thiamine-Diphosphate-Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoin-Type Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| |
Collapse
|
48
|
Bisterfeld C, Classen T, Küberl I, Henßen B, Metz A, Gohlke H, Pietruszka J. Redesigning Aldolase Stereoselectivity by Homologous Grafting. PLoS One 2016; 11:e0156525. [PMID: 27327271 PMCID: PMC4915726 DOI: 10.1371/journal.pone.0156525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity.
Collapse
Affiliation(s)
- Carolin Bisterfeld
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Irene Küberl
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Birgit Henßen
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Alexander Metz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- * E-mail:
| |
Collapse
|
49
|
Tang XL, Dai P, Gao H, Wang CX, Chen GD, Hong K, Hu D, Yao XS. A Single Gene Cluster for Chalcomycins and Aldgamycins: Genetic Basis for Bifurcation of Their Biosynthesis. Chembiochem 2016; 17:1241-9. [PMID: 27191535 DOI: 10.1002/cbic.201600118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Indexed: 01/27/2023]
Abstract
Aldgamycins are 16-membered macrolide antibiotics with a rare branched-chain sugar d-aldgarose or decarboxylated d-aldgarose at C-5. In our efforts to clone the gene cluster for aldgamycins from a marine-derived Streptomyces sp. HK-2006-1 capable of producing both aldgamycins and chalcomycins, we found that both are biosynthesized from a single gene cluster. Whole-genome sequencing combined with gene disruption established the entire gene cluster of aldgamycins: nine new genes are incorporated with the previously identified chalcomycin gene cluster. Functional analysis of these genes revealed that almDI/almDII, (encoding α/β subunits of pyruvate dehydrogenase) triggers the biosynthesis of aldgamycins, whereas almCI (encoding an oxidoreductase) initiates chalcomycins biosynthesis. This is the first report that aldgamycins and chalcomycins are derived from a single gene cluster and of the genetic basis for bifurcation in their biosynthesis.
Collapse
Affiliation(s)
- Xiao-Long Tang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Ping Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan, 430071, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China. .,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, No. 601 Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Lehwald P, Fuchs O, Nafie LA, Müller M, Lüdeke S. Substrate-Determined Diastereoselectivity in an Enzymatic Carboligation. Chembiochem 2016; 17:1207-10. [DOI: 10.1002/cbic.201600202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Patrizia Lehwald
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Olga Fuchs
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | | | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Steffen Lüdeke
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|