1
|
Le NQK. Transforming peptide hormone prediction: The role of AI in modern proteomics. Proteomics 2025; 25:e2400156. [PMID: 39508553 DOI: 10.1002/pmic.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Tan W, Tang Y, Liu F, Lu L, Liu A, Ye H. Evaluation of the Effect of Adipokinetic Hormone/Corazonin-Related Peptide (ACP) on Ovarian Development in the Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:3706. [PMID: 39765610 PMCID: PMC11672810 DOI: 10.3390/ani14243706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we identified Sp-ACP and its putative receptor from the mud crab S. paramamosain and explored its potential role in ovarian development. RT-PCR results suggested Sp-ACP was extensively expressed in nervous tissues, the ovary, the middle gut, and the Y-organ, while Sp-ACPR was highly expressed in the ovary. The expression level of Sp-ACP in the ovary, eyestalk, and cerebral ganglia gradually increased during ovarian development, whereas its receptor exhibited an opposite expression pattern in the ovary. Immunofluorescence revealed that ACP was specifically localized in the follicle cells of the ovary. In vitro experiments showed that the expression of vitellogenin receptor (Sp-VgR) in the ovary was significantly increased by 4 and 6 h incubation of Sp-ACP (10 nM). In addition, 12 h injection of Sp-ACP significantly induced the levels of Sp-Vg in the hepatopancreas and Sp-VgR in the ovary, and hemolymph 17β-estradiol titer. Finally, it demonstrated that prolonged injection of Sp-ACP significantly increased the level of Vg and VgR expression, hemolymph 17β-estradiol titer, GSI, and the oocyte diameter. In conclusion, our results suggested that ACP is involved in the regulation of ovarian development of S. paramamosain, likely by inducing hepatopancreas Sp-Vg expression through estradiol and promoting the uptake of Vg by oocytes.
Collapse
Affiliation(s)
| | | | | | | | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (W.T.); (Y.T.); (F.L.); (L.L.)
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (W.T.); (Y.T.); (F.L.); (L.L.)
| |
Collapse
|
3
|
Pang S, Wang S, Asad M, Yu J, Lin G, Chen J, Sun C, Huang P, Chang Y, Wei H, Yang G. microRNA-8514-5p regulates adipokinetic hormone/corazonin-related peptide receptor to affect development and reproduction of Plutella xylostella. PEST MANAGEMENT SCIENCE 2024; 80:5377-5387. [PMID: 38924668 DOI: 10.1002/ps.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Dicer1 plays a crucial role in regulating the development and reproduction of insects. Knockout of Dicer1 causes pupal deformity, low eclosion and low fecundity in Plutella xylostella, but the mechanism behind this phenomenon is not clear. This study aims to identify differentially-expressed genes and miRNAs in the Dicer1-knockout strain (ΔPxDcr-1) and assess their impact on the reproduction and development of P. xylostella. RESULTS The knockout of Dicer1 affected the expression of genes including the adipokinetic hormone/corazonin-related peptide receptor (PxACPR). The expression of PxACPR was upregulated, and the expression of miR-8514-5p was downregulated in ΔPxDcr-1 of P. xylostella. The dual luciferase reporter assay and pull-down assay showed that miR-8514-5p bound to PxACPR in vitro and in vivo. The expression profiles demonstrated a negative correlation between PxACPR mRNA and miR-8514-5p in different developmental stages of the wild-type strain. Both the miR-8514-5p agomir and double-stranded RNA of ACPR (dsPxACPR) injected into the pre-pupae inhibited the mRNA level of PxACPR, causing high mortality and deformity of pupae, and low fecundity and hatching rate, which were consistent with the phenotype of ΔPxDcr-1. The injection of miR-8514-5p antagomir caused a similar phenotype to the injection of miR-8514-5p agomir. Additionally, the injection of miR-8514-5p antagomir significantly rescued the phenotype caused by dsPxACPR. CONCLUSION These results indicate that miR-8514-5p affects the development and reproduction of P. xylostella by regulating PxACPR, and the homeostasis of PxACPR expression is essential for the development and reproduction of P. xylostella. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Shuo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jiajing Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jinzhi Chen
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, China
| | - Cuiying Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Pengrong Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Yanpeng Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
4
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
5
|
Wang L, Han Z, Liu X, Li S, Bi H, Feng C. Identification and Functional Analysis of Adipokinetic Hormone Receptor in Ostrinia furnacalis Guenée Larvae Parasitized by Macrocentrus cingulum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22147. [PMID: 39190556 DOI: 10.1002/arch.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
