1
|
Su Y, Zhu K, Wang J, Liu B, Chang Y, Chang D, You Y. Advancing Src kinase inhibition: From structural design to therapeutic innovation - A comprehensive review. Eur J Med Chem 2025; 287:117369. [PMID: 39952096 DOI: 10.1016/j.ejmech.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Src kinase, a non-receptor tyrosine kinase implicated in cellular signaling networks, plays a pivotal role in tumor progression and therapeutic resistance. Despite intensive research efforts spanning decades, no Src-selective kinase inhibitors have yet entered clinical use, highlighting the challenges in developing targeted therapeutics. Here we review recent advances in small-molecule Src inhibitor development, focusing on structural design strategies, binding mechanisms, and therapeutic applications. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and substrate-competitive inhibition that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly through exploitation of non-ATP binding pockets and covalent inhibition strategies. Integration of artificial intelligence, living organoid platforms, and targeted protein degradation technologies is accelerating inhibitor optimization. We discuss key challenges in Src inhibitor development, including the need for enhanced selectivity, reduced off-target effects, and improved resistance profiles. Our analysis reveals promising directions for future therapeutic development, emphasizing the importance of rational design principles guided by structural insights and emerging technologies. These findings provide a framework for developing next-generation Src inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Yifeng Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiahao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Boyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yue Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| |
Collapse
|
2
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Xu L, Zhang H, Wang Y, Yang A, Dong X, Gu L, Liu D, Ding N, Jiang Y. FABP4 activates the JAK2/STAT2 pathway via Rap1a in the homocysteine-induced macrophage inflammatory response in ApoE -/- mice atherosclerosis. J Transl Med 2022; 102:25-37. [PMID: 34725437 PMCID: PMC8695379 DOI: 10.1038/s41374-021-00679-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease, and inflammation plays a critical role in its formation and progression. Elevated serum homocysteine (Hcy) is an independent risk factor for atherosclerosis. Previous studies have shown that fatty acid binding protein 4 (FABP4) plays an important role in macrophage inflammation and lipid metabolism in atherosclerosis induced by Hcy. However, the underlying molecular mechanism of FABP4 in Hcy-induced macrophage inflammation remains unknown. In this study, we found that FABP4 activated the Janus kinase 2/signal transducer and activator of transcription 2 (JAK2/STAT2) pathway in macrophage inflammation induced by Hcy. Of note, we further observed that ras-related protein Rap-1a (Rap1a) induced the Tyr416 phosphorylation and membrane translocation of non-receptor tyrosine kinase (c-Src) to activate the JAK2/STAT2 pathway. In addition, the suppressor of cytokine signaling 1 (SOCS1)-a transcriptional target of signal transducer and activator of transcription (STATs) inhibited the JAK2/STAT2 pathway and Rap1a expression via a negative feedback loop. In summary, these results demonstrated that FABP4 promotes c-Src phosphorylation and membrane translocation via Rap1a to activate the JAK2/STAT2 pathway, contributing to Hcy-accelerated macrophage inflammation in ApoE-/- mice.
Collapse
Affiliation(s)
- Lingbo Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Yanhua Wang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Anning Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoyan Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingyu Gu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Dayue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ding
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yideng Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM. Biosensors based on peptide exposure show single molecule conformations in live cells. Cell 2021; 184:5670-5685.e23. [PMID: 34637702 PMCID: PMC8556369 DOI: 10.1016/j.cell.2021.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orrin J Stone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onur Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan B Grimm
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021; 131:121-126. [PMID: 33419562 DOI: 10.1016/j.molimm.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
With worsening air pollution brought by global social development, the prevalence of allergic diseases has increased dramatically in the past few decades. The novel Lck/yes-related protein tyrosine kinase (Lyn) belongs to the Src kinase family (SFK) and plays a pivotal role in the pathogenesis of inflammation, tumor, and allergy. This signaling molecule is vital in the IgE/FcεRI signaling pathway that regulates allergy. The Lyn-FcεRIβ interaction is essential for mast cell activation. The signaling pathway of Lyn has become the focus of immune, inflammatory, tumor, and allergy research. This molecule has positive and negative regulatory effects, which have attracted researchers' attention. This paper reviews the basic characteristics of Lyn and its regulatory mechanism and role in tumor and other diseases, specifically in allergies.
Collapse
Affiliation(s)
- Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Cai ML, Wang MY, Zhang CH, Wang JX, Liu H, He HW, Zhao WL, Xia GM, Shao RG. Role of co- and post-translational modifications of SFKs in their kinase activation. J Drug Target 2019; 28:23-32. [PMID: 31094236 DOI: 10.1080/1061186x.2019.1616297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.
