1
|
Drago VN, Phillips RS, Kovalevsky A. Universality of critical active site glutamate as an acid-base catalyst in serine hydroxymethyltransferase function. Chem Sci 2024; 15:12827-12844. [PMID: 39148791 PMCID: PMC11323337 DOI: 10.1039/d4sc03187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the one-carbon metabolic pathway, utilizing the vitamin B6 derivative pyridoxal 5'-phosphate (PLP) and vitamin B9 derivative tetrahydrofolate (THF) coenzymes to produce essential biomolecules. Many types of cancer utilize SHMT in metabolic reprogramming, exposing the enzyme as a compelling target for antimetabolite chemotherapies. In pursuit of elucidating the catalytic mechanism of SHMT to aid in the design of SHMT-specific inhibitors, we have used room-temperature neutron crystallography to directly determine the protonation states in a model enzyme Thermus thermophilus SHMT (TthSHMT), which exhibits a conserved active site compared to human mitochondrial SHMT2 (hSHMT2). Here we report the analysis of TthSHMT, with PLP in the internal aldimine form and bound THF-analog, folinic acid (FA), by neutron crystallography to reveal H atom positions in the active site, including PLP and FA. We observed protonated catalytic Glu53 revealing its ability to change protonation state upon FA binding. Furthermore, we obtained X-ray structures of TthSHMT-Gly/FA, TthSHMT-l-Ser/FA, and hSHMT2-Gly/FA ternary complexes with the PLP-Gly or PLP-l-Ser external aldimines to analyze the active site configuration upon PLP reaction with an amino acid substrate and FA binding. Accurate mapping of the active site protonation states together with the structural information gained from the ternary complexes allow us to suggest an essential role of the gating loop conformational changes in the SHMT function and to propose Glu53 as the universal acid-base catalyst in both THF-independent and THF-dependent activities of SHMT.
Collapse
Affiliation(s)
- Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia Athens GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia Athens GA 30602 USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
2
|
Spizzichino S, Di Fonzo F, Marabelli C, Tramonti A, Chaves-Sanjuan A, Parroni A, Boumis G, Liberati FR, Paone A, Montemiglio LC, Ardini M, Jakobi AJ, Bharadwaj A, Swuec P, Tartaglia GG, Paiardini A, Contestabile R, Mai A, Rotili D, Fiorentino F, Macone A, Giorgi A, Tria G, Rinaldo S, Bolognesi M, Giardina G, Cutruzzolà F. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol Cell 2024; 84:2682-2697.e6. [PMID: 38996576 DOI: 10.1016/j.molcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, Via Forlanini 3, 27100 Pavia, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessia Parroni
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Alok Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Paolo Swuec
- CryoElectron Microscopy Facility, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy; Department of Biology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Tria
- CNR Institute of Crystallography - URT Caserta c/o Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
3
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
4
|
Machover D, Almohamad W, Castagné V, Desterke C, Gomez L, Goldschmidt E. Treatment of patients with carcinomas in advanced stages with 5-fluorouracil, folinic acid and pyridoxine in tandem. Sci Rep 2024; 14:12054. [PMID: 38802419 PMCID: PMC11130240 DOI: 10.1038/s41598-024-62860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
The effect of high-dose pyridoxine (PN) on activity of 5-fluorouracil (FUra) and folinic acid (FA)-containing regimens was studied in 50 patients including 14 with digestive tract, and 36 with breast carcinomas (BC) in advanced stages with poor prognostic characteristics. Patients with colorectal, and pancreas adenocarcinoma received oxaliplatin, irinotecan, FUra, FA (Folfirinox), and patients with squamous cell carcinoma of the esophagus had paclitaxel, carboplatin, FUra, FA (TCbF). Patients with BC received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) followed by TCbF or TCbF only, and patients who overexpressed HER2 received TCbF plus trastuzumab and pertuzumab. PN (1000-3000 mg/day iv) preceded each administration of FUra and FA. 47 patients (94%) responded, including 16 (32%) with CR. Median tumor reduction was 93%. Median event-free survival (EFS) was 37.7 months. The 25 patients with tumor shrinkage ≥ 91% had EFS of 52% from 42 months onwards. Unexpected toxicity did not occur. PN enhances potency of chemotherapy regimens comprising FUra and FA.
Collapse
Affiliation(s)
- David Machover
- INSERM U935-UA09, University Paris-Saclay, Paul-Brousse Hospital, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France.
