1
|
Li Y, Jiang L, Xu C, Wang S, Qian Y, Wu Y, Miao C, Dong Z, Wang L. Insertional mutagenesis of AIDA or CYP720B1 in the green alga Chlamydomonas reinhardtii confers copper(II) tolerance and increased biomass. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137026. [PMID: 39740551 DOI: 10.1016/j.jhazmat.2024.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
The widespread use of copper (Cu) in industrial and agricultural settings leads to the accumulation of excess Cu within aquatic ecosystems, posing a threat to organism health. Microalgal bioremediation has emerged as a popular and promising solution to mitigate the risks. Nevertheless, the genetic underpinnings and engineering tactics involved in heavy metal bioremediation by microalgae remain inadequately elucidated. In this study, two mutants obtained from screening a Chlamydomonas reinhardtii (C. reinhardtii) mutant library were identified as insertional mutagenesis in the AIDA (Cre12.g487450) and CYP720B1 (Cre10.g426700) genes. Interestingly, these two mutants exhibited decreased cell size and ciliary length but increased cell growth rates. Under Cu(II) stress, the AIDA and CYP720B1 mutants presented dose-dependent tolerance to Cu(II), resulting in increased biomass and improved cellular morphology. Furthermore, the analysis for the antioxidant system suggested that increased Cu(II) tolerance was associated with a low-level response strategy to Cu(II) stress. Transmission electron microscopy images also revealed increased stress-related organelles (starch granules, acidocalcisomes, and plastoglobules) in these two mutants. Considering the excellent Cu(II) tolerance and biomass of these two mutants, our findings provide potential microalgal strains for further genetic modifications and performance mining to improve aquatic Cu(II) bioremediation through biomass enhancement.
Collapse
Affiliation(s)
- Ya Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lin Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Chuang Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Suhui Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yunyao Qian
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yiqiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Chenyu Miao
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhouzhou Dong
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Liang Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
2
|
Niu J, Li Z, Zhu J, Wu R, Kong L, Niu T, Li X, Cheng X, Li J, Dai L. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1695-1711. [PMID: 36387979 PMCID: PMC9636366 DOI: 10.1007/s12298-022-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01222-3.
Collapse
Affiliation(s)
- Jiangshuai Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang Province China
| | - Jiarui Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Rong Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Lingxin Kong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Tingli Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xueying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xinran Cheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163319 Heilongjiang Province China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| |
Collapse
|
3
|
Shi M, Huang XY, Ren XY, Wei XY, Ma Y, Lin ZZ, Liu DT, Song L, Zhao TJ, Li G, Yao L, Zhu M, Zhang C, Xie C, Wu Y, Wu HM, Fan LP, Ou J, Zhan YH, Lin SY, Lin SC. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol 2021; 23:268-277. [PMID: 33664495 DOI: 10.1038/s41556-021-00642-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yue Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Han-Ming Wu
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Centre of the Third Affiliated Hospital, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China
| | - Yi-Hong Zhan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Sun Y, Zhao JY, Li YT, Zhang PG, Wang SP, Guo J, Chen J, Zhou YB, Chen M, Ma YZ, Fang ZW, Xu ZS. Genome-Wide Analysis of the C2 Domain Family in Soybean and Identification of a Putative Abiotic Stress Response Gene GmC2-148. FRONTIERS IN PLANT SCIENCE 2021; 12:620544. [PMID: 33692816 PMCID: PMC7939022 DOI: 10.3389/fpls.2021.620544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
Plant C2 domain proteins play essential biological functions in numerous plants. In this study, 180 soybean C2 domain genes were identified by screening. Phylogenetic relationship analysis revealed that C2 domain genes fell into three distinct groups with diverged gene structure and conserved functional domain. Chromosomal location analysis indicated that C2 domain genes mapped to 20 chromosomes. The transcript profiles based on RNA-seq data showed that GmC2-58, GmC2-88, and GmC2-148 had higher levels of expression under salt, drought, and abscisic acid (ABA) treatments. GmC2-148, encoding a cell membrane-localized protein, had the highest level of response to various treatments according to real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Under salt and drought stresses, the soybean plants with GmC2-148 transgenic hairy roots showed delayed leaf rolling, a higher content of proline (Pro), and lower contents of H2O2, O2- and malondialdehyde (MDA) compared to those of the empty vector (EV) plants. The results of transgenic Arabidopsis in salt and drought treatments were consistent with those in soybean treatments. In addition, the soybean plants with GmC2-148 transgenic hairy roots increased transcript levels of several abiotic stress-related marker genes, including COR47, NCDE3, NAC11, WRKY13, DREB2A, MYB84, bZIP44, and KIN1 which resulted in enhanced abiotic stress tolerance in soybean. These results indicate that C2 domain genes are involved in response to salt and drought stresses, and this study provides a genome-wide analysis of the C2 domain family in soybean.
Collapse
Affiliation(s)
- Yue Sun
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Juan-Ying Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yi-Tong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Pei-Gen Zhang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Shu-Ping Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zheng-Wu Fang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
5
|
Luo H, Jiang M, Lian G, Liu Q, Shi M, Li TY, Song L, Ye J, He Y, Yao L, Zhang C, Lin ZZ, Zhang CS, Zhao TJ, Jia WP, Li P, Lin SY, Lin SC. AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity. Cell Metab 2018; 27:843-853.e6. [PMID: 29617643 DOI: 10.1016/j.cmet.2018.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/05/2017] [Accepted: 02/21/2018] [Indexed: 01/24/2023]
Abstract
The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guili Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Peng Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|