1
|
He H, Cai L, Lin Y, Zheng F, Liao W, Xue X, Pan W. Advances in the understanding of talaromycosis in HIV-negative patients (especially in children and patients with hematological malignancies): A comprehensive review. Med Mycol 2024; 62:myae094. [PMID: 39289007 DOI: 10.1093/mmy/myae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Talaromyces marneffei (T. marneffei) stands out as the sole thermobiphasic fungus pathogenic to mammals, including humans, within the fungal community encompassing Ascomycota, Eurotium, Eurotiumles, Fungiaceae, and Cyanobacteria. Thriving as a saprophytic fungus in its natural habitat, it transitions into a pathogenic yeast phase at the mammalian physiological temperature of 37°C. Historically, talaromycosis has been predominantly associated with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), classified among the three primary opportunistic infections linked with AIDS, alongside tuberculosis and cryptococcosis. As advancements are made in HIV/AIDS treatment and control measures, the incidence of talaromycosis co-infection with HIV is declining annually, whereas the population of non-HIV-infected talaromycosis patients is steadily increasing. These patients exhibit diverse risk factors such as various types of immunodeficiency, malignant tumors, autoimmune diseases, and organ transplantation, among others. Yet, a limited number of retrospective studies have centered on the clinical characteristics and risk factors of HIV-negative talaromycosis patients, especially in children and patients with hematological malignancies, resulting in an inadequate understanding of this patient cohort. Consequently, we conducted a comprehensive review encompassing the epidemiology, pathogenesis, risk factors, clinical manifestations, diagnosis, treatment, and prognosis of HIV-negative talaromycosis patients, concluding with a prospectus of the disease's frontier research direction. The aim is to enhance comprehension, leading to advancements in the diagnosis and treatment rates for these patients, ultimately improving their prognosis.
Collapse
Affiliation(s)
- Haiyang He
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Liuyang Cai
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yusong Lin
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fangwei Zheng
- Department of Dermatology, Linping District Traditional Chinese Medicine Hospital, Hangzhou 311103, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaochun Xue
- Department of Pharmacy, No. 905 Hospital of PLA Navy, Shanghai 200052, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
2
|
García-Martín JM, Muro A, Fernández-Soto P. Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods. J Fungi (Basel) 2024; 10:637. [PMID: 39330397 PMCID: PMC11432851 DOI: 10.3390/jof10090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
Collapse
Affiliation(s)
- Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (A.M.); (P.F.-S.)
| | | | | |
Collapse
|
3
|
Algahmadi A, Mohammed AE, Alfadda AA, Alanazi IO, Alwehaibi MA, Scaria Joy S, Al-shaye D, Benabdelkamel H. Proteomics of Penicillium chrysogenum for a Deeper Understanding of Lead (Pb) Metal Bioremediation. ACS OMEGA 2024; 9:26245-26256. [PMID: 38911750 PMCID: PMC11190926 DOI: 10.1021/acsomega.4c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Penicillium chrysogenum (P. chrysogenum), a ubiquitous filamentous fungus, has demonstrated remarkable potential in the bioremediation of lead-contaminated environments. Its inherent tolerance and bioaccumulation capacity for lead (Pb), coupled with its relatively rapid growth rate, make it an attractive candidate for bioremediation applications. This study aims to identify the proteomic changes in P. chrysogenuminduced by Pb metal stress and unravel the roles of identified proteins in molecular mechanisms and cellular responses. Untargeted proteomic analysis was carried out using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study reported the identification of 43 statistically significant proteins (24 upregulated and 19 downregulated, ANOVA, p ≤ 0.05; fold change ≥1.5) in P. chrysogenum as a consequence of Pb treatment. Proteins were grouped according to their function into 18 groups from which 13 proteins were related to metabolism, 11 were related to cellular process and signaling, and 19 proteins were related to information storage and processing. The current study is considered the first report about the proteomics study of P. chrysogenum under Pb stress conditions, where upregulated proteins could better explain the mechanism of tolerance and Pb toxicity removal. Our research has provided a thorough understanding of the molecular and cellular processes involved in fungal-metal interactions, paving the way for the development of innovative molecular markers for heavy metal myco-remediation. To the best of our knowledge, this study of P. chrysogenum provides valuable insights toward growing research in comprehending the metal-microbe interactions. This will facilitate development of novel molecular markers for metal bioremediation.