| | - Wathek Almohamad
- Department of Medical Oncology, University Paris-Saclay, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 94800, Villejuif, France
| | - Vincent Castagné
- Department of Pharmacy, University Paris-Saclay, Paul-Brousse Hospital, APHP, 94800, Villejuif, France
| | - Christophe Desterke
- INSERM U935-UA09, University Paris-Saclay, Paul-Brousse Hospital, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine, University Paris-Saclay, Kremlin-Bicêtre Hospital, APHP, 94270, Le Kremlin-Bicêtre, France
| | - Emma Goldschmidt
- Department of Medical Oncology, University Paris-Saclay, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 94800, Villejuif, France
| |
Collapse
|
5
|
Gong K, Huang Y, Zheng Y, Hao W, Shi K. ZSWIM4 inhibition improves chemosensitivity in epithelial ovarian cancer cells by suppressing intracellular glycine biosynthesis. J Transl Med 2024; 22:192. [PMID: 38383406 PMCID: PMC10880229 DOI: 10.1186/s12967-024-04980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Zinc finger SWIM-type containing 4 (ZSWIM4) induces drug resistance in breast cancer cells. However, its role in epithelial ovarian cancer (EOC) remains unknown. In this study, we aimed to investigate the clinical significance of ZSWIM4 expression in EOC and develop new clinical therapeutic strategies for EOC. METHODS ZSWIM4 expression in control and EOC tumor tissues was examined using immunohistochemistry. Lentiviral transduction, Cell Counting Kit-8 assay, tumorsphere formation assay, flow cytometry, western blotting, and animal xenograft model were used to assess the role of ZSWIM4 in chemotherapy. Cleavage Under Targets and Tagmentation (CUT&Tag) assays, chromatin immunoprecipitation assays, and luciferase reporter assays were used to confirm FOXK1-mediated upregulation of ZSWIM4 expression. The mechanism by which ZSWIM4 inhibition improves chemosensitivity was evaluated using RNA-sequencing. A ZSWIM4-targeting inhibitor was explored by virtual screening and surface plasmon resonance analysis. Patient-derived organoid (PDO) models were constructed from EOC tumor tissues with ZSWIM4 expression. RESULTS ZSWIM4 was overexpressed in EOC tumor tissues and impaired patient prognoses. Its expression correlated positively with EOC recurrence. ZSWIM4 expression was upregulated following carboplatin treatment, which, in turn, contributed to chemoresistance. Silencing ZSWIM4 expression sensitized EOC cells to carboplatin treatment in vitro and in vivo. FOXK1 could bind to the GTAAACA sequence of the ZSWIM4 promoter region to upregulate ZSWIM4 transcriptional activity and FOXK1 expression increased following carboplatin treatment, leading to an increase in ZSWIM4 expression. Mechanistically, ZSWIM4 knockdown downregulated the expression of several rate-limiting enzymes involved in glycine synthesis, causing a decrease in intracellular glycine levels, thus enhancing intracellular reactive oxygen species production induced by carboplatin treatment. Compound IPN60090 directly bound to ZSWIM4 protein and exerted a significant chemosensitizing effect in both EOC cells and PDO models. CONCLUSIONS ZSWIM4 inhibition enhanced EOC cell chemosensitivity by ameliorating intracellular glycine metabolism reprogramming, thus providing a new potential therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Kunxiang Gong
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yinger Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yanqin Zheng
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Kun Shi
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
6
|
Katinas JM, Nayeen MJ, Schneider M, Shah K, Fifer AN, Klapper LM, Sharma A, Thalluri K, Van Nieuwenhze MS, Hou Z, Gangjee A, Matherly LH, Dann CE. Structural Characterization of 5-Substituted Pyrrolo[3,2- d]pyrimidine Antifolate Inhibitors in Complex with Human Serine Hydroxymethyl Transferase 2. Biochemistry 2024:10.1021/acs.biochem.3c00613. [PMID: 38324671 PMCID: PMC11303599 DOI: 10.1021/acs.biochem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.
Collapse
Affiliation(s)
- Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Md Junayed Nayeen
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mathew Schneider
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Khushbu Shah
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Alexandra N Fifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lily M Klapper
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abhishekh Sharma
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Zhanjun Hou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Shan Y, Liu D, Li Y, Wu C, Ye Y. The expression and clinical significance of serine hydroxymethyltransferase2 in gastric cancer. PeerJ 2024; 12:e16594. [PMID: 38188143 PMCID: PMC10771762 DOI: 10.7717/peerj.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumours in the digestive system. Serine hydroxymethyltransferase 2 (SHMT2) is one of the key enzymes associated with serine metabolism. However, the prognostic role of SHMT2 in GC carcinogenesis has yet to be studied. Methods The expression of SHMT2 in human tumors and normal tissues was detected by the Assistant for Clinical Bioinformatics and Immunohistochemistry (IHC). The relationship of the expression of SHMT2 with clinical characteristics and survival data was analysed by the chi-square test, survival analysis and online databases. Finally, the correlation between SHMT2 expression and associated signalling channels, and molecules was analysed by online databases. Results SHMT2 was strongly expressed in numerous human cancers. The expression rate of SHMT2 was 56.44% in GC (P = 0.018). The survival analysis indicated that patients with high expression of SHMT2 had the worse overall survival (OS; log-rank P = 0.007). The expression of SHMT2 was correlated with tumour size (P = 0.034) and, TNM stage (P = 0.042). In particular, SHMT2, vessel invasion and M stage were independent factors for OS in GC (P = 0.044, P < 0.001, P < 0.001). The SHMT2 gene was substantially correlated with cell signalling pathways. Conclusions SHMT2 is highly expressed in GC and is associated with a poor prognosis. The exploration of its mechanism may be related to tumour proliferation, DNA repair and replication. SHMT2 is an independent prognostic risk factor and a potential biomarker for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yiming Shan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongdong Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingze Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chu Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanwei Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Minchenko OH, Sliusar MY, Khita OO, Viletska YM, Luzina OY, Danilovskyi SV, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of the expression of serine hydroxymethyltransferase 2 in glioblastoma cells. Endocr Regul 2024; 58:144-152. [PMID: 38861539 DOI: 10.2478/enr-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Y Luzina
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Serhiy V Danilovskyi
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
9
|
Miyamoto T, Fushinobu S, Saitoh Y, Sekine M, Katane M, Sakai-Kato K, Homma H. Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases. FEBS J 2024; 291:308-322. [PMID: 37700610 DOI: 10.1111/febs.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
10
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
11
|
Yang Y, Zhang M, Zhao Y, Deng T, Zhou X, Qian H, Wang M, Zhang C, Huo Z, Mao Z, Shao Z, Liu M, Yang C, Lin C, Xu F, Tian G, Zhang Y. HOXD8 suppresses renal cell carcinoma growth by upregulating SHMT1 expression. Cancer Sci 2023; 114:4583-4595. [PMID: 37752684 PMCID: PMC10728000 DOI: 10.1111/cas.15982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.
