1
|
Chauhan P, Datta I, Dhiman A, Shankar U, Kumar A, Vashist A, Sharma TK, Tyagi JS. DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity. ACS Infect Dis 2022; 8:2540-2551. [PMID: 36332135 DOI: 10.1021/acsinfecdis.2c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
2
|
Cui Y, Dang G, Wang H, Tang Y, Lv M, Zang X, Cai Z, Cui Z, Cao J, Liu S, Song N. DosR Regulates the Transcription of the Arginine Biosynthesis Gene Cluster by Binding to the Regulatory Sequences in Mycobacterium bovis Bacille Calmette-Guerin. DNA Cell Biol 2022; 41:1063-1074. [DOI: 10.1089/dna.2022.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Hui Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Yiyi Tang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Mingyue Lv
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Jun Cao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
- Bioengineering Department, School of Life Science and Technology, Weifang Medical University, Weifang, P.R. China
| |
Collapse
|
3
|
Novel benzoic thiazolidin-4-one derivatives targeting DevR/DosR dormancy regulator of Mycobacterium tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Pardoux R, Dolla A, Aubert C. Metal-containing PAS/GAF domains in bacterial sensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Functional insights into Mycobacterium tuberculosis DevR-dependent transcriptional machinery utilizing Escherichia coli. Biochem J 2021; 478:3079-3098. [PMID: 34350952 DOI: 10.1042/bcj20210268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that the interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, β, β' and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbors a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modeling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.
Collapse
|
6
|
Banerjee SK, Lata S, Sharma AK, Bagchi S, Kumar M, Sahu SK, Sarkar D, Gupta P, Jana K, Gupta UD, Singh R, Saha S, Basu J, Kundu M. The sensor kinase MtrB of Mycobacterium tuberculosis regulates hypoxic survival and establishment of infection. J Biol Chem 2019; 294:19862-19876. [PMID: 31653701 PMCID: PMC6937564 DOI: 10.1074/jbc.ra119.009449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Paired two-component systems (TCSs), having a sensor kinase (SK) and a cognate response regulator (RR), enable the human pathogen Mycobacterium tuberculosis to respond to the external environment and to persist within its host. Here, we inactivated the SK gene of the TCS MtrAB, mtrB, generating the strain ΔmtrB We show that mtrB loss reduces the bacterium's ability to survive in macrophages and increases its association with autophagosomes and autolysosomes. Notably, the ΔmtrB strain was markedly defective in establishing lung infection in mice, with no detectable lung pathology following aerosol challenge. ΔmtrB was less able to withstand hypoxic and acid stresses and to form biofilms and had decreased viability under hypoxia. Transcriptional profiling of ΔmtrB by gene microarray analysis, validated by quantitative RT-PCR, indicated down-regulation of the hypoxia-associated dosR regulon, as well as genes associated with other pathways linked to adaptation of M. tuberculosis to the host environment. Using in vitro biochemical assays, we demonstrate that MtrB interacts with DosR (a noncognate RR) in a phosphorylation-independent manner. Electrophoretic mobility shift assays revealed that MtrB enhances the binding of DosR to the hspX promoter, suggesting an unexpected role of MtrB in DosR-regulated gene expression in M. tuberculosis Taken together, these findings indicate that MtrB functions as a regulator of DosR-dependent gene expression and in the adaptation of M. tuberculosis to hypoxia and the host environment. We propose that MtrB may be exploited as a chemotherapeutic target against tuberculosis.
Collapse
Affiliation(s)
| | - Suruchi Lata
- Department of Chemistry, Bose Institute, Kolkata 700009, India
| | | | - Shreya Bagchi
- Department of Chemistry, Bose Institute, Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata 700009, India
| | | | - Debasree Sarkar
- Division of Bioinformatics, Bose Institute, Kolkata 700054, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Umesh Datta Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata 700054, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata 700009, India
| | | |
Collapse
|
7
|
Sharma S, Kumari P, Vashist A, Kumar C, Nandi M, Tyagi JS. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design. Mol Microbiol 2019; 111:1182-1194. [PMID: 30589958 DOI: 10.1111/mmi.14196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyanka Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and other Mycobacterial Diseases, Tajganj, Agra, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Chanchal Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Haryana, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
8
|
Vashist A, Malhotra V, Sharma G, Tyagi JS, Clark-Curtiss JE. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis. J Biol Chem 2018; 293:16413-16425. [PMID: 30181216 PMCID: PMC6200940 DOI: 10.1074/jbc.ra118.004331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Indexed: 11/06/2022] Open
Abstract
The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70-80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.
Collapse
Affiliation(s)
- Atul Vashist
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- From the Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Gunjan Sharma
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Josephine E Clark-Curtiss
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- the School of Life Sciences, Arizona State University, Tempe, Arizona 85287, and
| |
Collapse
|
9
|
Zschiedrich CP, Keidel V, Szurmant H. Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol 2016; 428:3752-75. [PMID: 27519796 DOI: 10.1016/j.jmb.2016.08.003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.
Collapse
Affiliation(s)
- Christopher P Zschiedrich
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victoria Keidel
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Sharma S, Tyagi JS. Mycobacterium tuberculosis DevR/DosR Dormancy Regulator Activation Mechanism: Dispensability of Phosphorylation, Cooperativity and Essentiality of α10 Helix. PLoS One 2016; 11:e0160723. [PMID: 27490491 PMCID: PMC4973870 DOI: 10.1371/journal.pone.0160723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may confer upon them a significant advantage, since they would be ‘pre-adapted’ to the environmental stresses that predominate during infection. Aerobic DevR regulon expression in laboratory-manipulated overexpression strains is also reported. In both instances, the need for an inducing signal is bypassed. While a phosphorylation-mediated conformational change in DevR was proposed as the activation mechanism under hypoxia, the mechanism underlying constitutive expression is not understood. Because DevR is implicated in bacterial dormancy/persistence and is a promising drug target, it is relevant to resolve the mechanistic puzzle of hypoxic activation on one hand and constitutive expression under ‘non-inducing’ conditions on the other. Here, an overexpression strategy was employed to elucidate the DevR activation mechanism. Using a panel of kinase and transcription factor mutants, we establish that DevR, upon overexpression, circumvents DevS/DosT sensor kinase-mediated or small molecule phosphodonor-dependent activation, and also cooperativity-mediated effects, which are key aspects of hypoxic activation mechanism. However, overexpression failed to rescue the defect of C-terminal-truncated DevR lacking the α10 helix, establishing the α10 helix as an indispensable component of DevR activation mechanism. We propose that aerobic overexpression of DevR likely increases the concentration of α10 helix-mediated active dimer species to above the threshold level, as during hypoxia, and enables regulon expression. This advance in the understanding of DevR activation mechanism clarifies a long standing question as to the mechanism of DevR overexpression-mediated induction of the regulon in the absence of the normal environmental cue and establishes the α10 helix as an universal and pivotal targeting interface for DevR inhibitor development.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail: ;
| |
Collapse
|