Collapse
Affiliation(s)
- Amjad Algahmadi
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Assim A Alfadda
- Proteomics
Resource Unit, Obesity Research Center and the Department of Medicine,
College of Medicine, King Saud University, P O Box 2925 98 Riyadh 11461, Saudi Arabia
| | - Ibrahim O Alanazi
- Healthy
Aging Research Institute Health Sector, King Abdulaziz City for Science and Technology (KACST), P O Box 6086 Riyadh 11442, Saudi Arabia
| | - Moudi A. Alwehaibi
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University,
P O Box 2925 98 Riyadh 11461, Saudi Arabia
| | - Salini Scaria Joy
- Strategic
Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 12211, Saudi Arabia
| | - Dalal Al-shaye
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University,
P O Box 2925 98 Riyadh 11461, Saudi Arabia
| |
Collapse
|
4
|
Rick EM, Woolnough K, Richardson M, Monteiro W, Craner M, Bourne M, Cousins DJ, Swoboda I, Wardlaw AJ, Pashley CH. Identification of allergens from Aspergillus fumigatus-Potential association with lung damage in asthma. Allergy 2024; 79:1208-1218. [PMID: 38334146 DOI: 10.1111/all.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Component-resolved diagnosis allows detection of IgE sensitization having the advantage of reproducibility and standardization compared to crude extracts. The main disadvantage of the traditional allergen identification methods, 1- or 2-dimensional western blotting and screening of expression cDNA libraries with patients' IgEs, is that the native structure of the protein is not necessarily maintained. METHODS We used a novel immunoprecipitation technique in combination with mass spectrometry to identify new allergens of Aspergillus fumigatus. Magnetic Dynabeads coupled with anti-human IgE antibodies were used to purify human serum IgE and subsequently allergens from A. fumigatus protein extract. RESULTS Of the 184 proteins detected by subsequent mass peptide fingerprinting, a subset of 13 were recombinantly expressed and purified. In a panel of 52 A. fumigatus-sensitized people with asthma, 23 non-fungal-sensitized asthmatics and 18 healthy individuals, only the former showed an IgE reaction by immunoblotting and/or ELISA. We discovered 11 proteins not yet described as A. fumigatus allergens, with fructose-bisphosphate aldolase class II (FBA2) (33%), NAD-dependent malate dehydrogenase (31%) and Cu/Zn superoxide dismutase (27%) being the most prevalent. With respect to these three allergens, native versus denatured protein assays indicated a better recognition of the native proteins. Seven of 11 allergens fulfilled the WHO/IUIS criteria and were accepted as new A. fumigatus allergens. CONCLUSION In conclusion, we introduce a straightforward method of allergen identification from complex allergenic sources such as A. fumigatus by immunoprecipitation combined with mass spectrometry, which has the advantage over traditional methods of identifying allergens by maintaining the structure of the proteins.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Division of Clinical and Molecular Allergology, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel Sulfeld, Germany
| | - Kerry Woolnough
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Matthew Richardson
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - William Monteiro
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Craner
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Bourne
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - David John Cousins
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Ines Swoboda
- Competence Center for Molecular Biotechnology, Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Andrew John Wardlaw
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Catherine Helen Pashley
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Díaz MS, Soria NW, Figueroa AC, Yang P, Badariotti EH, Alasino VR, Vélez P, Beltramo DM. Transcriptional study of genes involved in the passage from teliospore to hyphae stage in the fungus Thecaphora frezii, the causal agent of peanut smut. Rev Argent Microbiol 2024; 56:175-186. [PMID: 38336597 DOI: 10.1016/j.ram.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Peanuts (Arachis hypogaea L.) are among the most important leguminous crops in Argentina. During the growing season, they are frequently attacked by fungal diseases, including Thecaphora frezii. The spores of T. frezii are structures that confer resistance to this phytopathogen. The transition from teliospore to hypha is a characteristic process of some fungi, which is essential for completing their life cycle. Using the transcriptomes of teliospores and hyphae of T. frezii, we aimed to identify genes that were differentially expressed during this transition, and we found 134 up-regulated and 66 down-regulated genes, which would participate in different cellular processes such as: (a) cell cycle and DNA processing; (b) cell fate; (c) rescue, defense and cellular virulence; (d) detoxification by CYP450; (e) energy; (f) nutrient interaction and nutritional adaptation; (g) metabolism; (g) proteins with binding functions or cofactor requirements; (h) stress, cell differentiation and biogenesis of cell components; and (i) transport, cell communication and transcription. The identification of genes in T. frezii and their expression levels during different stages of differentiation could contribute to our understanding of the biological mechanisms in this fungus.
Collapse
Affiliation(s)
- María S Díaz
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina.
| | - Néstor W Soria
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina.
| | - Ana C Figueroa
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina
| | - Pablo Yang
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina
| | - Esteban H Badariotti
- Cátedra Introducción a las Ciencias Agropecuarias, Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina
| | - Valeria R Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina
| | - Pablo Vélez
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina
| | - Dante M Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina; Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Av. Armada Argentina 3555 (X5016DHK), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pabellón CEPROCOR (X5164), Santa María de Punilla, Córdoba, Argentina
| |
Collapse
|
6
|
Yao Z, Pan Z, Li G, Liao Z, Yu Z, Zhan L, Xia W. Talaromycosis from Wuhan: two-case report and literature review. Front Cell Infect Microbiol 2024; 14:1347677. [PMID: 38533387 PMCID: PMC10964487 DOI: 10.3389/fcimb.2024.1347677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background Talaromycosis is a serious opportunistic infectious disease caused by Talaromyces marneffei, which mostly occurs in immunocompromised patients. The disease is mainly prevalent in tropical countries and regions of Southeast Asia and South Asia, but non-endemic areas also have patients with Talaromycosis. The disease has no characteristic clinical manifestations and is difficult to diagnose. Delayed diagnosis often leads to death. Case presentation Both patients had cellular immunodeficiency. Case 1 had a history of acquired immune deficiency syndrome, and case 2 had a history of renal transplantation and glucose-6-phosphate dehydrogenase deficiency. They all had fever, anemia, fatigue, and skin lesions. Case 1 had gastrointestinal bleeding, enlarged lymph nodes, and hepatosplenomegaly. Case 2 had cough and dyspnea. Both patients had thrombocytopenia and hypoalbuminemia; an increased neutrophil ratio, procalcitonin, and C-reactive protein; and abnormal liver function and coagulation dysfunction. Case 1 sputum culture, blood culture, and bronchoalveolar lavage fluid were positive for T. marneffei. T. marneffei was detected in the blood culture of case 2, with infection of Candida parapsilosis and Pneumocystis jirovecii. Chest computed tomography scan mainly showed pulmonary exudative lesions. Although these two patients were actively treated, they died of poor efficacy. Conclusion Talaromycosis has an insidious onset, long course, atypical clinical symptoms, imaging performance and laboratory results, difficult diagnosis, and high mortality. Therefore, it is important to promptly consider and treat Talaromycosis in immunocompromised patients upon infection in order to reduce mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenfang Xia
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
8
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Youngchim S. Extracellular vesicles derived from Talaromyces marneffei contain immunogenic compounds and modulate THP-1 macrophage responses. Front Immunol 2023; 14:1192326. [PMID: 37457708 PMCID: PMC10339390 DOI: 10.3389/fimmu.2023.1192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1β, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Characterization of Pseudogymnoascus destructans conidial adherence to extracellular matrix: Association with fungal secreted proteases and identification of candidate extracellular matrix binding proteins. Microb Pathog 2023; 174:105895. [PMID: 36423748 DOI: 10.1016/j.micpath.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Pseudogymnoascus destructans is the etiological agent of white-nose syndrome (WNS), a fungal skin infection of hibernating bats. Pathophysiology of the disease involves disruption of bat metabolism and hibernation patterns, which subsequently causes premature emergence and mortality. However, information on the mechanism(s) and virulence factors of P. destructans infection is minimally known. Typically, fungal adherence to host cells and extracellular matrix (ECM) is the critical first step of the infection. It allows pathogenic fungi to establish colonization and provides an entry for invasion in host tissues. In this study, we characterized P. destructans conidial adherence to laminin and fibronectin. We found that P. destructans conidia adhered to laminin and fibronectin in a dose-dependent, time-dependent and saturable manner. We also observed changes in the gene expression of secreted proteases, in response to ECM exposure. However, the interaction between fungal conidia and ECM was not specific, nor was it facilitated by enzymatic activity of secreted proteases. We therefore further investigated other P. destructans proteins that recognized ECM and found glyceraldehyde-3-phosphate dehydrogenase and elongation factor 1-alpha among the candidate proteins. Our results demonstrate that P. destructans may use conidial surface proteins to recognize laminin and fibronectin and facilitate conidial adhesion to ECM. In addition, other non-specific interactions may contribute to the conidial adherence to ECM. However, the ECM binding protein candidates identified in this study highlight additional potential fungal virulence factors worth investigating in the P. destructans mechanism of infection in future studies.
