1
|
Mizuno A, Nakayoshi T, Inaoka K, Shingaki A, Kurimoto E, Kato K, Oda A. Molecular Dynamics Simulations of Monomeric and Tetrameric Amyloid β 1-42 Peptides with d-Aspartic Acid Residues. Chembiochem 2025:e2500171. [PMID: 40285402 DOI: 10.1002/cbic.202500171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Amyloid β1-42 (Aβ1-42) peptide includes three aspartic acid (Asp) residues. It is known that these Asp residues undergo stereoinversion to d-Asp in ageing tissues, a process that promotes β-sheet structure formation. In this study, the 3D structures of Aβ1-42 monomers and tetramers containing d-Asp residues are analyzed using molecular dynamics (MD) simulations. Seven types of mutants are generated by stereoinverting the three Asp residues, and monomer MD simulations are performed using an implicit solvent model for all seven mutants and the wild type. Following these implicit solvent simulations, tetramer MD simulations using explicit water molecules are conducted for the wild type and three mutants previously reported to form secondary structures in experimental studies. The MD simulations of Aβ1-42 monomers with implicit solvent successfully reproduced the trend of increased β-structure formation caused by D-Asp7 and d-Asp23. However, the effects of d-Asp1 are only captured in tetramer simulations using explicit water. These findings suggest that explicit water is necessary to accurately model peptide-peptide interactions and that multimer simulations are essential for investigating structural features, such as β-sheet formations and aggregation in proteins containing d-amino acids.
Collapse
Affiliation(s)
- Ayato Mizuno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Kenju Inaoka
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Ayumi Shingaki
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Koichi Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, 244-0806, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Sun J, Matsubara T, Koide T, Lampi KJ, David LL, Takata T. Characterization of different-sized human αA-crystallin homomers and implications to Asp151 isomerization. PLoS One 2024; 19:e0306856. [PMID: 38991013 PMCID: PMC11238991 DOI: 10.1371/journal.pone.0306856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Site-specific modifications of aspartate residues spontaneously occur in crystallin, the major protein in the lens. One of the primary modification sites is Asp151 in αA-crystallin. Isomerization and racemization alter the crystallin backbone structure, reducing its stability by inducing abnormal crystallin-crystallin interactions and ultimately leading to the insolubilization of crystallin complexes. These changes are considered significant factors in the formation of senile cataracts. However, the mechanisms driving spontaneous isomerization and racemization have not been experimentally demonstrated. In this study, we generated αA-crystallins with different homo-oligomeric sizes and/or containing an asparagine residue at position 151, which is more prone to isomerization and racemization. We characterized their structure, hydrophobicity, chaperone-like function, and heat stability, and examined their propensity for isomerization and racemization. The results show that the two differently sized αA-crystallin variants possessed similar secondary structures but exhibited different chaperone-like functions depending on their oligomeric sizes. The rate of isomerization and racemization of Asp151, as assessed by the deamidation of Asn151, was also found to depend on the oligomeric sizes of αA-crystallin. The predominant isomerization product via deamidation of Asn151 in the different-sized αA-crystallin variants was L-β-Asp in vitro, while various modifications occurred around Asp151 in vivo. The disparity between the findings of this in vitro study and in vivo studies suggests that the isomerization of Asp151 in vivo may be more complex than what occurs in vitro.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | - Tamaki Koide
- Rexxam Corporation, Chuo-ku, Osaka-shi, Osaka, Japan
| | - Kirsten J. Lampi
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Larry L. David
- Oregon Health and Science University, Integrative Biosciences, Portland, Oregon, United States of America
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, Japan
| |
Collapse
|
3
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Separation and Identification of Isoleucine Enantiomers and Diastereomers Using an Original Chiral Resolution Labeling Reagent. Chem Pharm Bull (Tokyo) 2023; 71:824-831. [PMID: 37612063 DOI: 10.1248/cpb.c23-00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