Collapse
Affiliation(s)
- Yang Yang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Minghui Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yaxuan Zhao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Tingzhi Deng
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Xiang Zhou
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Hanxu Qian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Mengxuan Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Chuanchuan Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhengjin Huo
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Zijun Mao
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Zhufeng Shao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Mengxue Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Chunhua Yang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Chunhua Lin
- Department of UrologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Fuyi Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Geng Tian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yin Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
12
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Radzishevsky I, Odeh M, Bodner O, Zubedat S, Shaulov L, Litvak M, Esaki K, Yoshikawa T, Agranovich B, Li WH, Radzishevsky A, Gottlieb E, Avital A, Wolosker H. Impairment of serine transport across the blood-brain barrier by deletion of Slc38a5 causes developmental delay and motor dysfunction. Proc Natl Acad Sci U S A 2023; 120:e2302780120. [PMID: 37812701 PMCID: PMC10589673 DOI: 10.1073/pnas.2302780120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Brain L-serine is critical for neurodevelopment and is thought to be synthesized solely from glucose. In contrast, we found that the influx of L-serine across the blood-brain barrier (BBB) is essential for brain development. We identified the endothelial Slc38a5, previously thought to be a glutamine transporter, as an L-serine transporter expressed at the BBB in early postnatal life. Young Slc38a5 knockout (KO) mice exhibit developmental alterations and a decrease in brain L-serine and D-serine, without changes in serum or liver amino acids. Slc38a5-KO brains exhibit accumulation of neurotoxic deoxysphingolipids, synaptic and mitochondrial abnormalities, and decreased neurogenesis at the dentate gyrus. Slc38a5-KO pups exhibit motor impairments that are affected by the administration of L-serine at concentrations that replenish the serine pool in the brain. Our results highlight a critical role of Slc38a5 in supplying L-serine via the BBB for proper brain development.
Collapse
Affiliation(s)
- Inna Radzishevsky
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Maali Odeh
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Oded Bodner
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Salman Zubedat
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa3498838, Israel
| | - Lihi Shaulov
- Electron Microscopy Unit, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Maxim Litvak
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Kayoko Esaki
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto860-0082, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Saitama351-0198, Japan
| | - Bella Agranovich
- Laura and Isaac Perlmutter Metabolomics Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Wen-Hong Li
- Department of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9039
| | | | - Eyal Gottlieb
- Technion-Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa3498838, Israel
| | - Herman Wolosker
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
- Laura and Isaac Perlmutter Metabolomics Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| |
Collapse
|
14
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
15
|
Ma W, Liu R, Zhao K, Zhong J. Vital role of SHMT2 in diverse disease. Biochem Biophys Res Commun 2023; 671:160-165. [PMID: 37302290 DOI: 10.1016/j.bbrc.2023.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.
Collapse
Affiliation(s)
- Wenqi Ma
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Kai Zhao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Jiangbo Zhong
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China.
| |
Collapse
|
16
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
17
|
Ma'ruf IF, Restiawaty E, Syihab SF, Honda K. Characterization of thermostable serine hydroxymethyltransferase for β-hydroxy amino acids synthesis. Amino Acids 2023; 55:75-88. [PMID: 36528680 PMCID: PMC9876860 DOI: 10.1007/s00726-022-03205-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
β-hydroxy amino acids, such as serine, threonine, and phenylserine, are important compounds for medical purposes. To date, there has been only limited exploration of thermostable serine hydroxylmethyltransferase (SHMT) for the synthesis of these amino acids, despite the great potential that thermostable enzymes may offer for commercial use due to their high stability and catalytic efficiencies. ITBSHMT_1 (ITB serine hydroxylmethyltransferase clone number 1) from thermophilic and methanol-tolerant bacteria Pseudoxanthomonas taiwanensis AL17 was successfully cloned. Biocomputational analysis revealed that ITBSHMT_1 contains Pyridoxal-3'-phosphate and tetrahydrofolatebinding residues. Structural comparisons show that ITBSHMT_1 has 5 additional residues VSRQG on loop near PLP-binding site as novel structural feature which distinguish this enzyme with other characterized SHMTs. In silico mutation revealed that the fragment might have very essential role in maintaining of PLP binding on structure of ITBSHMT_1. Recombinant protein was produced in Escherichia coli Rosetta 2(DE3) in soluble form and purified using NiNTA affinity chromatography. The purified protein demonstrated the best activity at 80 °C and pH 7.5 based on the retro aldol cleavage of phenylserine. Activity decreased significantly in the presence of 3 mM transition metal ions but increased in the presence of 30 mM β-mercaptoethanol. ITBSHMT_1 demonstrated Vmax, Km, Kcat, and Kcat/Km at 242 U/mg, 23.26 mM, 186/s, and 8/(mM.s), respectively. The aldol condensation reaction showed the enzyme's best activity at 80 °C for serine, threonine, or phenylserine, with serine synthesis showing the highest specific activity. Biocomputational analysis revealed that high intramolecular interaction within the 3D structure of ITBSHMT_1 might be correlated with the enzyme's high thermal stability. The above data suggest that ITBSHMT_1 is a potential and novel enzyme for the production of various β-hydroxy amino acids.
Collapse
Affiliation(s)
- Ilma Fauziah Ma'ruf
- Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Elvi Restiawaty
- Chemical Engineering Process Design and Development Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Syifa Fakhomah Syihab
- Faculty of Sports and Health Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
19
|
Nogués I, Sekula B, Angelaccio S, Grzechowiak M, Tramonti A, Contestabile R, Ruszkowski M. Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:37-49. [PMID: 35947902 DOI: 10.1016/j.plaphy.2022.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Serine hydroxymethyltransferase (SHM) is one of the hallmarks of one-carbon metabolism. In plants, isoforms of SHM participate in photorespiration and/or transfer the one-carbon unit from L-serine to tetrahydrofolate (THF), hence producing 5,10-CH2-THF that is needed, e.g., for biosynthesis of methionine, thymidylate, and purines. These links highlight the importance of SHM activity in DNA biogenesis, its epigenetic methylations, and in stress responses. Plant genomes encode several SHM isoforms that localize to cytosol, mitochondria, plastids, and nucleus. In this work, we present a thorough functional and structural characterization of all seven SHM isoforms from Arabidopsis thaliana (AtSHM1-7). In particular, we analyzed tissue-specific expression profiles of the AtSHM genes. We also compared catalytic properties of the active AtSHM1-4 in terms of catalytic efficiency in both directions and inhibition by the THF substrate. Despite numerous attempts to rescue the SHM activity of AtSHM5-7, we failed, which points towards different physiological functions of these isoforms. Comparative analysis of experimental and predicted three-dimensional structures of AtSHM1-7 proteins indicated differences in regions that surround the entrance to the active site cavity.