Collapse
|
12
|
Protein content of the Oenococcus oeni extracellular vesicles-enriched fraction. Food Microbiol 2022; 106:104038. [DOI: 10.1016/j.fm.2022.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
|
13
|
Khan AA, Jain SK, Rai M, Panda S. Exploring SARS-CoV2 host-pathogen interactions and associated fungal infections cross-talk: Screening of targets and understanding pathogenesis. Comput Struct Biotechnol J 2022; 20:4351-4359. [PMID: 35965662 PMCID: PMC9364728 DOI: 10.1016/j.csbj.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
The COVID-19 associated opportunistic fungal infections have posed major challenges in recent times. Global scientific efforts have identified several SARS-CoV2 host-pathogen interactions in a very short time span. However, information about the molecular basis of COVID-19 associated opportunistic fungal infections is not readily available. Previous studies have identified a number of host targets involved in these opportunistic fungal infections showing association with COVID-19 patients. We screened host targets involved in COVID-19-associated opportunistic fungal infections, in addition to host-pathogen interaction data of SARS-CoV2 from well-known and widely used biological databases. Venn diagram was prepared to screen common host targets involved in studied COVID-19-associated fungal infections. Moreover, an interaction network of studied disease targets was prepared with STRING to identify important targets on the basis of network biological parameters. The host-pathogen interaction (HPI) map of SARS-CoV2 was also prepared and screened to identify interactions of the virus with targets involved in studied fungal infections. Pathway enrichment analysis of host targets involved in studied opportunistic fungal infections and the subset of those involved in SARS-CoV2 HPI were performed separately. This data-based analysis screened six common targets involved in all studied fungal infections, among which CARD9 and CYP51A1 were involved in host-pathogen interactions with SARS-CoV2. Moreover, several signaling pathways such as integrin signaling were screened, which were associated with disease targets involved in SARS-CoV2 HPI. The results of this study indicate several host targets deserving detailed investigation to develop strategies for the management of SARS-CoV2-associated fungal infections.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Sudhir K. Jain
- School of Studies in Microbiology, Vikram University, Ujjain (MP), India
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India
| | - Samiran Panda
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, P.O. Box No. 4911, Ansari Nagar, New Delhi Pin-110029, India
| |
Collapse
|
14
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
15
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
16
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
17
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Characterization of a novel yeast phase-specific antigen expressed during in vitro thermal phase transition of Talaromyces marneffei. Sci Rep 2020; 10:21169. [PMID: 33273617 PMCID: PMC7713699 DOI: 10.1038/s41598-020-78178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that has emerged as an opportunistic pathogen particularly in individuals with HIV/AIDS. Since its dimorphism has been associated with its virulence, the transition from mold to yeast-like cells might be important for fungal pathogenesis, including its survival inside of phagocytic host cells. We investigated the expression of yeast antigen of T.marneffei using a yeast-specific monoclonal antibody (MAb) 4D1 during phase transition. We found that MAb 4D1 recognizes and binds to antigenic epitopes on the surface of yeast cells. Antibody to antigenic determinant binding was associated with time of exposure, mold to yeast conversion, and mammalian temperature. We also demonstrated that MAb 4D1 binds to and recognizes conidia to yeast cells’ transition inside of a human monocyte-like THP-1 cells line. Our studies are important because we demonstrated that MAb 4D1 can be used as a tool to study T.marneffei virulence, furthering the understanding of the therapeutic potential of passive immunity in this fungal pathogenesis.
Collapse
|
19
|
Elias Moreira AL, Milhomem Cruz-Leite VR, O'Hara Souza Silva L, Alves Parente AF, Bailão AM, Maria de Almeida Soares C, Parente-Rocha JA, Ruiz OH, Borges CL. Proteome characterization of Paracoccidioides lutzii conidia by using nanoUPLC-MS E. Fungal Biol 2020; 124:766-780. [PMID: 32883428 DOI: 10.1016/j.funbio.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022]
Abstract
Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.