As a typical G protein-coupled receptor, the adipokinetic hormone receptor (AKHR) has seven transmembrane domains (TMDs), and its structure and function are similar to the gonadotropin-releasing hormone receptor (GnRHR) in vertebrates. However, there is a dearth of information on other components of the AKHR signaling pathway and how it functions in the interaction between insect hosts and parasitoids. In this study, we cloned and analyzed the multifunctional Ostrinia furnacalis AKHR (OfAKHR) cDNA (GenBank accession number MF797868). OfAKHR has a 2206 bp full-length cDNA, which includes an open reading frame containing 1194 bp. OfAKHR contains the typical seven TMDs, and a "DRY" motif. OfAKHR has the highest relative expression in the fat body and the fifth instar larvae. The results revealed that ApoLpⅢ, PPO2, GS, TPS, Cecropin, and Moricin decreased the transcription levels from 48 to 72 h after the knockdown of OfAKHR expression by dsOfAKHR injection in the fourth instar O. furnacalis larvae. The parasitization of Macrocentrus cingulum selectively upregulated the expression levels of nutrition metabolism and immune-related genes in parasitized O. furnacalis larvae, stimulated lysozyme activity, and obviously raised the concentrations of triglyceride and trehalose in the hemolymph of O. furnacalis larvae. However, they inhibited the activities of PO and trehalase. This study is conducive to a deeper cognition of the roles of OfAKHR in nutrition and immune homeostasis, coevolution, and coexistence between parasitic wasps and hosts. It also sheds light on the potential as the target of pest control reagents.
Collapse
Affiliation(s)
- Libao Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu, China
| | - Zhaoyang Han
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Honglun Bi
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Hauser F, Stebegg M, Al-Ribaty T, Petersen LB, Møller M, Drag MH, Sigurdsson HH, Vilhelm MJ, Thygesen G, Grimmelikhuijzen CJP. The tick Ixodes scapularis has five different GPCRs specifically activated by ACP (adipokinetic hormone/corazonin-related peptide). Biochem Biophys Res Commun 2024; 717:149992. [PMID: 38714013 DOI: 10.1016/j.bbrc.2024.149992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Marisa Stebegg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Tara Al-Ribaty
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Lea B Petersen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Mads Møller
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Markus H Drag
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Haraldur H Sigurdsson
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Martin J Vilhelm
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gedske Thygesen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cornelis J P Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Hauser F, Pallesen M, Lehnhoff J, Li S, Lind A, Grimmelikhuijzen CJP. A corazonin G protein-coupled receptor gene in the tick Ixodes scapularis yields two splice variants, each coding for a specific corazonin receptor. Biochem Biophys Res Commun 2023; 666:162-169. [PMID: 37196606 DOI: 10.1016/j.bbrc.2023.04.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
We have identified a corazonin G protein-coupled receptor (GPCR) gene in the tick Ixodes scapularis, which likely plays a central role in the physiology and behavior of this ectoparasite. This receptor gene is unusually large (1.133 Mb) and yields two corazonin (CRZ) receptor splice variants, where nearly half of the coding regions are exchanged: CRZ-Ra (containing exon 2, exon 3, and exon 4 of the gene) and CRZ-Rb (containing exon 1, exon 3, and exon 4 of the gene). CRZ-Ra codes for a GPCR with a canonical DRF sequence at the border of the third transmembrane helix and the second intracellular loop. The positively-charged R residue from the DRF sequence is important for coupling of G proteins after activation of a GPCR. CRZ-Rb, in contrast, codes for a GPCR with an unusual DQL sequence at this position, still retaining a negatively-charged D residue, but lacking a positively-charged R residue, suggesting different G protein coupling. Another difference between the two splice variants is that exon 2 from CRZ-Ra codes for an N-terminal signal sequence. Normally, GPCRs do not have N-terminal signal sequences, although a few mammalian GPCRs have. In the tick CRZ-Ra, the signal sequence probably assists with inserting the receptor correctly into the RER membrane. We stably transfected Chinese Hamster Ovary cells with each of the two splice variants and carried out bioluminescence bioassays that also included the use of the human promiscuous G protein G16. CRZ-Ra turned out to be selective for I. scapularis corazonin (EC50 = 10-8 M) and could not be activated by related neuropeptides like adipokinetic hormone (AKH) and AKH/corazonin-related peptide (ACP). Similarly, also CRZ-Rb could only be activated by corazonin, although about 4-fold higher concentrations were needed to activate it (EC50 = 4 x 10-8 M). The genomic organization of the tick corazonin GPCR gene is similar to that of the insect AKH and ACP receptor genes. This similar genomic organization can also be found in the human gonadotropin-releasing hormone (GnRH) receptor gene, confirming previous conclusions that the corazonin, AKH, and ACP receptor genes are the true arthropod orthologues of the human GnRH receptor gene.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Malte Pallesen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Janna Lehnhoff