Collapse
Affiliation(s)
- Isabel Nogués
- Research Institute on Terrestrial Ecosystems, Italian National Research Council, Monterotondo Scalo, Rome, Italy
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA; Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Sebastiana Angelaccio
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA; Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
20
|
Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022; 12:biom12070910. [PMID: 35883466 PMCID: PMC9313428 DOI: 10.3390/biom12070910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.
Collapse
|
21
|
Machover D, Goldschmidt E, Almohamad W, Castagné V, Dairou J, Desterke C, Gomez L, Gaston-Mathé Y, Boucheix C. Pharmacologic modulation of 5-fluorouracil by folinic acid and pyridoxine for treatment of patients with advanced breast carcinoma. Sci Rep 2022; 12:9079. [PMID: 35641554 PMCID: PMC9156777 DOI: 10.1038/s41598-022-12998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
High concentration pyridoxal 5’-phosphate, the cofactor of vitamin B6, potentiates cytotoxicity in cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA). We studied the effect of high-dose pyridoxine on antitumor activity of regimens comprising FUra and FA in 27 advanced breast carcinoma patients. Of 18 previously untreated patients, 12 had tumors that did not overexpress HER2 (Group I), and 6 that overexpressed HER2 (Group II). Nine patients (Group III) had prior chemotherapy. Group I received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) or FAC (doxorubicin, cyclophosphamide, FUra, FA) followed by TCbF (paclitaxel carboplatin, FUra, FA). Groups II, and III received TCbF. Pyridoxine iv (1000–3000 mg/day) preceded each FA and FUra. Group II also received trastuzumab and pertuzumab. 26 patients responded. Three patients in Group I had CRs and 9 had PRs with 62–98% reduction rates; 4 patients in Group II had CRs and 2 had PRs with 98% reduction. Of 7 measurable patients in Group III, 2 attained CRs, and 5 had PRs with 81–94% reduction rates. Median time to response was 3.4 months. Unexpected toxicity did not occur. This pilot study suggests that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA.
Collapse
Affiliation(s)
- David Machover
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France.
| | - Emma Goldschmidt
- Department of Medical Oncology, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), University Paris-Saclay, 94800, Villejuif, France
| | - Wathek Almohamad
- Department of Medical Oncology, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), University Paris-Saclay, 94800, Villejuif, France
| | - Vincent Castagné
- Department of Pharmacy, Paul-Brousse Hospital, APHP, University Paris-Saclay, 94800, Villejuif, France
| | - Julien Dairou
- Laboratory of Pharmacologic Biochemistry and Toxicology, CNRS UMR 8601, University Paris-Descartes, 45, Rue des Saints-Pères, 75006, Paris, France
| | - Christophe Desterke
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine, Kremlin-Bicêtre Hospital, APHP, University Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | | | - Claude Boucheix
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| |
Collapse
|
22
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
23
|
Majethia P, Bhat V, Yatheesha B, Siddiqui S, Shukla A. Second report of SHMT2 related neurodevelopmental disorder with cardiomyopathy, spasticity, and brain abnormalities. Eur J Med Genet 2022; 65:104481. [DOI: 10.1016/j.ejmg.2022.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
|
24
|
Li T, Liu H, Jiang N, Wang Y, Wang Y, Zhang J, Shen Y, Cao J. Comparative proteomics reveals Cryptosporidium parvum manipulation of the host cell molecular expression and immune response. PLoS Negl Trop Dis 2021; 15:e0009949. [PMID: 34818332 PMCID: PMC8612570 DOI: 10.1371/journal.pntd.0009949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidium is a life-threating protozoan parasite belonging to the phylum Apicomplexa, which mainly causes gastroenteritis in a variety of vertebrate hosts. Currently, there is a re-emergence of Cryptosporidium infection; however, no fully effective drug or vaccine is available to treat Cryptosporidiosis. In the present study, to better understand the detailed interaction between the host and Cryptosporidium parvum, a large-scale label-free proteomics study was conducted to characterize the changes to the proteome induced by C. parvum infection. Among 4406 proteins identified, 121 proteins were identified as differentially abundant (> 1.5-fold cutoff, P < 0.05) in C. parvum infected HCT-8 cells compared with uninfected cells. Among them, 67 proteins were upregulated, and 54 proteins were downregulated at 36 h post infection. Analysis of the differentially abundant proteins revealed an interferon-centered immune response of the host cells against C. parvum infection and extensive inhibition of metabolism-related enzymes in the host cells caused by infection. Several proteins were further verified using quantitative real-time reverse transcription polymerase chain reaction and western blotting. This systematic analysis of the proteomics of C. parvum-infected HCT-8 cells identified a wide range of functional proteins that participate in host anti-parasite immunity or act as potential targets during infection, providing new insights into the molecular mechanism of C. parvum infection. Cryptosporidium parvum is an emerging zoonotic pathogen transmitted via the fecal–oral route, and is considered a leading cause of moderate-to-severe diarrheal disease in young children in resource limited areas. After infection, C. parvum parasitizes intestinal epithelial cells and evokes an inflammatory immune response, leading to severe damage of the intestinal mucosa. The infection can be lethal to immunosuppressed individuals. However, no fully effective drug or vaccine is available for cryptosporidiosis, and the pathogenesis and immune mechanisms during C. parvum infection are obscure. Thus, an in-depth understanding of host-parasite interaction is needed. Hence, we established a C. parvum-infected HCT-8 cell model and performed comparative quantitative proteomic analyses to profile global host-parasite interactions and determine the molecular mechanisms that are activated during infection, aiming to offer new insights into the treatment of Cryptosporidium.