Collapse
Affiliation(s)
- André Luís Elias Moreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | | | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Orville Hernandez Ruiz
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia; Grupo de Investigación MICROBA, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
20
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Wang H, Wang M, Yang X, Xu X, Hao Q, Yan A, Hu M, Lobinski R, Li H, Sun H. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem Sci 2019; 10:7193-7199. [PMID: 31588287 PMCID: PMC6685357 DOI: 10.1039/c9sc02032b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023] Open
Abstract
Silver has long been used as an antibacterial agent, yet its molecular targets remain largely unknown. Using a custom-designed coupling of gel electrophoresis with inductively coupled plasma mass spectrometry (GE-ICP-MS), we identified six silver-binding proteins in E. coli. The majority of the identified proteins are associated with the central carbon metabolism of E. coli. Among them, we unveil that GAPDH, an essential enzyme in glycolysis, serves as a vital target of Ag+ in E. coli for the first time. We demonstrate that silver inhibits the enzymatic function of GAPDH through targeting Cys149 in its catalytic site. The X-ray structure reveals that Ag+ coordinates to Cys149 and His176 with a quasi-linear geometry (S-Ag-N angle of 157°). And unexpectedly, two Ag+ ions coordinate to Cys288 in the non-catalytic site with weak argentophilic interaction (Ag···Ag distance of 2.9 Å). This is the first report on antimicrobial Ag+ targeting a key enzyme in the glycolytic pathway of E. coli. The findings expand our knowledge on the mode of action and bio-coordination chemistry of silver, particularly silver-targeting residues in proteins at the atomic level.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Minji Wang
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Xinming Yang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Xiaohan Xu
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Quan Hao
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Aixin Yan
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Menglong Hu
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Ryszard Lobinski
- CNRS/University of Pau , Institute of Analytical and Physical Chemistry for the Environment and Materials , IPREM-UMR5254 , Hélioparc, 2, Avenue Angot , 64053 Pau , France
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
22
|
Gaffar FY, Imani J, Karlovsky P, Koch A, Kogel KH. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen Fusarium graminearum. Front Microbiol 2019; 10:1662. [PMID: 31616385 PMCID: PMC6764512 DOI: 10.3389/fmicb.2019.01662] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
In filamentous fungi, gene silencing through RNA interference (RNAi) shapes many biological processes, including pathogenicity. We explored the requirement of key components of fungal RNAi machineries, including DICER-like 1 and 2 (FgDCL1, FgDCL2), ARGONAUTE 1 and 2 (FgAGO1, FgAGO2), AGO-interacting protein FgQIP (QDE2-interacting protein), RecQ helicase (FgQDE3), and four RNA-dependent RNA polymerases (FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4), in the ascomycete mycotoxin-producing fungal pathogen Fusarium graminearum (Fg) for sexual and asexual multiplication, pathogenicity, and its sensitivity to double-stranded (ds)RNA. We corroborate and extend earlier findings that conidiation, ascosporogenesis, and Fusarium head blight (FHB) symptom development require an operable RNAi machinery. The involvement of RNAi in conidiation is dependent on environmental conditions as it is detectable only under low light (<2 μmol m−2 s−1). Although both DCLs and AGOs partially share their functions, the sexual ascosporogenesis is mediated primarily by FgDCL1 and FgAGO2, while FgDCL2 and FgAGO1 contribute to asexual conidia formation and germination. FgDCL1 and FgAGO2 also account for pathogenesis as their knockout (KO) results in reduced FHB development. Apart from KO mutants Δdcl2 and Δago1, mutants Δrdrp2, Δrdrp3, Δrdrp4, Δqde3, and Δqip are strongly compromised for conidiation, while KO mutations in all RdPRs, QDE3, and QIP strongly affect ascosporogenesis. Analysis of trichothecenes mycotoxins in wheat kernels showed that the relative amount of deoxynivalenol (DON), calculated as [DON] per amount of fungal genomic DNA was reduced in all spikes infected with RNAi mutants, suggesting the possibility that the fungal RNAi pathways affect Fg’s DON production. Moreover, silencing of fungal genes by exogenous target gene-specific double-stranded RNA (dsRNA) (spray-induced gene silencing, SIGS) is dependent on DCLs, AGOs, and QIP, but not on QDE3. Together these data show that in F. graminearum, different key components of the RNAi machinery are crucial in different steps of fungal development and pathogenicity.