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Shizhong Li
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Anna Lind
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Cornelis J P Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Afifi S, Wahedi A, Paluzzi JP. Functional insight and cell-specific expression of the adipokinetic hormone/corazonin-related peptide in the human disease vector mosquito, Aedes aegypti. Gen Comp Endocrinol 2023; 330:114145. [PMID: 36244431 DOI: 10.1016/j.ygcen.2022.114145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic hormone (AKH). Unlike the AKH and CRZ signaling systems that are widely known for their roles in the mobilization of energy substrates and stress responses, respectively, the main role of ACP and its receptor (ACPR) remains unclear in most arthropods. The current study aimed to localize the distribution of ACP in the nervous system and provide insight into its physiological roles in the disease vector mosquito, Aedes aegypti. Immunohistochemical analysis and fluorescence in situ hybridization localized the ACP peptide and transcript within a number of cells in the central nervous system, including two pairs of laterally positioned neurons in the protocerebrum of the brain and a few ventrally localized neurons within the pro- and mesothoracic regions of the fused thoracic ganglia. Further, extensive ACP-immunoreactive axonal projections with prominent blebs and varicosities were observed traversing the abdominal ganglia. Given the prominent enrichment of ACPR expression within the abdominal ganglia of adult A. aegypti mosquitoes as determined previously, the current results indicate that ACP may function as a neurotransmitter and/or neuromodulator facilitating communication between the brain and posterior regions of the nervous system. In an effort to elucidate a functional role for ACP signaling, biochemical measurement of energy substrates in female mosquitoes revealed a reduction in abdominal fat body in response to ACP that matched the actions of AKH, but interestingly, a corresponding hypertrehalosaemic effect was only found in response to AKH since ACP did not influence circulating carbohydrate levels. Comparatively, both ACP and AKH led to a significant increase in haemolymph carbohydrate levels in male mosquitoes while both peptides had no influence on their glycogen stores. Neither ACP nor AKH influenced circulating or stored lipid levels in both male and female mosquitoes. Collectively, these results reveal ACP signaling in mosquitoes may have complex sex-specific actions, and future research should aim to expand knowledge on the role of this understudied neuropeptide.
Collapse
Affiliation(s)
- Salwa Afifi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Jean-Paul Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
9
|
Lange AB, Leyria J, Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen Comp Endocrinol 2022; 321-322:114030. [PMID: 35317995 DOI: 10.1016/j.ygcen.2022.114030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Rhodnius prolixus, the blood gorging kissing bug, is a model insect, extensively used by Sir Vincent Wigglesworth and others, upon which the foundations of insect physiology, endocrinology, and development are built. It is also medically important, being a principal vector of Trypanosoma cruzi, the causative agent of Chagas disease in humans. The blood meal stimulates and enables egg production, and since an adult mated female can take several blood meals, each female can produce hundreds of offspring. Understanding the reproductive biology of R. prolixus is therefore of some critical importance for controlling the transmission of Chagas disease. The R. prolixus genome is available and so the post-genomic era has arrived for this historic model insect. This review focuses on the female reproductive system and coordination over the production of eggs, emphasizing the classical (neuro)endocrinological studies that led to a model describing inputs from feeding and mating, and the neural control of egg-laying. We then review recent insights brought about by molecular analyses, including transcriptomics, that confirm, support, and considerably extends this model. We conclude this review with an updated model describing the events leading to full expression of egg production, and also provide a consideration of questions for future exploration and experimentation.