Collapse
Affiliation(s)
- Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Nan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yiluo Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YS); (JC)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YS); (JC)
| |
Collapse
|
25
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
26
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
27
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
28
|
Zeng Y, Zhang J, Xu M, Chen F, Zi R, Yue J, Zhang Y, Chen N, Chin YE. Roles of Mitochondrial Serine Hydroxymethyltransferase 2 (SHMT2) in Human Carcinogenesis. J Cancer 2021; 12:5888-5894. [PMID: 34476002 PMCID: PMC8408114 DOI: 10.7150/jca.60170] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
In the last few years, cellular metabolic reprogramming has been acknowledged as a hallmark of human cancer and evaluated for its crucial role in supporting the proliferation and survival of human cancer cells. In a variety of human tumours, including hepatocellular carcinoma (HCC), breast cancer and non-small-cell lung cancer (NSCLC), a large amount of carbon is reused in serine/glycine biosynthesis, accompanied by higher expression of the key glycine synthetic enzyme mitochondrial serine hydroxymethyltransferase 2 (SHMT2). This enzyme can convert serine into glycine and a tetrahydrofolate-bound one-carbon unit, ultimately supporting thymidine synthesis and purine synthesis and promoting tumour growth. In tumour samples, elevated expression of SHMT2 was found to be associated with poor prognosis. In this review, the pivotal roles of SHMT2 in human carcinogenesis are described, highlighting the underlying regulatory mechanisms through promotion of tumour progression. In conclusion, SHMT2 may serve as a prognostic marker and a target for anticancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fuxian Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanan Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
29
|
Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers (Basel) 2021; 13:cancers13164009. [PMID: 34439169 PMCID: PMC8393646 DOI: 10.3390/cancers13164009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The mitochondrial enzyme serine hydroxymethyltransferase (SHMT2), which converts serine into glycine and generates 1C units for cell growth, is one of the most consistently overexpressed metabolic enzymes in cancer. Here, we reveal that the anti-diabetic biguanide metformin operates as a novel class of non-catalytic SHMT2 inhibitor that disrupts the pyridoxal-5′-phosphate (PLP)-dependent SHMT2 oligomerization process and ultimately SHMT2 activity. As SHMT2 inhibitors have not yet reached the clinic, these findings may aid the rational design of PLP-competitive SHMT2 inhibitors based on the biguanide skeleton of metformin. Abstract The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5′-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.
Collapse
|
30
|
Xie M, Pei DS. Serine hydroxymethyltransferase 2: a novel target for human cancer therapy. Invest New Drugs 2021; 39:1671-1681. [PMID: 34215932 DOI: 10.1007/s10637-021-01144-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Serine and glycine are the primary sources of one-carbon units that are vital for cell proliferation. Their abnormal metabolism is known to be associated with cancer progression. As the key enzyme of serine metabolism, Serine Hydroxymethyltransferase 2 (SHMT2) has been a research hotspot in recent years. SHMT2 is a PLP-dependent tetrameric enzyme that catalyzes the reversible transition from serine to glycine, thus promoting the production of one-carbon units that are indispensable for cell growth and regulation of the redox and epigenetic states of cells. Under a hypoxic environment, SHMT2 can be upregulated and could promote the generation of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione for maintaining the redox balance. Accumulating evidence confirmed that SHMT2 facilitates cell proliferation and tumor growth and is tightly associated with poor prognosis. In this review, we present insights into the function and research development of SHMT2 and summarize the possible molecular mechanisms of SHMT2 in promoting tumor growth, in the hope that it could provide clues to more effective clinical treatment of cancer.
Collapse
Affiliation(s)
- Min Xie
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
31
|
Pharmacologic modulation of 5-fluorouracil by folinic acid and high-dose pyridoxine for treatment of patients with digestive tract carcinomas. Sci Rep 2021; 11:12668. [PMID: 34135415 PMCID: PMC8209008 DOI: 10.1038/s41598-021-92110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
Supplementation of cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA) with high concentration pyridoxal 5′-phosphate, the cofactor of vitamin B6, potentiates the cytotoxicity of FUra in a synergistic interaction mode. We report a pilot study in 13 patients with previously untreated advanced carcinoma of the digestive tract to assess the impact of high-dose pyridoxine (PN) on the antitumor activity of regimens comprising FUra and FA. Five patients had colorectal adenocarcinoma (CRC); 5 had pancreas adenocarcinoma (PC); and 3 had squamous cell carcinoma of the esophagus (EC). Patients with CRC and with PC received oxaliplatin, irinotecan, FUra and FA, and patients with EC had paclitaxel, carboplatin, FUra and FA. PN iv from 1000 to 3000 mg/day preceded each administration of FA and FUra. Eleven patients responded. Two patients with CRC attained CRs and 3 had PRs with reduction rates ≥ 78%. Two patients with PC attained CRs, and 2 had PRs with reduction rates ≥ 79%. Responders experienced disappearance of most metastases. Of 3 patients with EC, 2 attained CRs. Median time to attain a response was 3 months. Unexpected toxicity did not occur. Results suggest that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA.