Collapse
Affiliation(s)
- Fatima Yousif Gaffar
- Department of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Jafargholi Imani
- Department of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Petr Karlovsky
- Department of Crop Sciences, Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Aline Koch
- Department of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Karl-Heinz Kogel
- Department of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
23
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Au-Yeung RKH, Cai JP, Chong KTK, Sze KH, Kao RY, Hao Q, Yuen KY. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol 2019; 56:350-360. [PMID: 28992243 DOI: 10.1093/mmy/myx052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, we showed that Mp1p is an important virulence factor of Talaromyces marneffei, a dimorphic fungus phylogenetically closely related to Aspergillus fumigatus. In this study, we investigated the virulence properties of the four Mp1p homologues (Afmp1p, Afmp2p, Afmp3p, and Afmp4p) in A. fumigatus using a mouse model. All mice died 7 days after challenge with wild-type A. fumigatus QC5096, AFMP1 knockdown mutant, AFMP2 knockdown mutant and AFMP3 knockdown mutant and 28 days after challenge with AFMP4 knockdown mutant (P<.0001). Only 11% of mice died 30 days after challenge with AFMP1-4 knockdown mutant (P<.0001). For mice challenge with AFMP1-4 knockdown mutant, lower abundance of fungal elements was observed in brains, kidneys, and spleens compared to mice challenge with QC5096 at day 4 post-infection. Fungal counts in brains of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.01 and P<.05). Fungal counts in kidneys of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.001 and P<.001) and those of mice challenge with QC5096 were significantly higher than those challenge with AFMP4 knockdown mutant (P<.05). There is no difference among the survival rates of wild-type A. fumigatus, AFMP4 knockdown mutant and AFMP1-4 knockdown mutant, suggesting that Mp1p homologues in A. fumigatus do not mediate its virulence via improving its survival in macrophage as in the case in T. marneffei. Afmp1p, Afmp2p, Afmp3p, and Afmp4p in combination are important virulence factors of A. fumigatus.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Edward T K Tung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, The University of Hong -Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ken T K Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
24
|
Chen Y, Huang A, Ao W, Wang Z, Yuan J, Song Q, Wei D, Ye H. Proteomic analysis of serum proteins from HIV/AIDS patients with Talaromyces marneffei infection by TMT labeling-based quantitative proteomics. Clin Proteomics 2018; 15:40. [PMID: 30598657 PMCID: PMC6302400 DOI: 10.1186/s12014-018-9219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) is an emerging pathogenic fungus that can cause a fatal systemic mycosis in patients infected with human immunodeficiency virus (HIV). Although global awareness regarding HIV/TM coinfection is increasing little is known about the mechanism that mediates the rapid progression to HIV/AIDS disease in coinfected individuals. The aim of this study was to analyze the serum proteome of HIV/TM coinfected patients and to identify the associated protein biomarkers for TM in patients with HIV/AIDS. METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in the serum samples from HIV/TM-coinfected patients. RESULTS Of a total data set that included 1099 identified proteins, approximately 86% of the identified proteins were quantified. Among them, 123 proteins were at least 1.5-fold up-or downregulated in the serum between HIV/TM-coinfected and HIV-mono-infected patients. Furthermore, our results indicate that two selected proteins (IL1RL1 and THBS1) are potential biomarkers for distinguishing HIV/TM-coinfected patients. CONCLUSIONS This is the first report to provide a global proteomic profile of serum samples from HIV/TM-coinfected patients. Our data provide insights into the proteins that are involved as host response factors during infection. These data shed new light on the molecular mechanisms that are dysregulated and contribute to the pathogenesis of HIV/TM coinfection. IL1RL1 and THBS1 are promising diagnostic markers for HIV/TM-coinfected patients although further large-scale studies are needed. Thus, quantitative proteomic analysis revealed molecular differences between the HIV/TM-coinfected and HIV-mono-infected individuals, and might provide fundamental information for further detailed investigations.
Collapse
Affiliation(s)
- Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Aiqiong Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Wen Ao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Zhengwu Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Jinjin Yuan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Qing Song
- Shanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 People’s Republic of China
| | - Dahai Wei
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- The First Affiliated Hospital of Jiaxing University, 1882 Zhonghuan Road, Jiaxing, 314001 People’s Republic of China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| |
Collapse
|
25
|
Chi XH, Xue YM, Wang QS, Li GP, Zhou HS, Qi YS. Diagnosis and treatment of diffusible Penicillium marneffei in human immunodeficiency virus-negative patients: A challenge for the physician. Indian J Med Microbiol 2018; 35:617-619. [PMID: 29405162 DOI: 10.4103/ijmm.ijmm_15_418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Penicillium marneffei infection in human immunodeficiency virus (HIV)-negative patients is addressed far less often. In this article, a small cohort of HIV-negative patients who disseminated P. marneffei infection was included. Sites of infection were found from blood culture, as subcutaneous nodules, or from lymph node biopsy. Fever, rash, swollen lymph nodes, anaemia and weight loss were common characteristics in most infected patients. The signs and symptoms are diverse and create challenges for accurate diagnosis. This paper will assist our understanding of this disease and contribute to an appropriate regime of therapy, thus improving the health of P. marneffei-positive patients.
Collapse
Affiliation(s)
- Xiao-Hua Chi
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao-Ming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quan-Shi Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gui-Ping Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Shuai Qi
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Novel Partitivirus Enhances Virulence of and Causes Aberrant Gene Expression in Talaromyces marneffei. mBio 2018; 9:mBio.00947-18. [PMID: 29895639 PMCID: PMC6016240 DOI: 10.1128/mbio.00947-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Talaromyces marneffei is the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia. We report the discovery of a novel partitivirus, Talaromyces marneffeipartitivirus-1 (TmPV1). TmPV1 was detected in 7 (12.7%) of 55 clinical T. marneffei isolates. Complete genome sequencing of the seven TmPV1 isolates revealed two double-stranded RNA (dsRNA) segments encoding RNA-dependent RNA polymerase (RdRp) and capsid protein, respectively. Phylogenetic analysis showed that TmPV1 occupied a distinct clade among the members of the genus Gammapartitivirus Transmission electron microscopy confirmed the presence of isometric, nonenveloped viral particles of 30 to 45 nm in diameter, compatible with partitiviruses, in TmPV1-infected T. marneffei Quantitative reverse transcription-PCR (qRT-PCR) demonstrated higher viral load of TmPV1 in the yeast phase than in the mycelial phase of T. marneffei Two virus-free isolates, PM1 and PM41, were successfully infected by purified TmPV1 using protoplast transfection. Mice challenged with TmPV1-infected T. marneffei isolates showed significantly shortened survival time (P < 0.0001) and higher fungal burden in organs than mice challenged with isogenic TmPV1-free isolates. Transcriptomic analysis showed that TmPV1 causes aberrant expression of various genes in T. marneffei, with upregulation of potential virulence factors and suppression of RNA interference (RNAi)-related genes. This is the first report of a mycovirus in a thermally dimorphic fungus. Further studies are required to ascertain the mechanism whereby TmPV1 enhances the virulence of T. marneffei in mice and the potential role of RNAi-related genes in antiviral defense in T. marneffeiIMPORTANCETalaromyces marneffei (formerly Penicillium marneffei) is the most important thermal dimorphic fungus in Southeast Asia, causing highly fatal systemic penicilliosis in HIV-infected and immunocompromised patients. We discovered a novel mycovirus, TmPV1, in seven clinical isolates of T. marneffei TmPV1 belongs to the genus Gammapartitivirus of the family Partitiviridae We showed that TmPV1 enhanced the virulence of T. marneffei in mice, with shortened survival time and higher fungal burden in the organs of mice challenged with TmPV1-infected T. marneffei isolates than in those of mice challenged with virus-free isogenic isolates. Transcriptomics analysis showed that TmPV1 altered the expression of genes involved in various cellular processes in T. marneffei, with upregulation of potential virulence factors and suppression of RNAi machinery which may be involved in antiviral defense. This is the first report of a mycovirus in a thermal dimorphic fungus. The present results offer insights into mycovirus-fungus interactions and pathogenesis of thermal dimorphic fungi.