Collapse
Affiliation(s)
- Mei-Lian Cai
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yan Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Xia Wang
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liu
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Wei He
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wu-Li Zhao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gui-Ming Xia
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong-Guang Shao
- China Academy of Medical Sciences, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Koudelková L, Pataki AC, Tolde O, Pavlik V, Nobis M, Gemperle J, Anderson K, Brábek J, Rosel D. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem Biol 2019; 26:255-268.e4. [DOI: 10.1016/j.chembiol.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
8
|
Zhang K, Lyu W, Yu J, Koleske AJ. Abl2 is recruited to ventral actin waves through cytoskeletal interactions to promote lamellipodium extension. Mol Biol Cell 2018; 29:2863-2873. [PMID: 30256707 PMCID: PMC6249870 DOI: 10.1091/mbc.e18-01-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Abl family nonreceptor tyrosine kinases regulate changes in cell shape and migration. Abl2 localizes to dynamic actin-rich protrusions, such as lamellipodia in fibroblasts and dendritic spines in neurons. Abl2 interactions with cortactin, an actin filament stabilizer, are crucial for the formation and stability of actin-rich structures, but Abl2:cortactin-positive structures have not been characterized with high spatiotemporal resolution in cells. Using total internal reflection fluorescence microscopy, we demonstrate that Abl2 colocalizes with cortactin at wave-like structures within lamellum and lamellipodium tips. Abl2 and cortactin within waves are focal and transient, extend to the outer edge of lamella, and serve as the base for lamellipodia protrusions. Abl2-positive foci colocalize with integrin β3 and paxillin, adhesive markers of the lamellum-lamellipodium interface. Cortactin-positive waves still form in Abl2 knockout cells, but the lamellipodium size is significantly reduced. This deficiency is restored following Abl2 reexpression. Complementation analyses revealed that the Abl2 C-terminal half, which contains domains that bind actin and microtubules, is necessary and sufficient for recruitment to the wave-like structures and to support normal lamellipodium size, while the kinase domain-containing N-terminal half does not impact lamellipodium size. Together, this work demonstrates that Abl2 is recruited with cortactin to actin waves through cytoskeletal interactions to promote lamellipodium extension.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ji Yu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520
| |
Collapse
|
9
|
Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol 2018; 102:2851-2865. [PMID: 29442170 PMCID: PMC5847202 DOI: 10.1007/s00253-018-8794-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 01/08/2023]
Abstract
The adhesion properties of 14 Streptococcus salivarius strains to mucus (HT29-MTX) and non-mucus secreting (Caco-2/TC7) human intestinal epithelial cells were investigated. Ability to adhere to these two eukaryotic cell lines greatly differs between strains. The presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. Only one S. salivarius strain (F6-1), isolated from the feces of a healthy baby, was found to strongly adhere to HT-29 MTX cells at a level comparable to that of Lactobacillus rhamnosus GG, a probiotic strain considered to be highly adherent. By sequencing the genome of F6-1, we were able to identify 36 genes encoding putative surface proteins. Deletion mutants were constructed for six of them and their adhesion abilities on HT-29 MTX cells were checked. Our study confirmed that four of these genes encode adhesins involved in the adhesion of S. salivarius to host cells. Such adhesins were also identified in other S. salivarius strains.
Collapse
|
10
|
Machiyama H, Morikawa TJ, Okamoto K, Watanabe TM, Fujita H. The use of a genetically encoded molecular crowding sensor in various biological phenomena. Biophys Physicobiol 2017; 14:119-125. [PMID: 28900589 PMCID: PMC5590787 DOI: 10.2142/biophysico.14.0_119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 12/03/2022] Open
Abstract
We evaluated usability of a previously developed genetically encoded molecular crowding sensor in various biological phenomena. Molecular crowding refers to intracellular regions that are occupied more by proteins and nucleotides than by water molecules and is thought to have a strong effect on protein function. To evaluate intracellular molecular crowding, usually the diffusion coefficient of a probe is used because it is related to mobility of the surrounding molecular crowding agents. Recently, genetically encoded molecular crowding sensors based on Förster resonance energy transfer were reported. In the present study, to evaluate the usability of a genetically encoded molecular crowding sensor, molecular crowding was monitored during several biological events. Changes in molecular crowding during stem cell differentiation, cell division, and focal adhesion development and difference in molecular crowding in filopodia locations were examined. The results show usefulness of the genetically encoded molecular crowding sensor for understanding the biological phenomena relating to molecular crowding.
Collapse
Affiliation(s)
- Hiroaki Machiyama
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan.,Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | - Kazuko Okamoto
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan
| | | | - Hideaki Fujita
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan.,Waseda Bioscience Research Institute in Singapore (WABIOS), Helios, Singapore 138667, Republic of Singapore
| |
Collapse
|
11
|
Machiyama H, Yamaguchi T, Watanabe TM, Fujita H. A novel c-Src recruitment pathway from the cytosol to focal adhesions. FEBS Lett 2017; 591:1940-1946. [DOI: 10.1002/1873-3468.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Hiroaki Machiyama
- WPI, Immunology Frontier Research Center; Osaka University; Suita Osaka Japan
| | - Tomoyuki Yamaguchi
- WPI, Immunology Frontier Research Center; Osaka University; Suita Osaka Japan
| | - Tomonobu M. Watanabe
- WPI, Immunology Frontier Research Center; Osaka University; Suita Osaka Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| | - Hideaki Fujita
- WPI, Immunology Frontier Research Center; Osaka University; Suita Osaka Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| |
Collapse
|
12
|
Espada J, Martín-Pérez J. An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:83-122. [DOI: 10.1016/bs.ircmb.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|