Collapse
|
32
|
Monti M, Guiducci G, Paone A, Rinaldo S, Giardina G, Liberati FR, Cutruzzolá F, Tartaglia GG. Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Comput Struct Biotechnol J 2021; 19:3034-3041. [PMID: 34136101 PMCID: PMC8175283 DOI: 10.1016/j.csbj.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/15/2023] Open
Abstract
Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells. Using a stochastic dynamic model, we show that RNA moieties dynamically regulate serine and glycine concentration, shaping the system behaviour. For the first time we observe an active functional role of the RNA in the regulation of the serine-glycine metabolism and availability, which unravels a complex layer of regulation that cancer cells exploit to fine tune amino acids availability according to their metabolic needs. The quantitative model, complemented by an experimental validation in the lung adenocarcinoma cell line H1299, exploits RNA molecules as metabolic switches of the SHMT1 activity. Our results pave the way for the development of RNA-based molecules able to unbalance serine metabolism in cancer cells.
Collapse
Affiliation(s)
- Michele Monti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- RNA System Biology Lab, Centre for Human Technologies, Istituto Italiano di Tecnologia (IIT), Enrico Melen 83, 16152 Genova, Italy
| | - Giulia Guiducci
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolá
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- RNA System Biology Lab, Centre for Human Technologies, Istituto Italiano di Tecnologia (IIT), Enrico Melen 83, 16152 Genova, Italy
- ICREA, Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
34
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Ota T, Senoo A, Shirakawa M, Nonaka H, Saito Y, Ito S, Ueno G, Nagatoishi S, Tsumoto K, Sando S. Structural basis for selective inhibition of human serine hydroxymethyltransferase by secondary bile acid conjugate. iScience 2021; 24:102036. [PMID: 33521601 PMCID: PMC7820547 DOI: 10.1016/j.isci.2021.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Bile acids are metabolites of cholesterol that facilitate lipid digestion and absorption in the small bowel. Bile acids work as agonists of receptors to regulate their own metabolism. Bile acids also regulate other biological systems such as sugar metabolism, intestinal multidrug resistance, and adaptive immunity. However, numerous physiological roles of bile acids remain undetermined. In this study, we solved the crystal structure of human serine hydroxymethyltransferase (hSHMT) in complex with an endogenous secondary bile acid glycine conjugate. The specific interaction between hSHMT and the ligand was demonstrated using mutational analyses, biophysical measurements, and structure-activity relationship studies, suggesting that secondary bile acid conjugates may act as modulators of SHMT activity. The crystal structures of hSHMT in complex with secondary bile acid glycine conjugate Specific interactions between hSHMT and secondary bile acid conjugate were validated Biological role of bile acids as modulators for one-carbon metabolism is suggested
Collapse
Affiliation(s)
- Tomoki Ota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masumi Shirakawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
- ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author
| |
Collapse
|
36
|
Geeraerts SL, Kampen KR, Rinaldi G, Gupta P, Planque M, Louros N, Heylen E, De Cremer K, De Brucker K, Vereecke S, Verbelen B, Vermeersch P, Schymkowitz J, Rousseau F, Cassiman D, Fendt SM, Voet A, Cammue BPA, Thevissen K, De Keersmaecker K. Repurposing the Antidepressant Sertraline as SHMT Inhibitor to Suppress Serine/Glycine Synthesis-Addicted Breast Tumor Growth. Mol Cancer Ther 2021; 20:50-63. [PMID: 33203732 PMCID: PMC7611204 DOI: 10.1158/1535-7163.mct-20-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival, and chemotherapy resistance. Although normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis-addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays, and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's antiproliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell-cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis-addicted cancers.
Collapse
Affiliation(s)
- Shauni Lien Geeraerts
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Kim Rosalie Kampen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Purvi Gupta
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Elien Heylen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Stijn Vereecke
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Benno Verbelen
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Pieter Vermeersch
- Department of Cardiovascular Sciences, University Hospitals Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics - Plant Fungi Interactions (CMPG-PFI), KU Leuven, Heverlee, Belgium.
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
37
|
Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome. Acta Neuropathol 2020; 140:971-975. [PMID: 33015733 PMCID: PMC7665968 DOI: 10.1007/s00401-020-02223-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
38
|
Rabl J. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin Signaling. Biomolecules 2020; 10:biom10111503. [PMID: 33142801 PMCID: PMC7692841 DOI: 10.3390/biom10111503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The K63-linkage specific deubiquitinase BRCC36 forms the core of two multi-subunit deubiquitination complexes: BRCA1-A and BRISC. BRCA1-A is recruited to DNA repair foci, edits ubiquitin signals on chromatin, and sequesters BRCA1 away from the site of damage, suppressing homologous recombination by limiting resection. BRISC forms a complex with metabolic enzyme SHMT2 and regulates the immune response, mitosis, and hematopoiesis. Almost two decades of research have revealed how BRCA1-A and BRISC use the same core of subunits to perform very distinct biological tasks.