Collapse
|
27
|
Matsunaga N, Shimizu H, Fujimoto K, Watanabe K, Yamasaki T, Hatano N, Tamai E, Katayama S, Hitsumoto Y. Expression of glyceraldehyde-3-phosphate dehydrogenase on the surface of Clostridium perfringens cells. Anaerobe 2018; 51:124-130. [PMID: 29753109 DOI: 10.1016/j.anaerobe.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
During research to identify fibronectin (Fn)-binding proteins (Fbps) on the surface of Clostridium perfringens cells, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a candidate Fbp. GAPDH is a glycolytic enzyme found in a wide range of prokaryotes and eukaryotes. The Fn-binding activity of recombinant C. perfringens GAPDH (rGAPDH) was investigated using both ligand blotting analysis and enzyme-linked immunosorbent assay (ELISA). rGAPDH strongly bound plasminogen but not laminin or gelatin. Although GAPDH has no signal sequence, it is expressed on the cell surface of many microorganisms. The presence of GAPDH on the surface of C. perfringens cells was analyzed using ELISA and flow cytometry analyses; purified rGAPDH bound to the surface of C. perfringens cells. As autolysin is reportedly involved in the binding of GAPDH to the cell surface, we evaluated the interaction between rGAPDH and the C. perfringens autolysin Acp by both ELISA and ligand blotting assay. These assays revealed that rGAPDH binds to the catalytic domain of Acp but not the cell wall binding domains. These results suggest that autolysin mediates expression of GAPDH on the surface of C. perfringens cells and indicate a possible moonlighting function for GAPDH in binding both Fn and plasminogen.
Collapse
Affiliation(s)
- Nozomu Matsunaga
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Haruka Shimizu
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Kanako Fujimoto
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Kanako Watanabe
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Tsutomu Yamasaki
- Pharmaceutical Department, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayaka-shi, Okayama 703-8516, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-shi, Hyogo 650-0017, Japan
| | - Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama-shi, Ehime 790-8578, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan
| | - Yasuo Hitsumoto
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama 700-0005, Japan.
| |
Collapse
|
28
|
Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, Liang Y, Fan J, Luo H, He Z. Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol 2017; 17:177. [PMID: 28821221 PMCID: PMC5563047 DOI: 10.1186/s12866-017-1086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Penicillium marneffei (P. marneffei) is a thermally dimorphic fungus pathogen that causes fatal infection. Alveolar macrophages are innate immune cells that have critical roles in protection against pulmonary fungal pathogens and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. The aim of this study was to investigate mouse alveolar macrophage polarization states during P. marneffei infection. Results We used enzyme-linked immunosorbent (ELISA) assays, quantitative real-time PCR (qRT-PCR), and Griess, arginase activity to evaluate the phenotypic markers of alveolar macrophages from BALB/C mice infected with P. marneffei. We then treated alveolar macrophages from infected mice with P. marneffei cytoplasmic yeast antigen (CYA) and investigated alveolar macrophage phenotypic markers in order to identify macrophage polarization in response to P. marneffei antigens. Our results showed: i) P. marneffei infection significantly enhanced the expression of classically activated macrophage (M1)-phenotypic markers (inducible nitric oxide synthase [iNOS] mRNA, nitric oxide [NO], interleukin-12 [IL-12], tumor necrosis factor-alpha [TNF-α]) and alternatively activated macrophage (M2a)-phenotypic markers (arginase1 [Arg1] mRNA, urea) during the second week post-infection. This significantly decreased during the fourth week post-infection. ii) During P. marneffei infection, CYA stimulation also significantly enhanced the expression of M1 and M2a-phenotypic markers, consistent with the results for P. marneffei infection and CYA stimulation preferentially induced M1 subtype. Conclusions The data from the current study demonstrated that alveolar macrophage M1/M2a subtypes were present in host defense against acute P. marneffei infection and that CYA could mimic P. marneffei to induce a host immune response with enhanced M1 subtype. This could be useful for investigating the enhancement of host anti-P. marneffei immune responses and to provide novel ideas for prevention of P. marneffei-infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoying Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Congzheng Mao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Nanning, Guangxi, 530021, China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Meihua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingmin Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiangtao Fan
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Honglin Luo
- Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
29
|
Lau SKP, Tsang CC, Woo PCY. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence. Toxins (Basel) 2017; 9:E192. [PMID: 28608842 PMCID: PMC5488042 DOI: 10.3390/toxins9060192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/22/2022] Open
Abstract
Talaromycesmarneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs) and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host's immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
30
|
Leone F, Bellani L, Muccifora S, Giorgetti L, Bongioanni P, Simili M, Maserti B, Del Carratore R. Analysis of extracellular vesicles produced in the biofilm by the dimorphic yeast Pichia fermentans. J Cell Physiol 2017; 233:2759-2767. [PMID: 28256706 DOI: 10.1002/jcp.25885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
The yeast Pichia fermentans DISAABA 726 strain (P. fermentans) is a dimorphic yeast that under different environmental conditions may switch from a yeast-like to pseudohyphal morphology. We hypothesize that exosomes-like vesicles (EV) could mediate this rapid modification. EV are membrane-derived vesicles carrying lipids, proteins, mRNAs and microRNAs and have been recognized as important mediators of intercellular communication. Although it has been assumed for a long time that fungi release EV, knowledge of their functions is still limited. In this work we analyze P. fermentans EV production during growth in two different media containing urea (YCU) or methionine (YCM) where yeast-like or pseudohyphal morphology are produced. We developed a procedure to extract EV from the neighboring biofilm which is faster and more efficient as compared to the widely used ultracentrifugation method. Differences in morphology and RNA content of EV suggest that they might have an active role during dimorphic transition as response to the growth conditions. Our findings are coherent with a general state of hypoxic stress of the pseudohyphal cells.