Collapse
Affiliation(s)
- Angela B Lange
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Jimena Leyria
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- University of Toronto Mississauga, Department of Biology, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
10
|
Cheng J, Yang X, Tian Z, Shen Z, Wang X, Zhu L, Liu X, Li Z, Liu X. Coordinated transcriptomics and peptidomics of central nervous system identify neuropeptides and their G protein-coupled receptors in the oriental fruit moth Grapholita molesta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100882. [PMID: 34273641 DOI: 10.1016/j.cbd.2021.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023]
Abstract
The oriental fruit moth Grapholita molesta is a cosmopolitan pest of orchard, which causes serious economic losses to the fruit production. Neuropeptides and their specific receptors (primarily G protein-coupled receptors, GPCRs) regulate multiple biological functions in insects and represent promising next-generation pest management strategy. Here, we generated a transcriptome of the central nervous system (CNS) of G. molesta. Overall, 57 neuropeptide precursor genes were identified and 128 various mature peptides were predicted from these precursors. Using peptidomic analysis of CNS of G. molesta, we identified total of 28 mature peptides and precursor-related peptides from 16 precursors. A total of 41 neuropeptide GPCR genes belonging to three classes were also identified. These GPCRs and their probable ligands were predicted. Additionally, expression patterns of these 98 genes in various larval tissues were evaluated using quantitative real-time PCR. Taken together, these results will benefit further investigations to determine physiological functions and pharmacological characterization of neuropeptides and their GPCRs in G. molesta; and to develop specific neuropeptide-based agents for this tortricid fruit pest control.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueli Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Rump MT, Kozma MT, Pawar SD, Derby CD. G protein-coupled receptors as candidates for modulation and activation of the chemical senses in decapod crustaceans. PLoS One 2021; 16:e0252066. [PMID: 34086685 PMCID: PMC8177520 DOI: 10.1371/journal.pone.0252066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus). We identified 333 putative class A GPCRs– 83 from P. argus, 81 from H. americanus, 102 from P. clarkii, and 67 from C. sapidus–which belong to five distinct subclasses. The numbers of sequences for each subclass in the four decapod species are (in parentheses): opsins (19), small-molecule receptors including biogenic amine receptors (83), neuropeptide receptors (90), leucine-rich repeat-containing GPCRs (LGRs) (24), orphan receptors (117). Most class A GPCRs are predominately expressed in the brain; however, we identified multiple transcripts enriched in the LF and several in the dactyl. In total, we found 55 sequences with higher expression in the chemosensory organs relative to the brain across three decapod species. We also identified novel transcripts enriched in the LF including a metabotropic histamine receptor and numerous orphan receptors. Our work establishes expression patterns for class A GPCRs in the chemosensory organs of crustaceans, providing insight into molecular mechanisms mediating neurotransmission, neuromodulation, and possibly chemoreception.
Collapse
Affiliation(s)
- Matthew T. Rump
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shrikant D. Pawar
- Yale Center for Genomic Analysis, Yale University, New Haven, Connecticut, United States of America
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Alvarado-Delgado A, Martínez-Barnetche J, Téllez-Sosa J, Rodríguez MH, Gutiérrez-Millán E, Zumaya-Estrada FA, Saldaña-Navor V, Rodríguez MC, Tello-López Á, Lanz-Mendoza H. Prediction of neuropeptide precursors and differential expression of adipokinetic hormone/corazonin-related peptide, hugin and corazonin in the brain of malaria vector Nyssorhynchus albimanus during a Plasmodium berghei infection. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100014. [PMID: 36003598 PMCID: PMC9387463 DOI: 10.1016/j.cris.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022]
Abstract
We describe precursors that predicted at least sixty neuropeptides in Ny. albimanus. At least 16 precursors are encoded in the Ny. albimanus brain. Myosuppressin neuropeptide precursor was identified in Ny albimanus. acp and hugin transcripts increased in Ny. albimanus brains infected with P. berghei.