Collapse
Affiliation(s)
- Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zürich, Otto-Stern-Weg 3, HPM C51, 8093 Zürich, Switzerland
| |
Collapse
|
39
|
Han Y, He L, Qi Y, Zhao Y, Pan Y, Fang B, Li S, Zhang JZH, Zhang L. Identification of three new compounds that directly target human serine hydroxymethyltransferase 2. Chem Biol Drug Des 2020; 97:221-230. [PMID: 32779873 DOI: 10.1111/cbdd.13774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/15/2020] [Accepted: 07/12/2020] [Indexed: 11/28/2022]
Abstract
Mitochondrial serine hydroxymethyltransferase 2 (SHMT2) is an important drug target in the one-carbon metabolic pathway, since its activity is critical for purine and pyrimidine biosynthesis. Additionally, it plays a prominent role during metabolic reprogramming of cancer cells, and SHMT2 inhibitors have proven useful as anticancer drugs. Compared to drugs targeting one-carbon metabolic enzymes (mainly dihydrofolate reductase and thymidylate synthase) that have been used for clinical treatment of cancer, efficient SHMT2-specific inhibitors are lacking. Therefore, we established a direct system for virtual screening, protein expression, and identification of inhibitors targeting SHMT2. First, 27 compounds qualifying as potential SHMT2 inhibitors were selected for biological activity verification through virtual screening of the 210 thousand compounds registered in the Specs database. Second, these 27 hits were subjected to quick screening by an in vitro non-competitive kinetic assay of SHMT2 single-enzyme catalysis. This allowed us to identify three compounds featuring medium-strength and non-competitive inhibition of SHMT2: AM-807/42004511 (IC50 = 14.52 ± 4.1665 μM), AM-807/40675298 (IC50 = 12.74 ± 5.8991 μM), and AM-807/42004633 (IC50 = 9.43 ± 0.5646 μM). We describe a quick screening method for the identification of inhibitors targeting SHMT2, providing a basis for subsequent identification and screening of new inhibitors.
Collapse
Affiliation(s)
- Yanfang Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liping He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - Yue Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yue Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bohuan Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, USA
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
40
|
Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr 2020; 39:201-226. [PMID: 31433742 DOI: 10.1146/annurev-nutr-082018-124643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.
Collapse
Affiliation(s)
- Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
41
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
42
|
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Metabolic pathways leading to the synthesis, uptake, and usage of the nonessential amino acid serine are frequently amplified in cancer. Serine encounters diverse fates in cancer cells, including being charged onto tRNAs for protein synthesis, providing head groups for sphingolipid and phospholipid synthesis, and serving as a precursor for cellular glycine and one-carbon units, which are necessary for nucleotide synthesis and methionine cycle reloading. This review will focus on the participation of serine and glycine in the mitochondrial one-carbon (SGOC) pathway during cancer progression, with an emphasis on the genetic and epigenetic determinants that drive SGOC gene expression. We will discuss recently elucidated roles for SGOC metabolism in nucleotide synthesis, redox balance, mitochondrial function, and epigenetic modifications. Finally, therapeutic considerations for targeting SGOC metabolism in the clinic will be discussed.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Ghosh-Choudhary S, Liu J, Finkel T. Metabolic Regulation of Cell Fate and Function. Trends Cell Biol 2020; 30:201-212. [PMID: 31983571 PMCID: PMC7043867 DOI: 10.1016/j.tcb.2019.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence implicates metabolic pathways as key regulators of cell fate and function. Although the metabolism of glucose, amino acids, and fatty acids is essential to maintain overall energy homeostasis, the choice of a given metabolic pathway and the levels of particular substrates and intermediates increasingly appear to modulate specific cellular activities. This connection is likely related to the growing appreciation that molecules such as acetyl-CoA act as a shared currency between metabolic flux and chromatin modification. We review recent evidence for a role of metabolism in modulating cellular function in four distinct contexts. These areas include the immune system, the tumor microenvironment, the fibrotic response, and stem cell function. Together, these examples suggest that metabolic pathways do not simply provide the fuel that powers cellular activities but instead help to shape and determine cellular identity.
Collapse
Affiliation(s)
| | - Jie Liu
- Aging Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA.
| |
Collapse
|
44
|
Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M, Wolf NI, Ivy AS, Demarest S, Roussel Y, Ciapaite J, van Roermund CWT, Kernohan KD, Kosuta C, Ban K, Ito Y, McBride S, Al-Thihli K, Abdelrahim RA, Koul R, Al Futaisi A, Haaxma CA, Olson H, Sigurdardottir LY, Arnold GL, Gerkes EH, Boon M, Heiner-Fokkema MR, Noble S, Bosma M, Jans J, Koolen DA, Kamsteeg EJ, Drögemöller B, Ross CJ, Majewski J, Cho MT, Begtrup A, Wasserman WW, Bui T, Brimble E, Violante S, Houten SM, Wevers RA, van Faassen M, Kema IP, Lepage N, Lines MA, Dyment DA, Wanders RJA, Verhoeven-Duif N, Ekker M, Boycott KM, Friedman JM, Pena IA, van Karnebeek CDM. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 2020; 142:542-559. [PMID: 30668673 DOI: 10.1093/brain/awy346] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.
Collapse
Affiliation(s)
- Devon L Johnstone
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hilal H Al-Shekaili
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam University Medical Centres, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Autumn S Ivy
- Division of Child Neurology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, CO, USA
| | - Yann Roussel
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jolita Ciapaite
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Carlo W T van Roermund
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Ceres Kosuta
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Ban
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Skye McBride
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Khalid Al-Thihli
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rana A Abdelrahim
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Roshan Koul
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amna Al Futaisi
- Paediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute of Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Heather Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, USA
| | - Laufey Yr Sigurdardottir
- Department of Neurology, University of Central Florida, Nemours Children's Hospital, Orlando, FL, USA
| | - Georgianne L Arnold
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Boon
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Noble
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marjolein Bosma
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Judith Jans
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Britt Drögemöller
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Ross
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | | | - Wyeth W Wasserman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tuan Bui
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, CA, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron A Wevers
- United for Metabolic Diseases, The Netherlands.,Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Matthew A Lines
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Ronald J A Wanders
- Department of Pediatrics and Clinical Chemistry, Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Nanda Verhoeven-Duif
- Department of Genetics, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands.,United for Metabolic Diseases, The Netherlands
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,United for Metabolic Diseases, The Netherlands.,Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Centre for Molecular Medicine and Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, Bouzidi A, Magnifico MC, Marani M, Menendez JA, Fatica A, Macone A, Armaos A, Tartaglia GG, Contestabile R, Paiardini A, Cutruzzolà F. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res 2019; 47:4240-4254. [PMID: 30809670 PMCID: PMC6486632 DOI: 10.1093/nar/gkz129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.