Collapse
Affiliation(s)
| | - Lorenza Bellani
- Department of Life Sciences, Siena, Italy.,Institute of Biology and Biotechnology CNR, Pisa, Italy
| | | | | | - Paolo Bongioanni
- Neuroscience Department, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | | | | | | |
Collapse
|
31
|
He Y, Li L, Hu F, Chen W, Lei H, Chen X, Cai W, Tang X. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system. Emerg Microbes Infect 2016; 5:e120. [PMID: 27876784 PMCID: PMC5148023 DOI: 10.1038/emi.2016.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023]
Abstract
Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation.
Collapse
Affiliation(s)
- Yan He
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Fengyu Hu
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Wanshan Chen
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Huali Lei
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Xiejie Chen
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
32
|
Proteomics of survival structures of fungal pathogens. N Biotechnol 2016; 33:655-665. [DOI: 10.1016/j.nbt.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
|
33
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Chong KTK, Yang F, Zhang H, Lo RKC, Cai JP, Au-Yeung RKH, Ng WF, Tse H, Wong SSY, Xu S, Lam WH, Tse MK, Sze KH, Kao RY, Reiner NE, Hao Q, Yuen KY. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei. PLoS Negl Trop Dis 2016; 10:e0004907. [PMID: 27560160 PMCID: PMC4999278 DOI: 10.1371/journal.pntd.0004907] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei in macrophages. Talaromyces (Penicillium) marneffei is an opportunistic thermal dimorphic fungus most prevalent in Southeast Asia. Our team has previously shown that Mp1p, a protein encoded by the MP1 gene, is an immunogenic surface and secretory protein of T. marneffei. In this study, we showed that mice challenged with T. marneffei with the MP1 gene died but those challenged with T. marneffei without the MP1 gene did not die. There was also significantly higher fungal load and more necrosis in organs of mice challenged with T. marneffei with the MP1 gene than T. marneffei without the MP1 gene. Furthermore, T. marneffei with the MP1 gene survived better in macrophages than T. marneffei without the MP1 gene and Pichia pastoris with the MP1 gene survived in mice better than P. pastoris without the MP1 gene. Our data support that Mp1p is a key virulence factor of T. marneffei and Mp1p mediates virulence by improving the survival of T. marneffei in macrophages.
Collapse
Affiliation(s)
- Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Susanna K. P. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Candy C. Y. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Ken T. K. Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Fengjuan Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Hongmin Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Raymond K. C. Lo
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Wing-Fung Ng
- Department of Pathology, United Christian Hospital and Tseung Kwan O Hospital, Hong Kong
| | - Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Samson S. Y. Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Simin Xu
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Wai Hei Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Man-Kit Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y. Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Neil E. Reiner
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
34
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
35
|
Lau SKP, Lam CSK, Ngan AHY, Chow WN, Wu AKL, Tsang DNC, Tse CWS, Que TL, Tang BSF, Woo PCY. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei. BMC Microbiol 2016; 16:36. [PMID: 26965891 PMCID: PMC4787007 DOI: 10.1186/s12866-016-0656-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Penicillium marneffei is the most important thermal dimorphic fungus causing systemic mycosis in HIV-infected and other immunocompromised patients in Southeast Asia. However, laboratory diagnosis of penicilliosis, which relies on microscopic morphology and mycelial-to-yeast conversion, is time-consuming and expertise-dependent, thus delaying diagnosis and treatment. Although matrix -assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is useful for identification of various medically important fungi, its performance for identification of P. marneffei is less clear. RESULTS We evaluated the performance of the Bruker MALDI-TOF MS system for identification of mold and yeast cultures of 59 clinical strains and the type strain of P. marneffei using the direct transfer method, with results compared to four phylogenetically closely related species, P. brevi-compactum, P. chrysogenum, Talaromyces aurantiacus and T. stipitatus. Using the Bruker original database combined with BDAL v4.0.0.1 and Filamentous Fungi Library 1.0, MALDI-TOF MS failed to identify the 60 P. marneffei strains grown in mold and yeast phase (identified as P. funiculosum and P. purpurogenum with scores <1.7 respectively). However, when the combined database was expanded with inclusion of spectra from 21 P. marneffei strains in mold and/or yeast phase, all the remaining 39 P. marneffei strains grown in mold or phase were correctly identified to the species level with score >2.0. The MS spectra of P. marneffei exhibited significant difference to those of P. brevi-compactum, P. chrysogenum, T. aurantiacus and T. stipitatus. However, MALDI-TOF MS failed to identify these four fungi to the species level using the combined database with or without spectra from P. marneffei. CONCLUSIONS MALDI-TOF MS is useful for rapid identification of both yeast and mold cultures of P. marneffei and differentiation from related species. However, accurate identification to the species level requires database expansion using P. marneffei strains.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China. .,Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| | | | - Antonio H Y Ngan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Alan K L Wu
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | | | - Cindy W S Tse
- Department of Pathology, Kwong Wah Hospital, Hong Kong, China
| | - Tak-Lun Que
- Department of Pathology, Tuen Mun Hospital, Hong Kong, China
| | | | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong, China. .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China. .,Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Chan JFW, Lau SKP, Yuen KY, Woo PCY. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg Microbes Infect 2016; 5:e19. [PMID: 26956447 PMCID: PMC4820671 DOI: 10.1038/emi.2016.18] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
Talaromyces (Penicillium) marneffei is an important pathogenic thermally dimorphic fungus causing systemic mycosis in Southeast Asia. The clinical significance of T. marneffei became evident when the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome epidemic arrived in Southeast Asia in 1988. Subsequently, a decline in the incidence of T. marneffei infection among HIV-infected patients was seen in regions with access to highly active antiretroviral therapy and other control measures for HIV. Since the 1990s, an increasing number of T. marneffei infections have been reported among non-HIV-infected patients with impaired cell-mediated immunity. Their comorbidities included primary adult-onset immunodeficiency due to anti-interferon-gamma autoantibodies and secondary immunosuppressive conditions including other autoimmune diseases, solid organ and hematopoietic stem cell transplantations, T-lymphocyte-depleting immunsuppressive drugs and novel anti-cancer targeted therapies such as anti-CD20 monoclonal antibodies and kinase inhibitors. Moreover, improved immunological diagnostics identified more primary immunodeficiency syndromes associated with T. marneffei infection in children. The higher case-fatality rate of T. marneffei infection in non-HIV-infected than HIV-infected patients might be related to delayed diagnosis due to the lack of clinical suspicion. Correction of the underlying immune defects and early use of antifungals are important treatment strategies. Clinicians should be familiar with the changing epidemiology and clinical management of T. marneffei infection among non-HIV-infected patients.