D-Amino acids, which are present in small amounts in living organisms, are responsible for a variety of physiological functions. Some bioactive/biomolecular peptides also contain D-amino acids in their sequences; such peptides express different functions than peptides composed only of L-form amino acids. Among the 20 amino acids that make up proteins, threonine (Thr) and isoleucine (Ile) have two chiral carbons and thus have two enantiomers and diastereomers. These stereoisomers have been previously analyzed through HPLC using chiral columns or chiral resolution labeling reagents. However, the separation and identification of these stereoisomers are highly laborious and complicated. Herein, we propose an analytical method for the separation and identification of Ile stereoisomers through LC-MS using our original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine-amide (L-FDVDA) and a PBr column packed with pentabromobenzyl-modified silica gel. Twenty DL-amino acids including Thr stereoisomers (41 amino acids including glycine) were separated and identified using C18 column. Ile stereoisomers could be separated using not a C18 column but a PBr column. Additionally, we showed that peptides containing Thr and Ile stereoisomers can be accurately detected through labeling with L-FDVDA.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| | - Motoshi Shimotsuma
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Tsunehisa Hirose
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| |
Collapse
|
4
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
5
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Readel ER, Wey M, Armstrong DW. Rapid and selective separation of amyloid beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer's disease. Anal Chim Acta 2021; 1163:338506. [PMID: 34024415 DOI: 10.1016/j.aca.2021.338506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Extracellular deposition of amyloid beta (Aβ) peptides are a hallmark of Alzheimer's disease. The isomerization and epimerization of Aβ peptides have been linked to the enhanced deposition of Aβ plaques. Therefore, considerable effort has been expended to create effective methods to distinguish such aberrant Aβ peptides from normal Aβ peptides. Herein, we have developed chromatographic retention U-shaped curves to investigate the hydrophobicity of Aβ 1-38, 1-40, 1-42 and fourteen aberrant Aβ 1-42 peptides. Using this information, we developed the first selective and comprehensive method that can easily detect both aberrant and normal Aβ peptides simultaneously using high performance liquid chromatography-mass spectrometry (HPLC-MS). We show for the first time that D-Ser modifications to Aβ cause the peptide to be more hydrophilic, as does D-Asp and L/D-iso-Asp.
Collapse
Affiliation(s)
- Elizabeth R Readel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
7
|
Sprague-Piercy MA, Rocha MA, Kwok AO, Martin RW. α-Crystallins in the Vertebrate Eye Lens: Complex Oligomers and Molecular Chaperones. Annu Rev Phys Chem 2021; 72:143-163. [PMID: 33321054 PMCID: PMC8062273 DOI: 10.1146/annurev-physchem-090419-121428] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.
Collapse
Affiliation(s)
- Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
| | - Megan A Rocha
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ashley O Kwok
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
8
|
Warmack RA, Shawa H, Liu K, Lopez K, Loo JA, Horwitz J, Clarke SG. The l-isoaspartate modification within protein fragments in the aging lens can promote protein aggregation. J Biol Chem 2019; 294:12203-12219. [PMID: 31239355 DOI: 10.1074/jbc.ra119.009052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Transparency in the lens is accomplished by the dense packing and short-range order interactions of the crystallin proteins in fiber cells lacking organelles. These features are accompanied by a lack of protein turnover, leaving lens proteins susceptible to a number of damaging modifications and aggregation. The loss of lens transparency is attributed in part to such aggregation during aging. Among the damaging post-translational modifications that accumulate in long-lived proteins, isomerization at aspartate residues has been shown to be extensive throughout the crystallins. In this study of the human lens, we localize the accumulation of l-isoaspartate within water-soluble protein extracts primarily to crystallin peptides in high-molecular weight aggregates and show with MS that these peptides are from a variety of crystallins. To investigate the consequences of aspartate isomerization, we investigated two αA crystallin peptides 52LFRTVLDSGISEVR65 and 89VQDDFVEIH98, identified within this study, with the l-isoaspartate modification introduced at Asp58 and Asp91, respectively. Importantly, whereas both peptides modestly increase protein precipitation, the native 52LFRTVLDSGISEVR65 peptide shows higher aggregation propensity. In contrast, the introduction of l-isoaspartate within a previously identified anti-chaperone peptide from water-insoluble aggregates, αA crystallin 66SDRDKFVIFL(isoAsp)VKHF80, results in enhanced amyloid formation in vitro The modification of this peptide also increases aggregation of the lens chaperone αB crystallin. These findings may represent multiple pathways within the lens wherein the isomerization of aspartate residues in crystallin peptides differentially results in peptides associating with water-soluble or water-insoluble aggregates. Here the eye lens serves as a model for the cleavage and modification of long-lived proteins within other aging tissues.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Harrison Shawa