Insect neuropeptides, play a central role in the control of many physiological processes. Based on an analysis of Nyssorhynchus albimanus brain transcriptome a neuropeptide precursor database of the mosquito was described. Also, we observed that adipokinetic hormone/corazonin-related peptide (ACP), hugin and corazonin encoding genes were differentially expressed during Plasmodium infection. Transcriptomic data from Ny. albimanus brain identified 29 pre-propeptides deduced from the sequences that allowed the prediction of at least 60 neuropeptides. The predicted peptides include isoforms of allatostatin C, orcokinin, corazonin, adipokinetic hormone (AKH), SIFamide, capa, hugin, pigment-dispersing factor, adipokinetic hormone/corazonin-related peptide (ACP), tachykinin-related peptide, trissin, neuropeptide F, diuretic hormone 31, bursicon, crustacean cardioactive peptide (CCAP), allatotropin, allatostatin A, ecdysis triggering hormone (ETH), diuretic hormone 44 (Dh44), insulin-like peptides (ILPs) and eclosion hormone (EH). The analysis of the genome of An. albimanus and the generated transcriptome, provided evidence for the identification of myosuppressin neuropeptide precursor. A quantitative analysis documented increased expression of precursors encoding ACP peptide, hugin and corazonin in the mosquito brain after Plasmodium berghei infection. This work represents an initial effort to characterize the neuropeptide precursors repertoire of Ny. albimanus and provides information for understanding neuroregulation of the mosquito response during Plasmodium infection.
Collapse
|
14
|
Wu K, Li S, Wang J, Ni Y, Huang W, Liu Q, Ling E. Peptide Hormones in the Insect Midgut. Front Physiol 2020; 11:191. [PMID: 32194442 PMCID: PMC7066369 DOI: 10.3389/fphys.2020.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Insects produce many peptide hormones that play important roles in regulating growth, development, immunity, homeostasis, stress, and other processes to maintain normal life. As part of the digestive system, the insect midgut is also affected by hormones secreted from the prothoracic gland, corpus allatum, and various neuronal cells; these hormones regulate the secretion and activity of insects’ digestive enzymes and change their feeding behaviors. In addition, the insect midgut produces certain hormones when it recognizes various components or pathogenic bacteria in ingested foods; concurrently, the hormones regulate other tissues and organs. In addition, intestinal symbiotic bacteria can produce hormones that influence insect signaling pathways to promote host growth and development; this interaction is the result of long-term evolution. In this review, the types, functions, and mechanisms of hormones working on the insect midgut, as well as hormones produced therein, are reviewed for future reference in biological pest control.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Pandit AA, Davies SA, Smagghe G, Dow JAT. Evolutionary trends of neuropeptide signaling in beetles - A comparative analysis of Coleopteran transcriptomic and genomic data. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103227. [PMID: 31470084 DOI: 10.1016/j.ibmb.2019.103227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insects employ neuropeptides to regulate their growth & development, behaviour, metabolism and their internal milieu. At least 50 neuropeptides are known to date, with some ancestral to the insects and others more specific to particular taxa. In order to understand the evolution and essentiality of neuropeptides, we data mined publicly available high quality genomic or transcriptomic data for 31 species of the largest insect Order, the Coleoptera, chosen to represent the superfamilies' of the Adephaga and Polyphaga. The resulting neuropeptide distributions were compared against the habitats, lifestyle and other parameters. Around half of the neuropeptide families were represented across the Coleoptera, suggesting essentiality or at least continuing utility. However, the remaining families showed patterns of loss that did not correlate with any obvious life history parameter, suggesting that these neuropeptides are no longer required for the Coleopteran lifestyle. This may perhaps indicate a decreasing reliance on neuropeptide signaling in insects.
Collapse
Affiliation(s)
- Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Lavore A, Perez-Gianmarco L, Esponda-Behrens N, Palacio V, Catalano MI, Rivera-Pomar R, Ons S. Nezara viridula (Hemiptera: Pentatomidae) transcriptomic analysis and neuropeptidomics. Sci Rep 2018; 8:17244. [PMID: 30467353 PMCID: PMC6250713 DOI: 10.1038/s41598-018-35386-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Stinkbugs (Hemiptera: Pentatomidae) are of major economic importance as pest of crops. Among the species composing the stinkbug complex, Nezara viridula is one of the most abundant in Brazil, Argentina and the Southern USA. However, this species has been poorly characterized at the genetic and physiological level. Here we sequenced and analyzed the complete transcriptome of N. viridula male and female adults. We identified neuropeptide precursor genes and G-protein coupled receptors for neuropeptides in this transcriptome. Mature neuropeptides were identified in N. viridula brain extracts by liquid chromatography-tandem mass spectrometry. We also analyzed the neuropeptide precursor complement in the genome sequence of Halyomorpha halys, another pentatomid of economic relevance. We compared the results in both pentatomids with the well-characterized neuropeptide repertoire from the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). We identified both group-specific features (which could be related to the different feeding habits) and similarities that could be characteristic of Heteroptera. This work contributes to a deeper knowledge of the genetic information of these pests, with a focus on neuroendocrine system characterization.