Collapse
Affiliation(s)
- Giulia Guiducci
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Amani Bouzidi
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Maria C Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gian G Tartaglia
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Department of Life and Medical Sciences, 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
46
|
Haque MR, Hirowatari A, Nai N, Furuya S, Yamamoto K. Serine hydroxymethyltransferase from the silkworm Bombyx mori: Identification, distribution, and biochemical characterization. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21594. [PMID: 31298425 DOI: 10.1002/arch.21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the interconversion of serine and tetrahydrofolate (THF) to glycine and methylenetetrahydrofolate. cDNA encoding Bombyx mori SHMT (bmSHMT) was cloned and sequenced. The deduced amino acid sequence consisted of 465 amino acids and was found to share homology with other SHMTs. Recombinant bmSHMT was overexpressed in Escherichia coli and purified to homogeneity. The enzyme showed optimum activity at pH 3.0 and 30°C and was stable under acidic conditions. The Km and kcat /Km values for THF in the presence of Nicotinamide adenine dinucleotide phosphate (NADP+ ) were 0.055 mM and 0.081 mM-1 s-1 , respectively, whereas those toward NADP+ were 0.16 mM and 0.018 mM-1 s-1 and toward l-serine were 1.8 mM and 0.0022 mM-1 s-1 , respectively. Mutagenesis experiments revealed that His119, His132, and His135 are important for enzymatic activity. Our results provide insight into the roles and regulation mechanism of one-carbon metabolism in the silkworm B. mori.
Collapse
Affiliation(s)
- Mohammad R Haque
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Nonoko Nai
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
47
|
He L, Bao J, Yang Y, Dong S, Zhang L, Qi Y, Zhang JZH. Study of SHMT2 Inhibitors and Their Binding Mechanism by Computational Alanine Scanning. J Chem Inf Model 2019; 59:3871-3878. [PMID: 31442042 DOI: 10.1021/acs.jcim.9b00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial serine hydroxymethyl transferase isoform 2 (SHMT2) has attracted increasing attention as a pivotal catalyzing regulator of the serine/glycine pathway in the one-carbon metabolism of cancer cells. However, few inhibitors that target this potential anticancer target have been discovered. Quantitative characterization of the interactions between SHMT2 and its known inhibitors should benefit future discovery of novel inhibitors. In this study, we employed a recently developed alanine-scanning-interaction-entropy method to quantitatively calculate the residue-specific binding free energy of 28 different SHMT2 inhibitors that originate from the same skeleton. Major contributing residues from SHMT2 and chemical groups from the inhibitors were identified, and the binding energy of each residue was quantitatively determined, revealing essential features of the protein-inhibitor interaction. The most important contributing residue is Y105 of the B chain followed by L166 of the A chain. The calculated protein-ligand binding free energies are in good agreement with the experimental results and showed better correlation and smaller errors compared with those obtained using the conventional MM/GBSA with the normal mode method. These results may aid the rational design of more effective SHMT2 inhibitors.
Collapse
Affiliation(s)
- Liping He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Yunpeng Yang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| |
Collapse
|
48
|
Rabl J, Bunker RD, Schenk AD, Cavadini S, Gill ME, Abdulrahman W, Andrés-Pons A, Luijsterburg MS, Ibrahim AFM, Branigan E, Aguirre JD, Marceau AH, Guérillon C, Bouwmeester T, Hassiepen U, Peters AHFM, Renatus M, Gelman L, Rubin SM, Mailand N, van Attikum H, Hay RT, Thomä NH. Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Mol Cell 2019; 75:483-497.e9. [PMID: 31253574 PMCID: PMC6695476 DOI: 10.1016/j.molcel.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.
Collapse
Affiliation(s)
- Julius Rabl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Wassim Abdulrahman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Amparo Andrés-Pons
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martijn S Luijsterburg
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Adel F M Ibrahim
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Emma Branigan
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Aimee H Marceau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
49
|
Scaletti E, Jemth AS, Helleday T, Stenmark P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett 2019; 593:1863-1873. [PMID: 31127856 DOI: 10.1002/1873-3468.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is the major source of 1-carbon units required for nucleotide synthesis. Humans have cytosolic (SHMT1) and mitochondrial (SHMT2) isoforms, which are upregulated in numerous cancers, making the enzyme an attractive drug target. Here, we show that the antifolates lometrexol and pemetrexed are inhibitors of SHMT2 and solve the first SHMT2-antifolate structures. The antifolates display large differences in their hydrogen bond networks despite their similarity. Lometrexol was found to be the best hSHMT1/2 inhibitor from a panel antifolates. Comparison of apo hSHMT1 with antifolate bound hSHMT2 indicates a highly conserved active site architecture. This structural information offers insights as to how these compounds could be improved to produce more potent and specific inhibitors of this emerging anti-cancer drug target.
Collapse
Affiliation(s)
- Emma Scaletti
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Experimental Medical Science, Lund University, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, UK
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
50
|
Walden M, Tian L, Ross RL, Sykora UM, Byrne DP, Hesketh EL, Masandi SK, Cassel J, George R, Ault JR, El Oualid F, Pawłowski K, Salvino JM, Eyers PA, Ranson NA, Del Galdo F, Greenberg RA, Zeqiraj E. Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Nature 2019; 570:194-199. [PMID: 31142841 PMCID: PMC6914362 DOI: 10.1038/s41586-019-1232-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023]
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5'-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC-SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer-and not the active PLP-bound tetramer-binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling.
Collapse
Affiliation(s)
- Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lei Tian
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Upasana M Sykora
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Safi K Masandi
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joel Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Rachel George
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Krzysztof Pawłowski
- Warsaw University of Life Sciences, Warsaw, Poland
- Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| | - Joseph M Salvino
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Roger A Greenberg
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|