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Kate Liu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Katia Lopez
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph Horwitz
- Molecular Biology Institute, UCLA, Los Angeles, California 90095; Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
9
|
Takata T, Matsubara T, Nakamura-Hirota T, Fujii N. Negative charge at aspartate 151 is important for human lens αA-crystallin stability and chaperone function. Exp Eye Res 2019; 182:10-18. [PMID: 30849387 DOI: 10.1016/j.exer.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Aggregation of lens protein is a major cause of senile cataract. Lens crystallins contain many kinds of modification that accumulate over lifespan. In particular, isomerization of Asp 151 in αA-crystallin has been found in aged lenses; however, its significance is unknown. The purpose of this study was to determine the effects of isomerization of Asp 151 in αA-crystallin. Trypsin digestion followed by liquid chromatography-mass spectrometry analysis of the water-soluble high molecular weight (HMW) fraction from human lens samples showed that isomerization of Asp 151 in αA-crystallin is age-independent, and that 50% of isomerization occurs shortly after birth. However, the extent of Asp 151 isomerization varied with the size of αA-crystallin oligomer species separated from the HMW fraction from aged lens. To evaluate the effects of modification, Asp 151 of αA-crystallin was replaced by glycine, alanine, isoleucine, asparagine, glutamate, or lysine by site-directed mutagenesis. All substitutions except for glutamate decreased heat stability and chaperone function as compared with wild-type αA-crystallin. In particular, abnormal hydrophobicity and alteration of the charge state at Asp 151 caused loss of stability and chaperone activity of αA-crystallin; these properties were recovered to some extent when the mutant protein was mixed 1:1 with wild-type αA-crystallin. The results suggest that, by itself, age-independent isomerization of Asp 151 in αA-crystallin may not contribute to cataract formation. However, the long-term deleterious effect of Asp 151 isomerization on the structure and function of αA-crystallin might cooperatively contribute to the loss of transparency of aged human lens.
Collapse
Affiliation(s)
- Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | | | | | - Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan.
| |
Collapse
|
10
|
Lyon YA, Collier MP, Riggs DL, Degiacomi MT, Benesch JLP, Julian RR. Structural and functional consequences of age-related isomerization in α-crystallins. J Biol Chem 2019; 294:7546-7555. [PMID: 30804217 PMCID: PMC6514633 DOI: 10.1074/jbc.ra118.007052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long-lived proteins are subject to spontaneous degradation and may accumulate a range of modifications over time, including subtle alterations such as side-chain isomerization. Recently, tandem MS has enabled identification and characterization of such peptide isomers, including those differing only in chirality. However, the structural and functional consequences of these perturbations remain largely unexplored. Here, we examined the impact of isomerization of aspartic acid or epimerization of serine at four sites mapping to crucial oligomeric interfaces in human αA- and αB-crystallin, the most abundant chaperone proteins in the eye lens. To characterize the effect of isomerization on quaternary assembly, we utilized synthetic peptide mimics, enzyme assays, molecular dynamics calculations, and native MS experiments. The oligomerization of recombinant forms of αA- and αB-crystallin that mimic isomerized residues deviated from native behavior in all cases. Isomerization also perturbs recognition of peptide substrates, either enhancing or inhibiting kinase activity. Specifically, epimerization of serine (αASer-162) dramatically weakened inter-subunit binding. Furthermore, phosphorylation of αBSer-59, known to play an important regulatory role in oligomerization, was severely inhibited by serine epimerization and altered by isomerization of nearby αBAsp-62. Similarly, isomerization of αBAsp-109 disrupted a vital salt bridge with αBArg-120, a contact that when broken has previously been shown to yield aberrant oligomerization and aggregation in several disease-associated variants. Our results illustrate how isomerization of amino acid residues, which may seem to be only a minor structural perturbation, can disrupt native structural interactions with profound consequences for protein assembly and activity.