Collapse
Affiliation(s)
- Andrés Lavore
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Lucila Perez-Gianmarco
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Natalia Esponda-Behrens
- Centro Regional de Estudios Genomicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Victorio Palacio
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Maria Ines Catalano
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina.,Centro Regional de Estudios Genomicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Centro Regional de Estudios Genomicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
20
|
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling that regulate a wide range of physiological processes and behaviours in animals. Neuropeptide signalling has been investigated extensively in vertebrates and protostomian invertebrates, which include the ecdysozoans Drosophila melanogaster (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda). However, until recently, an understanding of evolutionary relationships between neuropeptide signalling systems in vertebrates and protostomes has been impaired by a lack of genome/transcriptome sequence data from non-ecdysozoan invertebrates. The echinoderms—a deuterostomian phylum that includes sea urchins, sea cucumbers and starfish—have been particularly important in providing new insights into neuropeptide evolution. Sequencing of the genome of the sea urchin Strongylocentrotus purpuratus (Class Echinoidea) enabled discovery of (i) the first invertebrate thyrotropin-releasing hormone-type precursor, (ii) the first deuterostomian pedal peptide/orcokinin-type precursors and (iii) NG peptides—the ‘missing link’ between neuropeptide S in tetrapod vertebrates and crustacean cardioactive peptide in protostomes. More recently, sequencing of the neural transcriptome of the starfish Asterias rubens (Class Asteroidea) enabled identification of 40 neuropeptide precursors, including the first kisspeptin and melanin-concentrating hormone-type precursors to be identified outside of the chordates. Furthermore, the characterization of a corazonin-type neuropeptide signalling system in A. rubens has provided important new insights into the evolution of gonadotropin-releasing hormone-related neuropeptides. Looking forward, the discovery of multiple neuropeptide signalling systems in echinoderms provides opportunities to investigate how these systems are used to regulate physiological and behavioural processes in the unique context of a decentralized, pentaradial bauplan.
Collapse
|
21
|
Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gäde G, Vanden Broeck J, Verlinden H. Analysis of Peptide Ligand Specificity of Different Insect Adipokinetic Hormone Receptors. Int J Mol Sci 2018; 19:ijms19020542. [PMID: 29439466 PMCID: PMC5855764 DOI: 10.3390/ijms19020542] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/02/2023] Open
Abstract
Adipokinetic hormone (AKH) is a highly researched insect neuropeptide that induces the mobilization of carbohydrates and lipids from the fat body at times of high physical activity, such as flight and locomotion. As a naturally occurring ligand, AKH has undergone quite a number of amino acid changes throughout evolution, and in some insect species multiple AKHs are present. AKH acts by binding to a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors. In the current study, we have cloned AKH receptors (AKHRs) from seven different species, covering a wide phylogenetic range of insect orders: the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti (Diptera); the red flour beetle, Tribolium castaneum, and the large pine weevil, Hylobius abietis (Coleoptera); the honeybee, Apis mellifera (Hymenoptera); the pea aphid, Acyrthosiphon pisum (Hemiptera); and the desert locust, Schistocerca gregaria (Orthoptera). The agonistic activity of different insect AKHs, including the respective endogenous AKHs, at these receptors was tested with a bioluminescence-based assay in Chinese hamster ovary cells. All receptors were activated by their endogenous ligand in the nanomolar range. Based on our data, we can refute the previously formulated hypothesis that a functional AKH signaling system is absent in the beneficial species, Apis mellifera. Furthermore, our data also suggest that some of the investigated AKH receptors, such as the mosquito AKHR, are more selective for the endogenous (conspecific) ligand, while others, such as the locust AKHR, are more promiscuous and can be activated by AKHs from many other insects. This information will be of high importance when further analyzing the potential use of AKHRs as targets for developing novel pest control agents.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Sam Schellens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Evert Bruyninckx
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Oryan A, Wahedi A, Paluzzi JPV. Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti. Biochem Biophys Res Commun 2018; 497:550-557. [PMID: 29432729 DOI: 10.1016/j.bbrc.2018.02.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and secondary sex organs, respectively, of adult mosquitoes, these neuropeptides may play a role in regulating mosquito reproductive biology.