Collapse
Affiliation(s)
- Jasper FW Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Susanna KP Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Patrick CY Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Dankai W, Pongpom M, Vanittanakom N. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei. J Microbiol Methods 2015; 118:42-50. [DOI: 10.1016/j.mimet.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 01/03/2023]
|
38
|
Ichikawa T, Yoshiyama N, Ohgane Y, Ikeda R. Switching of colony morphology and adhesion activity of Trichosporon asahii clinical isolates. Med Mycol 2015; 54:189-96. [PMID: 26483434 DOI: 10.1093/mmy/myv089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023] Open
Abstract
Trichosporon asahii is a pathogenic yeast that causes trichosporonosis, a deep-seated infection, in immunocompromised hosts. Pathogenic factors involved in this infection have not been investigated in detail, but morphological phenotype switching is thought to be important for T. asahii pathogenesis. Therefore, we analyzed adhesion, which may be a key early step in T. asahii infection, after morphological phenotype switching. T. asahii clinical isolates show several colony morphologies. In this study, colonies showing white-farinose (W), off-white-smooth (O), off-white-rugose (OR), smooth (S), and yellowish-white (Y) morphologies were obtained from three isolates and compared in an adhesion assay performed in cell culture dishes. At least one type of colony morphology from each clinical isolate adhered strongly to the culture dish surface, although the colony type that displayed strong adherence varied among the strains. Thus, morphological phenotype switching altered the adhesion of T. asahii strains.
Collapse
Affiliation(s)
- Tomoe Ichikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Nao Yoshiyama
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yuzuha Ohgane
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Reiko Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
39
|
Chemical genetics and its application to moonlighting in glycolytic enzymes. Biochem Soc Trans 2015; 42:1756-61. [PMID: 25399602 DOI: 10.1042/bst20140201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycolysis is an ancient biochemical pathway that breaks down glucose into pyruvate to produce ATP. The structural and catalytic properties of glycolytic enzymes are well-characterized. However, there is growing appreciation that these enzymes participate in numerous moonlighting functions that are unrelated to glycolysis. Recently, chemical genetics has been used to discover novel moonlighting functions in glycolytic enzymes. In the present mini-review, we introduce chemical genetics and discuss how it can be applied to the discovery of protein moonlighting. Specifically, we describe the application of chemical genetics to uncover moonlighting in two glycolytic enzymes, enolase and glyceraldehyde dehydrogenase. This led to the discovery of moonlighting roles in glucose homoeostasis, cancer progression and diabetes-related complications. Finally, we also provide a brief overview of the latest progress in unravelling the myriad moonlighting roles for these enzymes.
Collapse
|
40
|
de Oliveira HC, da Silva JDF, Scorzoni L, Marcos CM, Rossi SA, de Paula E Silva ACA, Assato PA, da Silva RAM, Fusco-Almeida AM, Mendes-Giannini MJS. Importance of adhesins in virulence of Paracoccidioides spp. Front Microbiol 2015; 6:303. [PMID: 25914695 PMCID: PMC4392702 DOI: 10.3389/fmicb.2015.00303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Suelen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Rosângela A M da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
41
|
Nimmanee P, Woo PCY, Vanittanakom P, Youngchim S, Vanittanakom N. Functional analysis of atfA gene to stress response in pathogenic thermal dimorphic fungus Penicillium marneffei. PLoS One 2014; 9:e111200. [PMID: 25365258 PMCID: PMC4218842 DOI: 10.1371/journal.pone.0111200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/20/2014] [Indexed: 12/15/2022] Open
Abstract
Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA) gene encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei atfA gene increased under heat stress at 42°C. The atfA mutant was more sensitive to sodium dodecyl sulphate, amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide, menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39°C. In addition, recovery of atfA mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress conditions and might be necessary for fighting against host immune cells during the initiation of infection.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | | | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
42
|
Yang E, Chow WN, Wang G, Woo PCY, Lau SKP, Yuen KY, Lin X, Cai JJ. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet 2014; 10:e1004662. [PMID: 25330172 PMCID: PMC4199489 DOI: 10.1371/journal.pgen.1004662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022] Open
Abstract
Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition in P. marneffei, providing a powerful foundation for identifying molecular targets for mechanism-based interventions. Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Collapse
Affiliation(s)
- Ence Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wang-Ngai Chow
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Patrick C. Y. Woo
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|