Collapse
Affiliation(s)
- Yana A Lyon
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Miranda P Collier
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Dylan L Riggs
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Matteo T Degiacomi
- the Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Justin L P Benesch
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Ryan R Julian
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521,
| |
Collapse
|
11
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
12
|
Takata T, Murakami K, Toyama A, Fujii N. Identification of Isomeric Aspartate residues in βB2-crystallin from Aged Human Lens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:767-774. [DOI: 10.1016/j.bbapap.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
|
13
|
Takata T, Nakamura-Hirota T, Inoue R, Morishima K, Sato N, Sugiyama M, Fujii N. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function. FEBS J 2018; 285:2263-2277. [PMID: 29676852 DOI: 10.1111/febs.14475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Abstract
Senile cataract onset is caused by insolubilization of lens proteins. The lens crystallin protein family correctly orders the formation of homo- or hetero-oligomers in lens fiber cells. Because lens fiber cells do not divide, covalent post-translational modifications, such as isomerization of aspartate residues, accumulate with aging. Although many isomerization sites of αA-crystallin have been reported, their structural and functional contributions have never been identified. In this study, αA-crystallin was extracted from aged human lens and separated into each oligomeric state by size exclusion chromatography and electrophoresis. The novel combination methodology of in-solution/gel tryptic digestion with liquid chromatography equipped with mass spectrometry (LC-MS/MS) was used to evaluate the isomerization of Asp 58. The contributions of isomerization to assembly, solubility, and chaperone functions of αA-crystallin were estimated using a series of mutations of Asp 58 in αA-crystallin. The results indicated that the isomerization of Asp 58 depended on the oligomer size and age of the lens. The substitution of Asp 58 for hydrophobic residues increased αA-crystallin oligomer size and decreased solubility. All substitutions decreased the chaperone function of αA-crystallin for aggregates of bovine βL-crystallin and alcohol dehydrogenase. The data indicated that Asp 58 in αA-crystallin was critical for intermolecular interactions in the lens. Our results also suggested that LC-MS/MS-based isomerization analyses of in-gel-digested products could be useful for investigating the isomerization of Asp residues in oligomeric states. This method could also be used to analyze d/l ratios of amino acid residues in soluble protein aggregates.
Collapse
Affiliation(s)
- Takumi Takata
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Rintaro Inoue
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Ken Morishima
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | - Nobuhiro Sato
- Research Reactor Institute, Kyoto University, Osaka, Japan
| | | | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Osaka, Japan
| |
Collapse
|
14
|
Mijiddorj B, Kaneda S, Sato H, Kitahashi Y, Javkhlantugs N, Naito A, Ueda K, Kawamura I. The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:789-798. [PMID: 29337209 DOI: 10.1016/j.bbapap.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2). H4 has a significantly lower LC50 than H2 against Leishmania. However, the atomic-level mechanism of the membrane interaction and higher activity of H4 has not been clarified. In this work, we investigated the behavior of the conformations and interactions of H2 and H4 with the Leishmania membrane using 31P solid-state nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD) spectroscopy, and molecular dynamics (MD) simulations. The generation of isotropic 31P NMR signals depending on the peptide concentration indicated the abilities of H2 and H4 to exert antimicrobial activity via membrane disruption. The VCD experiment and density functional theory calculation confirmed the different stability and conformations of the N-termini of H2 and H4. MD simulations revealed that the N-terminus of H4 is more stable than that of H2 in the membrane, in line with the VCD experiment data. VCD and MD analyses demonstrated that the first l-Ile and second d-allo-Ile of H4 tend to take a cis conformation. These residues function as an anchor and facilitate the easy winding of the helical conformation of H4 in the membrane. It may assist to quickly reach to the threshold concentration of H4 on the Leishmania membrane. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Batsaikhan Mijiddorj
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan; School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Shiho Kaneda
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yuki Kitahashi
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Namsrai Javkhlantugs
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan.
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan.
| |
Collapse
|
15
|
Zhu XJ, Zhang KK, He WW, Du Y, Hooi M, Lu Y. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. J Cell Mol Med 2017; 22:1118-1126. [PMID: 28994184 PMCID: PMC5783843 DOI: 10.1111/jcmm.13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Post-translational modifications in lens proteins are key causal factors in cataract. As the most abundant post-translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA-crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l-Asp 58 to d-isoAsp58 in αA-crystallin has been found in age-related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l-Asp 58 to d-Asp 58 in αA-crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l-Asp 58 to d-isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l-Asp 58 to d-Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA-crystallin. The different trend in the conversion of αA-crystallin by racemization, especially the elevated level of d-Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC.