Collapse
Affiliation(s)
- Alireza Oryan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
23
|
Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti. Sci Rep 2018; 8:2146. [PMID: 29391531 PMCID: PMC5794978 DOI: 10.1038/s41598-018-20517-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
The recently discovered adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic (AKH) hormones, which all demonstrate homology to the vertebrate gonadotropin-releasing hormone (GnRH). To date, the function of the ACP signaling system remains unclear. In the present study, we molecularly identified the complete open reading frame encoding the Aedes aegypti ACP receptor (ACPR), which spans nine exons and undergoes alternative splicing giving rise to three transcript variants. Only a single variant, AedaeACPR-I, yielding a deduced 577 residue protein, contains all seven transmembrane domains characteristic of rhodopsin-like G protein-coupled receptors. Functional deorphanization of AedaeACPR-I using a heterologous cell culture-based system revealed highly-selective and dose-dependent receptor activation by AedaeACP (EC50 = 10.25 nM). Analysis of the AedaeACPR-I and AedaeACP transcript levels in all post-embryonic developmental stages using quantitative RT-PCR identified enrichment of both transcripts after adult eclosion. Tissue-specific expression profiling in adult mosquitoes reveals expression of the AedaeACPR-I receptor transcript in the central nervous system, including significant enrichment within the abdominal ganglia. Further, the AedaeACP transcript is prominently detected within the brain and thoracic ganglia. Collectively, these results indicate a neuromodulator or neurotransmitter role for ACP and suggest this neuropeptide may function in regulation of post-ecdysis activities.
Collapse
|
24
|
Dubos MP, Bernay B, Favrel P. Molecular characterization of an adipokinetic hormone-related neuropeptide (AKH) from a mollusk. Gen Comp Endocrinol 2017; 243:15-21. [PMID: 27823954 DOI: 10.1016/j.ygcen.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022]
Abstract
Adipokinetic hormones (AKH) are key regulators of energy mobilization in insects. With the growing number of genome sequence available, the existence of genes encoding AKH related peptides has now been established in protostomes. Here we investigated the occurrence of a mature AKH-like neuropeptide (Cg-AKH) in the oyster Crassostrea gigas. We unambiguously elucidated the primary structure of this neuropeptide by mass spectrometry from peptidic extracts of oyster visceral ganglia. Cg-AKH mature peptide (pQVSFSTNWGS-amide) represents an additional member of the AKH family of peptides. The organization of Cg-AKH encoding gene and its corresponding transcript is also described. Cg-AKH gene was found to be expressed in the nervous system though at extremely low levels compared to other neuropeptide encoding genes such as the oyster GnRH gene. Although both reproduction and feeding are known to affect the energy balance in oysters, no significant differential expression of Cg-AKH gene could be evidenced in relation with the nutritional status or along the reproductive cycle. The possible involvement of Cg-AKH in the regulation of energy balance in oyster remains an open question.
Collapse
Affiliation(s)
- Marie-Pierre Dubos
- Normandie Univ, UNICAEN, CNRS 7208, IRD 207, UMR BOREA, Esplanade de la Paix, 14032 Caen cedex, France
| | - Benoit Bernay
- Normandie Univ, UNICAEN, SF 4206 ICORE, Esplanade de la Paix, 14032 Caen cedex, France
| | - Pascal Favrel
- Normandie Univ, UNICAEN, CNRS 7208, IRD 207, UMR BOREA, Esplanade de la Paix, 14032 Caen cedex, France.