Collapse
Affiliation(s)
- Xiang-Jia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Ke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Wen He
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Du
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health PR China, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Lyon YA, Sabbah GM, Julian RR. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins. J Proteome Res 2017; 16:1797-1805. [PMID: 28234481 PMCID: PMC5387677 DOI: 10.1021/acs.jproteome.7b00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The eye lens crystallins represent
an ideal target for studying
the effects of aging on protein structure. Herein we examine separately
the water-soluble (WS) and water-insoluble (WI) crystallin fractions
and identify sites of isomerization and epimerization. Both collision-induced
dissociation and radical-directed dissociation are needed for detection
of these non-mass-shifting post-translational modifications. Isomerization
levels differ significantly between the WS and the WI fractions from
sheep, pig, and cow eye lenses. Residues that are most susceptible
to isomerization are identified site-specifically and are found to
reside in structurally disordered regions. However, isomerization
in structured domains, although less common, often yields more dramatic
effects on solubility. Numerous isomerization hotspots were also identified
and occur in regions with aspartic acid and serine repeats. For example, 128KMEIVDDDVPSLW140 in βB3
crystallin contains three sequential aspartic acid residues and is
isomerized heavily in the WI fractions, while it is not modified at
all in the WS fractions. Potential causes for enhanced isomerization
at sites with acidic residue repeats are presented. The importance
of acidic residue repeats extends beyond the lens, as they are found
in many other long-lived proteins associated with disease.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Georgette M Sabbah
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
18
|
Tikhomirova TS, Selivanova OM, Galzitskaya OV. α-Crystallins are small heat shock proteins: Functional and structural properties. BIOCHEMISTRY (MOSCOW) 2017; 82:106-121. [DOI: 10.1134/s0006297917020031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Takahashi O, Kirikoshi R, Manabe N. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion. Int J Mol Sci 2016; 17:ijms17101698. [PMID: 27735868 PMCID: PMC5085730 DOI: 10.3390/ijms17101698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H2PO4−, by B3LYP/6-31+G(d,p) density functional theory calculations, using a model compound in which an aminosuccinyl (Asu) residue is capped with acetyl (Ace) and NCH3 (Nme) groups on the N- and C-termini, respectively (Ace–Asu–Nme). It was shown that an H2PO4− ion can catalyze the enolization of the Hα–Cα–C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H2PO4− corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol−1 after corrections for the zero-point energy and the Gibbs energy of hydration) for the enolization was consistent with the experimental activation energies of Asp racemization.
Collapse
Affiliation(s)
- Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
20
|
Takahashi O, Manabe N, Kirikoshi R. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain. Molecules 2016; 21:327. [PMID: 27005609 PMCID: PMC6274526 DOI: 10.3390/molecules21030327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
The rates of deamidation reactions of asparagine (Asn) residues which occur spontaneously and nonenzymatically in peptides and proteins via the succinimide intermediate are known to be strongly dependent on the nature of the following residue on the carboxyl side (Xxx). The formation of the succinimide intermediate is by far the fastest when Xxx is glycine (Gly), the smallest amino acid residue, while extremely slow when Xxx is bulky such as isoleucine (Ile) and valine (Val). In this respect, it is very interesting to note that the succinimide formation is definitely accelerated when Xxx is histidine (His) despite its large size. In this paper, we computationally show that, in an Asn-His sequence, the His side-chain imidazole group (in the neutral Nε-protonated form) can specifically catalyze the formation of the tetrahedral intermediate in the succinimide formation by mediating a proton transfer. The calculations were performed for Ace-Asn-His-Nme (Ace = acetyl, Nme = methylamino) as a model compound by the density functional theory with the B3LYP functional and the 6-31+G(d,p) basis set. We also show that the tetrahedral intermediate, once protonated at the NH₂ group, easily releases an ammonia molecule to give the succinimide species.
Collapse
Affiliation(s)
- Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Noriyoshi Manabe
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|