| |
Collapse
|
25
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Sakai T, Shiraishi A, Kawada T, Matsubara S, Aoyama M, Satake H. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update. Front Endocrinol (Lausanne) 2017; 8:217. [PMID: 28932208 PMCID: PMC5592718 DOI: 10.3389/fendo.2017.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Masato Aoyama
- Faculty of Science, Department of Biological Sciences, Nara Women’s University, Nara, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- *Correspondence: Honoo Satake,
| |
Collapse
|
27
|
Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci Rep 2016; 6:38658. [PMID: 27924858 PMCID: PMC5141488 DOI: 10.1038/srep38658] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
The Australian redclaw crayfish (Cherax quadricarinatus) has recently received attention as an emerging candidate for sustainable aquaculture production in Australia and worldwide. More importantly, C. quadricarinatus serves as a good model organism for the commercially important group of decapod crustaceans as it is distributed worldwide, easy to maintain in the laboratory and its reproductive cycle has been well documented. In order to better understand the key reproduction and development regulating mechanisms in decapod crustaceans, the molecular toolkit available for model organisms such as C. quadricarinatus must be expanded. However, there has been no study undertaken to establish the C. quadricarinatus neuropeptidome. Here we report a comprehensive study of the neuropeptide genes expressed in the eyestalk in the Australian crayfish C. quadricarinatus. We characterised 53 putative neuropeptide-encoding transcripts based on key features of neuropeptides as characterised in other species. Of those, 14 neuropeptides implicated in reproduction regulation were chosen for assessment of their tissue distribution using RT-PCR. Further insights are discussed in relation to current knowledge of neuropeptides in other species and potential follow up studies. Overall, the resulting data lays the foundation for future gene-based neuroendocrinology studies in C. quadricarinatus.
Collapse
|
28
|
Tian S, Zandawala M, Beets I, Baytemur E, Slade SE, Scrivens JH, Elphick MR. Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Sci Rep 2016; 6:28788. [PMID: 27350121 PMCID: PMC4923880 DOI: 10.1038/srep28788] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in humans and other vertebrates. Homologs of GnRH and its cognate receptor have been identified in invertebrates-for example, the adipokinetic hormone (AKH) and corazonin (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships and origins of these signalling systems remain unknown. Here we have addressed this issue with the first identification of both GnRH-type and CRZ-type signalling systems in a deuterostome-the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH systems are orthologous and the origin of a paralogous CRZ-type signalling system can be traced to the common ancestor of the Bilateria (Urbilateria).
Collapse
Affiliation(s)
- Shi Tian
- Queen Mary University of London, School of Biological &Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological &Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Isabel Beets
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Esra Baytemur
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Susan E Slade
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - James H Scrivens
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological &Chemical Sciences, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
29
|
Jedličková V, Jedlička P, Lee HJ. Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. Gen Comp Endocrinol 2015; 223:38-46. [PMID: 26432101 DOI: 10.1016/j.ygcen.2015.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/22/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023]
Abstract
Aphids display an extraordinary phenotypic plasticity ranging from widespread reproductive and wing polyphenisms to the occurrence of sterile or subfertile soldier morphs restricted to eusocial species of the subfamilies Eriosomatinae and Hormaphidinae. Individual morphs are specialized by their behavior, anatomy, and physiology to perform different roles in aphid societies at different stages of the life cycle. The capacity of the insects to cope with environmental stressors is under the control of a group of neuropeptides of the adipokinetic hormone/red pigment-concentrating hormone family (AKH/RPCH) that bind to a specific receptor (AKHR). Here, we describe the molecular characteristics of AKH and AKHR in the eusocial aphid Pseudoregma bambucicola. The sequence of the bioactive AKH decapeptide and the intron position in P. bambucicola AKH preprohormone were found to be identical to those in a phylogenetically distant aphid Dreyfusia spp. (Adelgidae). We detected four transcript variants of AKHR that are translated into three protein isoforms. Further, we analyzed AKH/AKHR expression in different tissues and insects of different castes. In wingless females, a remarkable amount of AKH mRNA was only expressed in the heads. In contrast, AKHR transcript levels increased in the order gut<ovary<fat body<head. In aphids from both the primary and secondary hosts (Styrax suberifolia and Bambusa spp., respectively), the highest AKH expression levels were recorded in winged, migratory females and soldiers, whereas reduced levels were found in wingless, sedentary females that are functionally oriented to reproduction. The highest AKHR expression was found in soldiers in gall-dwelling populations, whereas in bamboo colonies the highest transcript level was detected in winged females. We propose a possible explanation for the correlation between AKH and AKHR transcript levels and task partitioning among individual forms in P. bambucicola colonies.
Collapse
Affiliation(s)
- Veronika Jedličková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Pavel Jedlička
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | - How-Jing Lee
- Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|